传输介质与网络协议共52页
- 格式:ppt
- 大小:4.39 MB
- 文档页数:28
一、常见的网络传输介质及其工作特点网络传输介质是网络中发送方与接收方之间的物理通路,它对网络的数据通信具有一定的影响。
常用的传输介质有:双绞线、同轴电缆、光纤、无线传输媒介。
1.双绞线:简称TP,将一对以上的双绞线封装在一个绝缘外套中,为了降低信号的干扰程度,电缆中的每一对双绞线一般是由两根绝缘铜导线相互扭绕而成,也因此把它称为双绞线。
双绞线分为非屏蔽双绞线(UTP)和屏蔽双绞线(STP),适合于短距离通信。
非屏蔽双绞线价格便宜,传输速度偏低,抗干扰能力较差。
屏蔽双绞线抗干扰能力较好,具有更高的传输速度,但价格相对较贵。
2.同轴电缆由绕在同一轴线上的两个导体组成。
具有抗干扰能力强,连接简单等特点,信息传输速度可达每秒几百兆位,是中、高档局域网的首选传输介质。
3.光纤:又称为光缆或光导纤维,由光导纤维纤芯、玻璃网层和能吸收光线的外壳组成。
是由一组光导纤维组成的用来传播光束的、细小而柔韧的传输介质。
应用光学原理,由光发送机产生光束,将电信号变为光信号,再把光信号导入光纤,在另一端由光接收机接收光纤上传来的光信号,并把它变为电信号,经解码后再处理。
与其它传输介质比较,光纤的电磁绝缘性能好、信号衰小、频带宽、传输速度快、传输距离大。
主要用于要求传输距离较长、布线条件特殊的主干网连接。
具有不受外界电磁场的影响,无限制的带宽等特点,可以实现每秒几十兆位的数据传送,尺寸小、重量轻,数据可传送几百千米,但价格昂贵。
二、网络拓扑结构及其特点、IP地址、网络协议1.网络拓扑结构及其特点(1)总线拓扑结构总线型拓扑结构采用单根数据传输线作为通信介质,所有的节点都通过相应的硬件接口直接连接到一根中央主电缆上,任何一个节点的信息都可以沿着总线向两个方向传输扩散,并且能够被总线任何一个节点所接受,其传输方式类似于广播电台,因而总线网络也称为广播式网络。
特点:这种结构具有费用低、数据端用户入网灵活、站点或某个端用户失效不影响其它站点或端用户通信的优点。
一、常见的网络传输介质及其工作特点网络传输介质是网络中发送方与接收方之间的物理通路,它对网络的数据通信具有一定的影响。
常用的传输介质有:双绞线、同轴电缆、光纤、无线传输媒介。
1.双绞线:简称TP,将一对以上的双绞线封装在一个绝缘外套中,为了降低信号的干扰程度,电缆中的每一对双绞线一般是由两根绝缘铜导线相互扭绕而成,也因此把它称为双绞线。
双绞线分为非屏蔽双绞线(UTP)和屏蔽双绞线(STP),适合于短距离通信。
非屏蔽双绞线价格便宜,传输速度偏低,抗干扰能力较差。
屏蔽双绞线抗干扰能力较好,具有更高的传输速度,但价格相对较贵。
2.同轴电缆由绕在同一轴线上的两个导体组成。
具有抗干扰能力强,连接简单等特点,信息传输速度可达每秒几百兆位,是中、高档局域网的首选传输介质。
3.光纤:又称为光缆或光导纤维,由光导纤维纤芯、玻璃网层和能吸收光线的外壳组成。
是由一组光导纤维组成的用来传播光束的、细小而柔韧的传输介质。
应用光学原理,由光发送机产生光束,将电信号变为光信号,再把光信号导入光纤,在另一端由光接收机接收光纤上传来的光信号,并把它变为电信号,经解码后再处理。
与其它传输介质比较,光纤的电磁绝缘性能好、信号衰小、频带宽、传输速度快、传输距离大。
主要用于要求传输距离较长、布线条件特殊的主干网连接。
具有不受外界电磁场的影响,无限制的带宽等特点,可以实现每秒几十兆位的数据传送,尺寸小、重量轻,数据可传送几百千米,但价格昂贵。
二、网络拓扑结构及其特点、I P地址、网络协议1.网络拓扑结构及其特点(1)总线拓扑结构总线型拓扑结构采用单根数据传输线作为通信介质,所有的节点都通过相应的硬件接口直接连接到一根中央主电缆上,任何一个节点的信息都可以沿着总线向两个方向传输扩散,并且能够被总线任何一个节点所接受,其传输方式类似于广播电台,因而总线网络也称为广播式网络。
网络通讯协议书结构图解网络通信协议是指计算机网络中进行数据传输和信息交换的一套规则和约定。
它定义了通信双方的通信方式、数据格式、传输协议等,以确保数据能够正确、高效地传输。
在网络通信协议中,协议栈是一个重要的概念,指的是一系列协议的层次化组织,每一层协议都负责不同的功能,协同工作来完成数据的传输。
下面将从物理层到应用层,介绍网络通信协议的结构。
一、物理层物理层是网络通信协议的最底层,它负责将比特流转换为可传输的信号,在物理媒介上进行传输。
物理媒介可以是电线、光纤、无线电波等。
物理层的主要功能包括信号的编码、调制和解调、时钟同步等。
二、数据链路层数据链路层主要负责将物理层传输的比特流划分成逻辑上的数据帧,并添加帧头和帧尾等控制信息。
数据链路层还负责差错检测、流量控制和数据的帧同步。
比如以太网协议、Wi-Fi协议等都是在数据链路层进行操作的。
三、网络层网络层是网络通信协议的核心层,它负责选择合适的传输路径来实现数据在不同网络之间的传输。
在网络层中,IP协议是最常用的协议,它定义了数据在互联网中的传输和路由选择的规则。
网络层还负责将数据分片、差错恢复等操作。
四、传输层传输层主要负责提供可靠的端到端的数据传输,它包括了两种主要的协议:传输控制协议(TCP)和用户数据报协议(UDP)。
TCP协议提供可靠的、面向连接的数据传输,通过序列号和确认机制来保证数据的完整性和有序性。
UDP协议则提供了不可靠的、面向无连接的数据传输,适用于一些对数据传输的实时性要求较高的应用。
五、会话层会话层主要负责建立和管理应用程序之间的通信会话。
它定义了会话的开始、结束和恢复的规则,并提供了会话控制和同步机制。
在会话层中,我们常见的协议有FTP、Telnet等。
六、表示层表示层主要负责数据的格式转换和加密解密。
它将来自会话层的数据进行编码和解码,以确保不同终端设备之间能够正确地解释和处理数据。
常见的表示层协议有JPEG、ASCII等。
局域网的网络协议与通信方式局域网(Local Area Network,LAN)是指在有限的范围内,如家庭、办公室或学校等地,通过特定的通信设备与协议连接起来的一组计算机。
局域网的网络协议和通信方式对于实现计算机之间的数据交换和资源共享起到至关重要的作用。
在本文中,我们将介绍局域网常用的网络协议和通信方式。
一、IP协议IP(Internet Protocol)协议是局域网中最重要的网络协议之一。
它负责为局域网中的每台计算机分配唯一的IP地址,并且通过IP地址将数据包从发送方传输到接收方。
在局域网中,常用的IP协议版本为IPv4和IPv6。
IPv4是当前应用较广泛的IP协议版本,它使用32位二进制数表示IP地址。
一个典型的IPv4地址的格式为xxx.xxx.xxx.xxx,其中每个“xxx”代表一个8位二进制数,范围从0到255。
IPv4的主要限制是地址空间有限,导致IP地址不足。
IPv6是未来发展的方向,它使用128位二进制数表示IP地址,提供了更为广阔的地址空间。
IPv6的地址格式例如xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx,其中每个“xxxx”代表一个16位的十六进制数。
二、以太网协议以太网(Ethernet)协议是局域网中最常用的通信方式之一。
它定义了局域网中计算机之间的数据传输方式和规则。
以太网使用MAC地址(Media Access Control Address)来识别和寻址网络设备。
MAC地址是一个唯一的物理地址,由48位二进制数组成。
以太网帧中的源MAC地址和目的MAC地址用于确定数据传输的发送方和接收方。
以太网使用CSMA/CD(Carrier Sense Multiple Access with Collision Detection)方法来解决多个计算机同时发送数据时的冲突问题。
三、TCP/IP协议TCP/IP协议是互联网上常用的一种网络协议,也广泛应用于局域网中。
第一课网络基础传输介质与连接设备一、网络起源一般地说,将分散的多台计算机、终端和外部设备用通信线路互联起来,彼此间实现互相通信,并且计算机的硬件、软件和数据资源大家都可以共同使用,实现资源共享的整个系统就叫做计算机网络。
连入网上的每台计算机本身都是一台完整独立的设备。
它自己可以独立工作。
例如我们可以对它进行启动、运行和停机等操作。
我们还可以通过网络去使用网络上的另外一台计算机。
例如可以在身边的这台计算机上去调用另一台计算机上某一目录下的一个文件。
计算机之间可以用双绞线、电话线、同轴电缆和光纤等有线通信,也可以使用微波、卫星等无线媒体把它们连接起来。
例如,你家里的一台微机要想联到Internet网络上去,只要向邮电部门办一个手续,将你家里的那根电话线通过通信设备调制解调器(modem)连接到你的那台微机上,再装上相应的软件,你就可以拨号查询Internet网上的信息。
20世纪50年代初,美国为了自身的安全,在美国本土北部和加拿大境内,建立了一个半自动地面防空系统,简称SAGE系统。
译成中文叫赛其系统。
在赛其系统中,雷达录取设备采集到的飞机目标信息自动送到通信设备,赛其信息处理中心的大型计算机自动地将通信设备送来的信息接收下来。
这种将计算机与通信设备结合使用在人类的历史上还有首次,因此也可以说是一种创新。
没有计算机与通信技术相结合的尝试,也就不会有现在这样先进的计算机网络。
二、网络的种类1、按网络的地理位置分类:1. 局域网(Local Area Network,简称LAN):一般限定在较小的区域内,小于10km的范围,通常采用有线的方式连接起来。
局域网是组成其他两种类型计算机网络的基础。
2. 城域网(MAN):规模局限在一座城市的范围内,10~100km的区域。
3. 广域网(W AN):网络跨越国界、洲界,甚至全球范围。
目前局域网和广域网是网络的热点。
广域网的典型代表是Internet网。
2、按传输介质分类1. 有线网:采用同轴电缆和双绞线来连接的计算机网络。
⽹络接⼝EthernetV2协议(以太⽹第⼆版协议)⼀种总线型局域⽹--以太⽹从采⽤的介质访问控制⽅法⾓度来看,局域⽹可以分为共享介质局域⽹与交换式局域⽹两种。
⽬前被普遍采⽤并形成国际标准的介质访问控制⽅法主要有以下三种:带有冲突检测的载波侦听多路访问(CMSA/CD)⽅法、令牌总线(Token Bus)⽅法与令牌环(Token Ring)⽅法。
以太⽹(Ethernet)是由Xerox公司创建并由Xerox、Intel和公司联合开发的基带规范,是当今现有局域⽹采⽤的最通⽤的标准。
它是⼀种总线型局域⽹,使⽤CSMA/CD技术,并以10M/S的速率运⾏在多种类型的电缆上。
局域⽹在结构上分为总线型、环形和星形三种拓扑结构。
上图给出了实际的总线型局域⽹的计算机连接情况和总线型拓扑结构。
它的优点是:结构简单,实现容易,易于扩展,可靠性较好。
介质访问控制⽅法采⽤的是“共享介质”⽅式。
总线型局域⽹拓扑结构通常包含以下特点:☆所有结点都通过⽹卡直接连接到⼀条作为公共传输介质的总线上。
☆总线通常采⽤双绞线或同轴电缆作为传输介质。
☆所有结点都可以通过总线发送或接收数据,但⼀段时间内只允许⼀个结点通过总线发送数据。
当⼀个结点通过总线传输介质以“⼴播”⽅式发送数据时,其他的结点只能以“收听”⽅式接收数据。
☆总线作为公共传输介质为多个结点共享,可能出现同⼀时刻有两个或两个以上结点通过总线发送数据的情况,因此会出现“冲突”导致传输失败。
CSMA/CD协议CSMA/CD是⼀种争⽤型的协议,应⽤在OSI的第⼆层,提供了寻址和媒体存取的控制⽅式,使得不同设备或⽹络上的节点可以在多点的⽹络上通信⽽不相互冲突。
它的⼯作原理是: 发送数据前先侦听信道是否空闲,若空闲,则⽴即发送数据。
若信道忙碌,则等待⼀段时间⾄信道中的信息传输结束后再发送数据;若在上⼀段信息发送结束后,同时有两个或两个以上的节点都提出发送请求,则判定为冲突。
若侦听到冲突,则⽴即停⽌发送数据,等待⼀段随机时间,再重新尝试。
网络补充内容2.1.2网络传输介质传输介质就是通信中实际传送信息的载体,在网络中是连接收发双方的物理通路;常用的传输介质分为:有线介质和无线介质。
有线介质:可传输模拟信号和数字信号(有双绞线、细/粗同轴电缆、光纤)无线介质:大多传输数字信号(有微波、卫星通信、无线电波、红外、激光等)1、同轴电缆同轴电缆的核心部分是一根导线,导线外有一层起绝缘作用的塑性材料,再包上一层金属网,用于屏蔽外界的干扰,最外面是起保护作用的塑性外套。
同轴电缆的抗干扰特性强于双绞线,传输速率与双绞线类似,但它的价格接近双绞线的两倍。
同轴电缆分类:A. 细同轴电缆(RG58),主要用于建筑物内网络连接;B. 粗同轴电缆(RG11),主要用于主干或建筑物间网络连接;对比项细缆粗缆直径0.25英寸0.5英寸传输距离185米500米接头BNC头、T型头AUI阻抗50Ω50Ω应用的局域网10BASE2 10BASE52、双绞线是两条相互绝缘的导线按一定距离绞合若干次,使得外部的电磁干扰降到最低限度,以保护信息和数据。
双绞线的广泛应用比同轴电缆要迟得多,但由于它提供了更高的性能价格比,而且组网方便,成为现在应用最广泛的铜基传输媒体。
缺点是传输距离受限。
双绞线分为非屏蔽双绞线(UTP)和屏蔽双绞线(STP)屏蔽双绞线外护套加金属材料,减少辐射,防止信息窃听,性能优于非屏蔽双绞线,但价格较高。
而且安装比非屏蔽双绞线复杂。
所以,在组建局域网时通常使用非屏蔽双绞线。
但如果是室外使用,屏蔽线要好些。
目前共有6类双绞线,各类双绞线均为8芯电缆,双绞线的类型由单位长度内的绞环数确定。
1类双绞线通常在局域网中不使用,主要用于模拟话音,传统的电话线即为1类线;2类双绞线支持4Mb/s传输速率,在局域网中很少使用;3类双绞线用于10Mb/s以太网;4类双绞线适用于16Mb/s令牌环局域网;5类和超5类双绞线带宽可达100Mb/s,用于构建100Mb/s以太网,是目前最常用的线缆;另外还有6类、7类,能提供更高的传输速率和更远的距离。