催化剂制备方法之沉淀法共141页文档
- 格式:ppt
- 大小:11.99 MB
- 文档页数:22
沉淀法、浸渍法制备催化剂沉淀法(Deposition-precipitation,简称DP法)是将金属氧化物载体加入到HAuCl4的水溶液中形成悬浮液,在充分搅拌的条件下,控制一定的温度和pH值,使之沉积在载体表面上,随后进行过滤、洗涤、干燥、焙烧等处理,得到负载金催化剂。
对于制备高活性的纳米金催化剂,该方法是广泛使用并且比较有效的方法之一。
该方法的关键是控制合适的pH值,从而可以得到活性组分均匀分散、粒度较小、活性较高的纳米金催化剂。
通常认为,控制反应液浓度10mol/L,最佳pH值范围7~8,反应温度323~363K,氯金酸的水溶液就会选择性的以氢氧化金的形式沉积在载体表面,而尽可能少的在液相中沉淀。
通常,采用DP法制备纳米金催化剂最合适的载体是等电点在6~9之间的氧化物,如TiO2 (IEP=6),CeO2 (IEP=6.75),ZrO2 (IEP=6.7),Fe2O3 (IEP=6.5~6.9)和Al2O3 (IEP=8~9)等。
该法的优点在于活性组分全部保留在载体表面,提高了活性组分的利用率;得到的催化剂金颗粒尺寸分布比较均匀。
该法对于制备低负载量金催化剂非常有效,但是要求载体有较高的比表面积(至少50m/g),而且不适用于等电点小于5的金属氧化物和活性炭载体。
步骤制成催化剂。
这也是常用于制备高含量非贵金属、金属氧化物、金属盐催化剂的一种方法。
具体可以分为共沉淀、均匀沉淀和分步沉淀等方法。
借助于沉淀反应。
用沉淀剂将可溶性的催化剂组分转变为难溶化合物。
经过分离、洗涤、干燥和焙烧成型或还原等。
2.1、共沉淀方法将催化剂所需的两个或两个以上的组分同时沉淀的一个方法,可以一次同时获得几个活性组分且分布较为均匀。
为了避免各个组分的分步沉淀,各金属盐的浓度、沉淀剂的浓度、介质的pH值以及其他条件必须同时满足各个组分一起沉淀的要求。
2.2、均匀沉淀法它不是把沉淀剂直接加到待沉淀的溶液中,也不是加沉淀剂后立即产生沉淀反应,而是首先使沉淀的溶液与沉淀剂母体充分混合,造成一个均匀的体系,然后调节温度、逐渐提高PH值或在体系中逐渐生成沉淀剂等方式,创造形成沉淀的条件,使沉淀作用缓慢地进行。
制备工业催化剂的方法工业催化剂是指用于促进或加速化学反应的物质,广泛应用于许多生产过程中,如炼油、化工、能源等。
制备工业催化剂的方法有很多种,下面将介绍几种常见的制备方法。
一、沉淀法沉淀法是制备工业催化剂的常用方法之一、该方法通过在溶液中加入还原剂使金属离子还原成金属颗粒,然后沉淀得到催化剂。
该方法简单易行,适用于大规模生产。
二、浸渍法浸渍法是指将载体浸入金属溶液中,使金属离子被载体吸附,并通过热处理将金属还原成金属颗粒。
浸渍法可使金属颗粒分散均匀,催化剂活性较高。
三、沉积法沉积法是将金属源溶于溶剂中,然后将溶液喷洒在载体表面,通过烘干和热处理将金属还原成金属颗粒,从而制备催化剂。
该方法适用于制备高活性催化剂。
四、共沉淀法共沉淀法是将金属源和载体溶解在同一溶剂中,通过调节条件使金属沉淀到载体表面,再进行热处理得到催化剂。
共沉淀法制备的催化剂具有高分散性和高活性。
五、焙烧法焙烧法是将金属前驱体或金属盐溶于溶剂中,通过热处理使金属变得稳定且易于使用,然后得到催化剂。
焙烧法制备的催化剂适用于高温条件下的反应。
六、溶胶-凝胶法溶胶-凝胶法是将金属前驱体溶于溶剂中,通过加热使其形成溶胶,然后通过凝胶化得到凝胶,在热处理过程中形成催化剂。
该方法制备的催化剂具有高度分散性和活性。
七、离子交换法离子交换法是将金属离子与载体接触,通过离子交换反应将金属离子固定在载体上,形成催化剂。
离子交换法制备的催化剂具有高度分散性和稳定性。
综上所述,制备工业催化剂的方法有很多种,选择适当的制备方法取决于催化剂的要求和实际应用。
通过不断研究和创新,制备高效、高分散性和高稳定性的工业催化剂对促进化工和工业生产的发展具有重要作用。
沉淀法制备催化剂摘要:本文主要阐述了固体催化剂制备方法最常用的沉淀法。
分别简介了沉淀法发展中出现的单组份沉淀法、多组分沉淀法、均匀沉淀、超均匀沉淀、浸渍沉淀法和导晶沉淀法。
对各种方法进行了简要介绍及对比,其中着重介绍了共沉淀法的改进研究,最后对沉淀法的发展进行总结。
关键词:固体催化剂沉淀法工艺影响因素前言对大多数固体催化剂来说,通常都是将金属细小颗粒,负载于氧化铝、氧化硅或其他物质载体上而形成负载型催化剂,也有负载型的金属氧化物催化剂,还有先制成氧化物,然后用硫化氢或其他硫化物处理使之转化为硫化物催化剂。
这些过程可用多种方法实现,一般说来,以沉淀操作作为关键步骤的制造方法称沉淀法。
沉淀法是制备固体催化剂最常用的方法之一,沉淀法开始阶段总要先将两种或更多种溶液或固体物质的悬浮液加以混合,有时也是用简单的非沉淀的干法混合,导致沉淀。
接着进行过滤、洗涤、干燥、成型与焙烧等工艺。
而采用焙烧等高温处理时,会产生热扩散和固态反应,使各物种之间密切接触,催化剂才能分布更均匀。
沉淀法的优点是,可以使各种催化剂组分打到分子分布的均匀混合,而且最后的形状和尺寸不受载体形状的限制,还可以有效地控制孔径的大小和分布。
缺点是当两种或两种以上金属化合物同时存在时,由于沉淀速率和次序的差异,会影响固体的最终结构,重现性较差。
1沉淀法的类型随着催化实践的发展,沉淀的方法已由单组份沉淀法发展到多组分共沉淀法,并且产生均匀沉淀、超均匀沉淀、浸渍沉淀法和导晶沉淀法等,使沉淀法更趋完善。
1.1单组份沉淀法本法是通过沉淀与一种待沉淀组分溶液作用以制备单一组分沉淀物的方法,是催化剂制备中最常用的方法之一。
由于沉淀物质只含一个组分,操作不太困难,再与机械混合或其他操作单元相配合,既可用来制备非贵金属单组份催化剂或载体,又可用来制备多组分催化剂。
1.2多组分共沉淀法(共沉淀法)共沉淀法是将催化剂所需的两个或两个以上组分同时沉淀的一种方法。
其特点是一次可以同时获得几个组分,而且各个组分的分布比较均匀。
沉淀法1. 介绍沉淀法是一种用于从混合物中分离固体颗粒的物理分离方法。
该方法利用了不同固体颗粒的密度差异,通过使混合物静置一段时间,使其中的固体颗粒沉积到底部,从而实现分离的目的。
沉淀法广泛应用于化学、环境科学等领域,常见的应用包括固体废物处理、废水处理、颗粒物分离等。
本文将介绍沉淀法的基本原理、操作步骤以及一些应用案例。
2. 基本原理沉淀法基于物质的密度差异,利用重力作用使固体颗粒沉积到底部。
该方法适用于颗粒的颗粒大于溶液中其他成分的颗粒时,即固相颗粒的密度大于液相中其他成分的密度。
在施加重力的作用下,颗粒会沉积到液体中,形成沉淀。
沉淀可以通过离心、过滤等操作进一步分离和处理。
3. 操作步骤步骤一:制备混合物首先需要制备所需的混合物。
混合物可以是固体和液体的混合物,也可以是多种固体颗粒的混合物。
步骤二:加入沉淀剂(如有需要)对于某些情况下,只有在加入沉淀剂后才能有效分离固体颗粒。
沉淀剂的选择根据实际情况来定,通常是根据颗粒的特性和所需分离效果来选择。
沉淀剂的加入可以改变混合物的密度,促进固体颗粒的沉淀。
步骤三:静置将混合物放置在一个容器中,静置一段时间,使固体颗粒沉积到底部。
静置时间的长短根据颗粒的大小、密度差异以及混合物的性质来决定。
步骤四:分离沉淀经过一段时间的静置后,固体颗粒会沉淀到容器的底部。
此时可以通过离心、过滤等方法将沉淀物和上层液体分离。
步骤五:处理沉淀分离得到的沉淀物可以进行进一步的处理。
根据具体情况,可以选择对沉淀物进行干燥、烧结、溶解等处理方式。
4. 应用案例废水处理沉淀法是常用的废水处理方法之一,通过沉淀可以将废水中的悬浮物、颗粒物等固体颗粒分离出来,从而净化废水。
常见的废水处理沉淀方法包括混凝沉淀法、化学沉淀法等。
固体废物处理沉淀法也可用于固体废物的处理。
通过添加适当的沉淀剂,可以使固体颗粒快速沉淀,并与液体分离,从而达到固体废物的分离与处理。
5. 结论沉淀法是一种常用的物理分离方法,通过利用物质的密度差异,将固体颗粒从混合物中分离出来。