5薄壁圆管弯扭组合变形测定_实验报告(精)
- 格式:doc
- 大小:144.50 KB
- 文档页数:5
弯扭组合变形实验报告在科学研究领域中,变形实验是一种常见的实验方法,用于研究物体在外力作用下的变形规律。
而在变形实验中,弯扭组合变形实验是一种常见且重要的实验方法,可以用来研究材料的弯曲和扭转变形特性。
本报告将对弯扭组合变形实验进行详细的描述和分析。
我们需要了解弯扭组合变形实验的基本原理。
在弯扭组合变形实验中,试样将同时受到弯曲和扭转的作用,这种双重变形方式会导致试样表面和内部的变形状态复杂多样。
通过对试样进行弯扭组合变形实验,可以得到材料在不同变形模式下的力学性能参数,如弯曲强度、扭转强度等,从而更全面地了解材料的力学性能。
弯扭组合变形实验的操作步骤也非常关键。
首先,需要选择合适的试样形状和尺寸,然后将试样固定在试验机上,施加合适的弯曲和扭转载荷,同时记录试样的变形情况和载荷大小。
在实验过程中,需要确保试样受力均匀,避免出现局部过载或集中变形的情况,以保证实验结果的准确性和可靠性。
在进行弯扭组合变形实验时,需要注意一些实验技巧。
首先,应该根据试样的材料和形状特性合理选择试验条件,如载荷大小、加载速度等,以确保实验结果具有代表性。
其次,在实验过程中应及时观察试样的变形情况,注意是否出现裂纹或变形不均匀的现象,及时调整实验条件以保证实验的顺利进行。
在实验结束后,需要对实验数据进行分析和处理。
通过对试样在弯扭组合变形过程中的力学性能参数进行计算和统计,可以得到材料的弯曲和扭转性能指标,如弯曲模量、扭转刚度等。
这些数据对于材料的设计和应用具有重要的参考价值,可以帮助工程师更好地选择和使用材料。
总的来说,弯扭组合变形实验是一种重要的材料力学性能测试方法,通过该实验可以全面了解材料在弯曲和扭转载荷下的性能表现。
在进行弯扭组合变形实验时,需要注意选择合适的试验条件、掌握实验技巧,并对实验数据进行准确分析和处理。
希望本报告对弯扭组合变形实验有所帮助,能够促进材料力学性能研究的进展。
薄壁圆筒在弯曲和扭转组合变形下的主应力测试实验
实验目的: (1)了解在弯曲和扭转组合变形情况下的测试方法
(2)测定薄壁圆筒试件在弯曲和扭转组合受力情况下,试件表面某
点的正应力,并与理论值比较。
实验仪器: XL3418材料力学多功能试验台;测力仪;静力电阻应变仪。
实验原理: 薄壁圆筒受弯曲和扭转组合作用,使圆筒的m 点处于平面应力状态如图1所示。
在m 点单元体上有弯矩引起来的正应力x σ,和由扭矩引起来的剪应力n τ。
主应力是一对拉应力1σ和一对压应力3σ。
理论值计算:
132x σσσ=±
022n
x
tg τασ-=
x z M
W σ= 4
3132z D d W D π⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ M P L =∆⋅
n T
T
W τ= 43116T D d W D π⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦
T P a =∆⋅
实验值计算:
°
°
145453()2(1)E εεσσμ-+=- °°°°°45-450045-45()2(2)
tg εεαεεε-=
--
图1 圆筒m 点的应力状况。
弯扭组合变形实验报告在本次实验中,我们将探讨弯扭组合变形的现象及其可能的影响。
弯扭组合变形是一种常见的材料变形方式,特别是在金属材料中。
通过施加弯曲和扭转力,可以使材料发生复杂的变形,这既可以用于制造工艺中,也可以用于材料性能的研究。
我们进行了一组简单的实验,选取了不同种类的金属材料进行弯扭组合变形。
通过在材料上施加不同方向和大小的力,我们观察到了材料发生的变形情况。
在弯曲力的作用下,材料产生了弯曲变形,而扭转力则使材料发生了扭转变形。
当两种力同时作用在材料上时,就会出现弯扭组合变形的情况,这种变形形式更加复杂,具有更多的变形模式。
接着,我们对不同金属材料在弯扭组合变形过程中的性能进行了比较。
我们发现,一些材料在受到弯扭组合变形后,其强度和硬度有所提高,但塑性却有所下降。
这说明弯扭组合变形可以提高材料的强度,但也可能导致其脆性增加。
而对于另一些材料来说,弯扭组合变形后,其塑性反而有所提高,但强度和硬度可能会降低。
因此,在实际应用中,需要根据具体材料的性能需求来选择是否采用弯扭组合变形工艺。
我们还研究了弯扭组合变形对材料微观结构的影响。
通过金相显微镜的观察,我们发现在弯扭组合变形后,材料的晶粒结构发生了明显的变化。
晶粒可能会发生细化,晶界的移动和变形也会加剧。
这些微观结构的变化对材料的性能有着重要影响,因此对于材料的微观结构进行研究是十分必要的。
总的来说,弯扭组合变形是一种重要的材料变形方式,可以有效改善材料的性能,但也可能导致一些负面影响。
因此,在工程实践中,需要充分考虑弯扭组合变形对材料性能的影响,合理选择工艺参数,以实现最佳的效果。
希望通过本次实验,可以更深入地了解弯扭组合变形的机理及其在材料加工中的应用。
薄壁圆筒的弯扭组合实验姓名 班级 机制(2+2)11(1)班 学号 20113303150一、实验目的1、测定圆筒在弯扭组合变形下一点处的弯矩、扭矩及主应力。
2、进一步熟悉电测法和静态电阻应变仪的使用方法。
二、实验设备和仪器1.弯扭组合变形实验装置。
2.程控静态电阻应变仪。
三、实验原理及方法(一)弯扭圆筒实验装置及布片: 如图2-2-1所示:(a)实验装置示意图 (b )m 点的应力状态(c )m ,m ’贴片图 (d )T 引起45°方向主应力和主应变图2-2-2 弯扭圆筒实验装置1、 主应力测定:在组合变形条件下,测定测点任意三个方向应变即可计算主应变,主方向及主应力,如图2-2-2(C )m 点的三个应变为︒-45ε、︒45ε、︒0ε。
则主应变()()20452045454531222︒︒︒︒-︒︒--+-±+=⎭⎬⎫εεεεεεεε (1)主方向 ︒︒-︒︒-︒---=454504545022tan εεεεεα (2)主应力 ()()⎪⎪⎭⎪⎪⎬⎫+-=+-=1323312111μεεμσμεεμσEE (3) 2、弯距M 测定:(见图(C ))在图(C )贴片情况下,由弯距引起X 方向的应变为b ε及'b ε,故利用1/4桥接法可得加载时应变仪读数。
0ME Wσε︒===E*(b ε-'b ε)/2 故实测弯距0M E W ε︒==W* E*(b ε-'b ε)/2, ()4432d D DW -=π3、扭距T 测定:(见图(C ),(d ))根据图(d )的应力状态分析 τσ=1,τσ-=3,()μτσμσε+=-=1311EEE;同理 ()μτε+-=12E。
由1/4桥接法可得: ︒-45ε、︒45ε,同时 ()111t T E W ετσμ===+ 因而可得 ()t r W E T με+=14 , )(1644d D DW t -=π四、实验步骤1、以砝码盘加力杆自重作为初载荷0 F ,试验分五级加载,每次加一块(1Kgf )砝码,至少重复加载二次,记录每次载荷下的应变,以观察应变是否按线性变化,最后用最大应变值计算1ε、3ε、01α、1σ、3σ。
弯扭组合变形实验报告薄壁圆管弯扭组合变形应变测定实验⼀.实验⽬的1.⽤电测法测定平⾯应⼒状态下主应⼒的⼤⼩及⽅向;2.测定薄壁圆管在弯扭组合变形作⽤下,分别由弯矩、剪⼒和扭矩所引起的应⼒。
⼆.实验仪器和设备1.弯扭组合实验装置;2.YJ-4501A/SZ静态数字电阻应变仪。
三.实验原理薄壁圆管受⼒简图如图1所⽰。
薄壁圆管在P⼒作⽤下产⽣弯扭组合变形。
薄壁圆管材料为铝合⾦,其弹性模量E为722GN, 泊松⽐µ为0.33。
m薄壁圆管截图1⾯尺⼨、如图2所⽰。
由材料⼒学分析可知,该截⾯上的内⼒有弯矩、剪⼒和扭矩。
Ⅰ-Ⅰ截⾯现有A、B、C、D四个测点,其应⼒状态如图3所⽰。
每点处已按–450、00、+450⽅向粘贴⼀枚三轴450应变花,如图4所⽰。
图2 图3 图4 四.实验内容及⽅法1. 指定点的主应⼒⼤⼩和⽅向的测定薄壁圆管A、B、C、D四个测点,其表⾯都处于平⾯应⼒状态,⽤应变花测出三个⽅向的线应变,然后运⽤应变-应⼒换算关系求出主应⼒的⼤⼩和⽅向。
若测得应变ε-45、ε0、ε45 ,则主应⼒⼤⼩的计算公式为()()()??-+--±++-=--245020454*******1211εεεεµεεµµσσE主应⼒⽅向计算公式为()()04545045452εεεεεεα----=--tg 或 ()45450454522εεεεεα+---=--tg2. 弯矩、剪⼒、扭矩所分别引起的应⼒的测定 a. 弯矩M 引起的正应⼒的测定只需⽤B 、D 两测点00⽅向的应变⽚组成图5(a )所⽰半桥线路,就可测得弯矩M 引的正应变 2MdM εε=然后由虎克定律可求得弯矩M 引起的正应⼒2MdM M E E εεσ== b. 扭矩M n 引起的剪应⼒的测定图5 ⽤A 、C 两被测点-450、450⽅向的应变⽚组成图5(b )所⽰全桥线路,可测得扭矩M n 在450⽅向所引起的线应变 4ndn εε=由⼴义虎克定律可求得剪⼒M n 引起的剪应⼒ ()214nd nd n G E εµετ=+=c. 剪⼒Q 引起的剪应⼒的测定⽤A 、C 两被测点-450、450⽅向的应变⽚组成图5(c )所⽰全桥线路,可测得剪⼒Q 在450⽅向所引起的线应变 4 QdQ εε=由⼴义虎克定律可求得剪⼒Q 引起的剪应⼒ ()214QdQd Q G E εµετ=+=五.实验步骤1. 接通测⼒仪电源,将测⼒仪开关置开。
实验五常见力学仪器操作及数据分析专项能力训练——扭组合变形薄壁筒应力测量实验一、实验目的1.用电测法测定平面应力状态下主应力的大小及方向,并与理论值进行比较;2.测定弯扭组合变形杆件中分别由弯矩、剪力和转矩所引起的应力,并确定内力分量弯矩、剪力和转矩的实验值。
二、实验仪器和设备1.多功能组合实验装置一台;2.弯扭组合变形实验梁一根;3.TS3860型数字应变仪一台。
三、实验原理和方法弯扭组合薄臂圆筒实验梁是由薄壁圆筒、扇臂、手轮、旋转支座等组成。
实验时,转动手轮,加载螺杆和载荷传感器都向下移动,载荷传感器就有压力电信号输出,此时电子秤数字显示出作用在扇臂端的载荷值。
扇臂端的作用力传递到薄壁圆筒上,使圆筒产生弯扭组合变形。
薄壁圆筒材料为铝,其弹性模量E=210GPa,泊松比μ=0.29。
圆筒外径D o=37mm,壁厚t=1.8mm。
薄壁圆筒弯扭组合变形受力简图如图5-1所示。
截面I—I为被测位置,由材料力学可知,该截面上的内力有弯矩、剪力和l转矩。
取其前、后、上、下的A、C、B、D为四个被测点,其应力状态如图5-2所示。
每点处按-45°、0°、+45°方向粘贴一个三轴45︒应变花(见图5-3(a)。
实验内容和方法如下:图5-1薄壁圆筒受力图图5-2 A、B、C、D点应力状态1.确定主应力大小及方向弯扭组合变形薄壁圆筒表面上的点处于平面应力状态,先用应变花测出三个方向的线应变,随后算出主应变的大小和方向,再运用广义胡克定律公式即可求出主应力的大小和方向。
由于薄壁圆筒上的点处于平面应力状态且材料为钢,与应变片灵敏系数的标定条件不符,故应进行横向效应的修正。
此时只要将主应力公式中的弹性模量E、泊松比μ用表观弹性模量E a、表观泊松比μa代替即可得到修正的主应力公式。
E a、μa的表达式按式(5-1)、式(5-2)分别为μμH H E E --=1)1(0a (5-1) μμμH H --=1a (5-2) 式中:E 、μ——分别为薄壁圆筒材料的弹性模量和泊松比;μ0——应变片灵敏系数标定梁材料的泊松比。
实验力学实验报告姓名:耿臻岑学号:130875指导老师:郭应征实验一薄壁圆管弯扭组合应力测定实验一、实验目的1、用应变花测定薄壁圆管在弯扭条件下一点处的主应力和主方向2、测定薄壁圆管在弯扭组合条件下的弯矩、扭矩和剪力等内力3、进一步熟悉和掌握不同的桥路接线方法4、初步了解在组合变形情况下测量某一内力对应应变的方法二、实验设备1、电阻应变仪YJ-282、薄壁圆管弯扭组合装置,见图1-1本次实验以铝合金薄壁圆管EC为测试对象,圆管一段固定,另一端连接与之垂直的伸臂AC,通过旋转家里手柄将集中荷载施加在伸臂的另一端,由力传感器测出力的大小。
荷载作用在伸臂外端,其作用点距圆通形心为b,圆通在荷载F 作用下发生弯扭组合变形。
要测取圆筒上B截面(它到荷载F作用面距离为L)处各测点的主应力大小和方向。
试样弹性模量E=72GPa,泊松比μ=0.33,详细尺寸如表1-1图1-1 薄壁圆筒弯扭组合装置表1-1 试样参数表外径D(mm) 内径d(mm) b(mm) L(mm)40 34 200 300三、实验原理1、确定主应力和主方向平面应力状态下任一点的应力有三个未知数(主应力大小及方向)。
应用电阻应变仪应变花可测的一点沿不同方向的三个应变值,如图1-2所示的三个方向已知的应变。
根据这三个应变值可以计算出主应变的大小和方向。
因而主应力的方向也可确定(与主应变方向重合)()()()()04545045452245451,2450450454500454511222212222tan 2211x y xy EEεεεεεεγεεεεεεεεεεεαεεεσεμεμσεμεμ------==+-=-+=±-+--=--=+-=+-ooooooooo oo oo oooo图1-2 应变花示意图 图1-3 B 、D 点贴片位置示意图2、测定弯矩在靠近固定端的下表面D 上,粘一个与点B 相同的应变花,如图1-3所示。
薄壁圆筒在弯扭组合变形主应力测定报告一、概述薄壁圆筒是工程中常见的一种结构形式,其在使用过程中受到的弯曲和扭转载荷往往同时存在,因此对其在弯扭组合变形条件下的主应力进行准确测定具有重要意义。
本报告旨在对薄壁圆筒在弯扭组合变形下的主应力进行测定,并提供权威的数据支持。
二、实验目的1.对薄壁圆筒在弯曲和扭转载荷下的主应力进行测定;2.掌握薄壁圆筒在弯扭组合变形条件下的变形规律;3.提供准确可靠的数据支持,为工程设计提供参考依据。
三、实验原理在弯曲和扭转载荷共同作用下,薄壁圆筒内部会产生主应力和主剪应力。
其主应力由弯曲应力和扭转应力共同决定,根据相关理论原理,可以通过测定薄壁圆筒表面的变形情况,推导出其在弯扭组合变形条件下的主应力。
四、实验装置和材料1.薄壁圆筒实验样品;2.应变仪;3.扭转载荷施加装置;4.弯曲载荷施加装置;5.数据采集系统;6.相关辅助工具;7.其他必要的辅助材料。
五、实验步骤1.准备薄壁圆筒样品,清洁表面并固定在实验台上;2.根据实验要求,施加弯曲载荷,并记录薄壁圆筒的变形情况;3.根据实验要求,施加扭转载荷,并记录薄壁圆筒的变形情况;4.利用应变仪等装置对薄壁圆筒表面的应变变化进行实时监测和记录;5.根据采集的数据,推导出薄壁圆筒在弯扭组合变形条件下的主应力。
六、实验数据处理和分析1.根据实验采集的数据,绘制出薄壁圆筒在不同弯曲和扭转载荷下的主应力变化曲线;2.对数据进行详细分析和比对,得出薄壁圆筒在不同载荷情况下的主应力范围;3.分析实验中存在的误差和不确定性,并提出相应的修正方案;4.对实验结果进行合理的解释和结论。
七、实验结果与结论1.根据实验数据处理和分析,得出薄壁圆筒在弯扭组合变形条件下的主应力范围为△σ;2.对实验结果进行科学的解释和结论,明确指出实验的可靠性和局限性;3.在结论部分提出对后续研究和工程应用的建议和展望。
八、实验总结1.总结全文工作,重点强调实验的意义和价值;2.对实验中存在的问题和不足进行梳理和反思;3.为未来相关研究和工程设计提供经验和借鉴。
薄壁圆管弯扭组合变形应变测定实验SQ1001804A004 李扬一.实验目的1.用电测法测定平面应力状态下主应力的大小及方向;2.测定薄壁圆管在弯扭组合变形作用下,分别由弯矩、剪力和扭矩所引起的应力。
二.实验仪器和设备1.弯扭组合实验装置;2.YJ-4501A/SZ静态数字电阻应变仪。
三.实验原理弯扭组合实验装置如图1所示。
它由薄壁圆管1(已粘好应变片),扇臂2,钢索3,传感器4,加载手轮5,座体6,数字测力仪7等组成。
试验时,逆时针转动加载手轮,传感器受力,将信号传给数字测力仪,此时,数字测力仪显示的数字即为作用在扇臂顶端的载荷值,扇臂顶端作用力传递至薄壁圆管上,薄壁圆管产生弯图1扭组合变形。
薄壁圆管材料为铝合金,其弹GN, 泊松比μ性模量E为722m为0.33。
薄壁圆管截面尺寸、受力简图如图2所示,Ⅰ-Ⅰ截面为被测试截面,由材料力学可知,该截面上的内力有弯矩、剪力和扭矩。
取Ⅰ-Ⅰ截面的A、B、C、D四个被测点,其应力状态如图3所示。
每点处按–450、00、+450方向粘贴一枚三轴450应变花,如图4所示。
图2图3 图4 图5四.实验内容及方法1. 指定点的主应力大小和方向的测定受弯扭组合变形作用的薄壁圆管其表面各点处于平面应力状态,用应变花测出三个方向的线应变, 然后运用应变-应力换算关系求出主应力的大小和方向。
本实验用的是450应变花,若测得应变ε-45、ε0、ε45,则主应力大小的计算公式为()()()⎥⎦⎤⎢⎣⎡-+--±++-=--24502045454523121211εεεεμεεμμσσE主应力方向计算公式为 ()()04545045452εεεεεεα----=--tg2. 弯矩、剪力、扭矩所分别引起的应力的测定a. 弯矩M 引起的正应力的测定用B 、D 两被测点00方向的应变片组成图5(a )所示半桥线路,可测得弯矩M 引 的正应变 2MdM εε=由虎克定律可求得弯矩M 引起的正应力 2MdM M E E εεσ== b. 扭矩M n 引起的剪应力的测定用A 、C 两被测点-450、450方向的应变片组成图5(b )所示全桥线路,可测得扭矩M n在450方向所引起的应变为 4ndn εε=由广义虎克定律可求得剪力M n 引起的剪应力 ()214ndnd n G E εμετ=+= c. 剪力Q 引起的剪应力的测定用A 、C 两被测点-450、450方向的应变片组成图5(c )所示全桥线路,可测得剪力Q 在450方向所引起的应变为 4QdQ εε=由广义虎克定律可求得剪力Q 引起的剪应力 ()214QdQd Q G E εμετ=+=五.实验步骤1.将传感器与测力仪连接,接通测力仪电源,将测力仪开关置开。
1薄壁圆筒的弯扭组合变形实验一、试验目的1.测定薄壁圆筒弯扭组合变形时指定点的主应力和主方向,并与理论计算值进行比较。
2.测定薄壁圆筒弯扭组合变形时指定截面上的弯矩、扭矩和剪力引起的应力,并与理论值比较。
3. 学习布片原则、应变成份分析和各种组桥方法。
二、设备和仪器1. 力学试验台。
2. 静态应变仪。
3. 辅助工具和量具。
三、试样与试验装置薄壁圆筒试样(见图5.1a )左端固定,籍固定在圆筒右端的水平杆加载。
圆筒用不锈钢1C r 18N i 9T i 或其它钢材制成,材料弹性模量E 和泊松比µ为己知,或由试验者自行测定,圆筒外径D ,内径d 。
四、试验原理1. 指定点的主应力和主方向测定弯扭组合变形任一截面(如I-I 截面)上b 点的应力状态如图5.1(b)所示,相应其它各测点的应力状态见图 5.1(d)。
根据理论分析可知:弯曲正应力WM M =σ,式中:M=Fl I-I,()143απ−=D W ,D d /=α;薄壁圆筒扭转切应力PT W T=τ,式中:T=Fh ,()16143p απ−=D W ;弯曲切应力Q QF 0 F R tτπ=,()40d D R +=,()2d D t −=;由此可求得相应点的主应力1`2`3σσσ及主方向0α的理论值如何由实验来测定任一截面的主应力和主方向呢?据平面应变分析理论知,若某点任意三个方向的线应变已知,就能计算出该点的主应变和主方向,从而计算出该点的主应力和主方向。
因此测量某点的主应力和主方向时,必须在测点布置三枚应变片,工程中常用应变花 测定。
常见的应变花有45o 应变花和等角应变花等。
在图5.1a 中的I-I 截面的b 、d (或a 、c ),即采用了45o 应变花进行测量,其展示图如图5.61(c)所示。
2采用单臂(多点)半桥公共温度补偿测量法,等量逐级加载。
在每一载荷作用下,分别测得b 、d (或a 、c )两点沿-45o 、0o 、和45o 方向的应变值o o o ``45045εεε−和后,将测量结果记录在实验报告中。
实验六 弯扭组合应力测定试验一、实验目的1.测定薄壁圆筒弯、扭组合变形时的表面一点处的主应力大小和方向,并与理论值进行比较。
2.进一步熟悉电阻应变仪及预调平衡箱的使用方法。
二、实验原理为了用实验的方法测定薄壁圆筒弯曲和扭转时表面一点处的主应力的大小和方向。
首先要测量该点处的应变,确定该点处的主应变ε1,ε3,的大小和方向,然后利用广义虎克定律算得一点处的主应力σ1,σ3。
根据平面应变状态分析原理,要确定一点处的主应变,需要知道该点处沿x,y 两个相互垂直方向的三个应变分量εx ,εy ,γxy 。
由于在实验中测量剪应变很困难。
而用应变计(如电阻应变片)测量线应变比较简便,所以通常采用测一点处沿x 轴成三个不同且已知夹角的线应变εa ,εb ,εc ,见图6-1(a )。
⎪⎪⎭⎪⎪⎬⎫-+=-+=-+=c c xy c y c x c b b xy b y b x b a a xy a y a x a ααγαεαεεααγαεαεεααγαεαεεcos sin sin cos cos sin sin cos cos sin sin cos 222222 (6-1)图6-1(a ) 图6-2(b )为了简化计算,实际上采用互成特殊角的三片应变片组成的应变花,中间的应变片与X 轴成0°,另外两个应变片则分别与X 轴成±45°角见图6-3。
用电阻应变仪分别测得圆筒变形后应变花的三个应变值,即ε0°,ε45°,ε-45°。
由方程组(6-1)得应变分量︒︒-︒-︒︒︒-=+-==4545450450εεγεεεεεεxy y x (6-2) 主应变公式为()2213212xy y xyx γεεεεε+-±+=(6-3)将(6-2)式代入(6-3)式得:()()24502045454513222︒︒︒︒-︒︒--+-±+=εεεεεεε (6-4)YcbaXαaαbαc XY+45°-45°主应变的方向︒-︒︒︒-︒---=--=454504545022εεεεεεεαyx xyr tg (6-5)求得主应变以后,可根据主应力与主应变关系的广义虎克定律计算得到主应力()()1323312111μεεμσμεεμσ+-=+-=EE(6-6)公式(6-4),(6-5)就是用直角应变花测量一点处的主应变及主方向的理论依据,由(6-2)式得出两个α值,即α与90°+α,一个方向对应着εmax ,另一个方向对应着εmin 。
薄壁圆管弯扭组合变形测定实验实验日期姓名 班级 学号 实验组别 同组成员 指导教师(签字)一、实验目的二、实验设备名称及型号三、实验数据记录与处理1.基本数据材料常数: 弹性模量 E = 70 GPa 泊松比 33.0=μ 装置尺寸: 圆筒外径 D = 39mm 圆筒内径 d = 34mm 加载臂长 h = 250 mm 测点位置 L I-I =140 mm2.计算方法(1)指定点的主应力和主方向测定实验值:主应力大小:()()()⎥⎦⎤⎢⎣⎡-+--±++-=--245020454*******1211εεεεμεεμμσσE主应力方向:()()045450454502εεεεεεα----=--tg理论值:主应力大小:223122T M M τσσσσ+⎪⎭⎫ ⎝⎛±=;主应力方向:M T tg στα220-= (2)指定截面上的弯矩、扭矩和剪力所分别引起的应力的测定a.弯矩M 引起的正应力的测定 实验值:2di M E εσ=实 理论值:()32/143απσ-=-D FL II M 理,其中:D d /=α b. 扭矩T 引起的切应力的测定实验值:)1(4μετ+=di T E 实 理论值:()16/143απτ-=D FhT 理 c. 剪力F Q 引起的切应力的测定实验值:)1(4μετ+=diFE Q 实理论值:z max Z 2FS I τδ=剪,1233max z d D S -=3.实验数据1.指定点的主应力和主方向测定(表1、表2)2.指定截面上的弯矩、扭矩和剪力所引起的应力测定(表3)四、数据分析及结论(写背面)。
薄壁圆管弯扭组合变形测定实验报告数据薄壁圆管弯扭组合变形测定实验是为了测量材料的弯曲和扭转变形量来决定材料的变形性能的实验。
变形性能是一种材料性能指标,它可以定量衡量材料在一定外力作用下的变形特性。
薄壁圆管弯扭组合变形测定实验也可以用于优化设计和改进过程,从而提高产品的质量。
本文报告主要是就圆管弯扭组合变形过程中材料的应变和变形程度,采用特定参数进行实验,得出实验结果,对结果进行分析,进而对弯扭组合变形特性进行定量评价。
第二部分:实验原理薄壁圆管弯扭组合变形测定实验的实验原理基于几何变形理论,该理论表明在弯曲和扭转过程中,材料的变形量和应变分别与圆管半径、安装位置和弯曲和扭转角度有关,当然还有材料的性质也会影响材料的变形量。
因此,实验是使用特定参数,具体来说,用直径为50mm的钢圆管板材作为试件,安装在固定的机架上,以水平位置为0°,分别采用单弯或单扭操作,以10°为间隔,记录实验参数和测量数据,从而得到材料的变形量和应变数据。
第三部分:实验结果根据上述实验参数,我们进行了实验测量,并得到了以下结果。
表1:钢圆管材料在弯曲和扭转过程中变形量、应变数据|度(°) |曲变形量(mm) |转变形量(mm) |曲应变(10-3)|转应变(10-3) || --- | --- | --- | --- | --- || 0 | 0.00 | 0.00 | 0.00 | 0.00 || 10 | 0.23 | 0.30 | 7.19 | 27.50 || 20 | 0.47 | 0.60 | 14.38 | 54.99 || 30 | 0.68 | 0.90 | 21.57 | 82.48 || 40 | 0.94 | 1.20 | 28.76 | 109.97 || 50 | 1.19 | 1.50 | 35.95 | 137.46 || 60 | 1.45 | 1.80 | 43.13 | 164.95 |第四部分:实验分析从表1的实验数据可以看出,圆管材料的弯曲变形量随着实验角度的增加而逐渐增加,扭转变形量也随着实验角度的增加而逐渐增大,弯曲应变随着实验角度的增加而逐渐增加,而扭转应变也随着实验角度的增加而逐渐增大。
薄壁圆管弯扭组合变形测定实验
实验日期
姓名班级学号
实验组别同组成员指导教师(签字)
一、实验目的
二、实验设备名称及型号
三、实验数据记录与处理
1.基本数据
材料常数:弹性模量E= 70 GPa 泊松比
装置尺寸:圆筒外径D= 39mm 圆筒内径d = 34mm
加载臂长h= 250 mm 测点位置L I-I=140 mm
2.计算方法
(1)指定点的主应力和主方向测定
实验值:主应力大小:
主应力方向:
理论值:主应力大小:;主应力方向:
(2)指定截面上的弯矩、扭矩和剪力所分别引起的应力的测定
a.弯矩M 引起的正应力的测定
实验值:理论值:,其中:b. 扭矩T 引起的切应力的测定
实验值:理论值:
c. 剪力F Q引起的切应力的测定
实验值:理论值:,
3.实验数据
1.指定点的主应力和主方向测定(表1、表2)
2.指定截面上的弯矩、扭矩和剪力所引起的应力测定(表3)
表1 被测点应变数据
应变读
数
A B
载荷
-450(R1)
00
(R2
)
450
(R3
)
-450
(R4)
00
(R5
)
450
(R6)
F (N ∆F(N ε(μ
ε
∆ε(μ
ε
ε(μ
ε
∆ε(μ
ε
ε(μ
ε
∆ε(μ
ε
ε(μ
ε
∆ε(μ
ε
ε(μ
ε
∆ε(μ
ε
ε(μ
ε
∆ε(μ
ε
50
100
150
100
250
100
350
100
450
(
με
续表1
应变读
数
载荷
C D
-450(R7)
00
(R8
)
450
(R9
)
-450
(R10
)
00
(R11
)
450
(R12
)
F (N ∆F(N ε(μ∆ε(με(μ∆ε(με(μ∆ε(με(μ∆ε(με(μ∆ε(με(μ∆ε(μ
εεεεεεεεεεεε
50
100
150
100
250
100
350
100
450
(
με
表2 指定点主应力
被测
点
A B C D
主应力
实验理论误差实验理论误差实验理论误差实验理论误差σ1 (MPa)
σ3 (MPa)
α0 (度)
表3 指定截面上的弯矩、扭矩和剪力所引起的应力测定
读数应变
弯矩M 扭矩T 剪力FQ
载荷
F(N ∆F(N εMd(με∆εMd(μεεTd(με∆εTd(μεεFQ d(με∆εFQ d(με
50
100
150
100
250
100
350
100
450
(με
实验应力值
σM实 = τT实 =τFQ实 =
(MPa)
理论应力值
σM理 =τT理 =τFQ理 =
(MPa)
误差
四、数据分析及结论(写背面)。