第八章 特征地形要素的提取
- 格式:pptx
- 大小:9.69 MB
- 文档页数:14
地图编制中的地理要素提取与特征提取地理要素提取和特征提取在地图编制中起着至关重要的作用。
地图编制是指将地理信息转换为可视化的地图形式,这需要对地理要素进行提取和特征提取。
本文将介绍地图编制中的地理要素提取和特征提取的概念、方法和应用。
地理要素提取指的是从原始地理数据中提取出具有特定含义和价值的地理要素。
地理要素可以是河流、湖泊、山脉、道路、建筑物等。
地理要素提取的目的是将地理现象转化为图形和属性数据,以便在地图上呈现出来。
地理要素提取的方法主要有人工解译、基于遥感影像的自动识别和基于地理信息系统的数据处理等。
人工解译是最早也是最常用的地理要素提取方法之一。
它依靠专业人员对遥感影像进行目视解译,通过观察和判断识别出不同的地理要素。
虽然这种方法需要耗费大量时间和人力,但由于人的直观感知和专业知识,可以提取出高质量的地理要素。
近年来,随着遥感技术的发展,基于遥感影像的自动识别成为地理要素提取的重要方法。
这种方法利用计算机算法和数学模型,对遥感影像进行图像分割、特征提取、分类等步骤,自动提取出地理要素。
其中,图像分割是将遥感影像划分为不同的区域,特征提取是对每个区域提取特定的属性,分类是将每个区域归类为相应的地理要素。
这种方法具有快速、准确、大规模处理的优势,能够提高地理要素提取的效率和精度。
地理特征提取是在地理要素提取的基础上,对地理要素进行进一步的属性提取和描述。
地理特征包括形状特征、空间关系特征、属性特征等。
形状特征描述地理要素的形状、大小、比例等特征,空间关系特征描述地理要素之间的相对位置和空间关系,属性特征包括地理要素的属性信息,如高程、土壤类型、土地利用等。
地理特征提取可以通过空间分析和地理信息系统等方法实现。
地理要素提取和特征提取在地图编制中有着广泛的应用。
首先,它们是制作地理数据库和地图的重要环节。
地理数据库是包含丰富地理要素和特征的空间数据库,可以为地理信息系统、城市规划、环境监测等领域提供数据支持。
地形特征点的提取实验报告地形特征点的提取是一种重要的地理信息处理过程,它可以帮助我们对地形进行定量分析和判断地形类型。
本实验主要探讨了三种常见的地形特征点提取算法,包括高斯滤波算法、Sobel算子算法和Canny算子算法,并通过实验验证了它们的可行性和有效性。
首先,高斯滤波算法是一种常见的平滑滤波算法,可以有效地抑制噪声,同时保留图像的边缘信息。
在地形特征点提取实验中,我们首先对原始地形数据进行高斯滤波处理,使得图像变得平滑。
然后,通过计算图像的梯度,可以得到图像中的边缘信息,边缘处即为地形特征点。
高斯滤波算法主要是通过卷积操作实现,具体的算法流程如下:1. 将地形数据转换为灰度图像。
2. 定义高斯核函数,例如3x3或5x5的高斯核。
3. 将高斯核应用于灰度图像,通过卷积操作实现平滑化。
4. 计算平滑后图像的梯度,得到边缘信息。
5. 使用阈值化方法将边缘信息转化为二值图像,边缘处即为地形特征点。
其次,Sobel算子算法是一种常见的图像边缘检测算法,可以有效提取图像的边缘信息。
在地形特征点提取实验中,我们可以将Sobel算子应用于地形数据,以检测地形的边缘。
该算法的主要流程如下:1. 将地形数据转换为灰度图像。
2. 定义Sobel算子,例如3x3的水平和垂直卷积核。
3. 将Sobel算子应用于灰度图像,分别计算水平和垂直方向上的导数值。
4. 根据导数值的大小确定边缘位置,即特征点所在处。
最后,Canny算子算法是一种常见的图像边缘检测算法,可以实现较高的边缘检测准确性和鲁棒性。
在地形特征点提取实验中,我们可以将Canny算子应用于地形数据,以提取地形的边缘和特征点。
该算法的主要流程如下:1. 将地形数据转换为灰度图像。
2. 对灰度图像进行高斯滤波,以去除噪声。
3. 计算图像的梯度幅值和方向。
4. 应用非极大值抑制,以细化边缘。
5. 使用双阈值算法进行边缘连接,形成闭合的轮廓。
6. 通过筛选边缘像素,得到地形特征点。
测绘技术中的地形要素提取方法摘要:地形要素提取是测绘技术中的一个重要领域,它通过分析地形数据,提取出地表上的各种要素信息,为地理信息系统、土地利用规划、环境保护等领域提供了重要的支持。
本文将介绍地形要素提取的基本原理和常用方法,并对其应用进行探讨。
一、地形要素提取的基本原理地形要素提取是通过遥感技术获取地表特征信息,并加以分析和处理,得出地形要素的空间分布和属性特征。
其基本原理是通过分析地形数据中的高程、坡度、坡向等信息,提取出地表上的山脊、河流、湖泊、道路等地形要素。
二、地形要素提取的常用方法1. 基于高程数据的地形要素提取方法基于高程数据的地形要素提取方法是最常用的方法之一。
通过对高程数据进行滤波、插值和分析处理,可以提取出地表的高程信息。
常用的方法包括数字高程模型(DEM)分析和等高线提取法。
2. 基于影像数据的地形要素提取方法基于影像数据的地形要素提取方法利用遥感影像中的颜色、纹理、形状等特征来提取地表要素信息。
常用的方法包括对象提取法、纹理分析法和形状识别法。
其中,对象提取法是应用最广泛的方法之一,它通过定义特征和阈值,将影像中的地物目标提取出来。
3. 基于点云数据的地形要素提取方法点云数据是一种三维点阵数据,可以直接反映地物表面的形态和位置信息。
基于点云数据的地形要素提取方法是近年来发展起来的新技术。
它通过对点云数据进行过滤、分类和分析处理,可以提取出地表上的各种地形要素。
常用的方法包括基于特征的点云分类法和基于拟合的点云分割法。
四、地形要素提取的应用地形要素提取在地理信息系统、土地利用规划、环境保护等领域有广泛的应用价值。
如在地理信息系统中,地形要素提取可以帮助建立精确的地理基础数据库,为地理空间分析提供数据支持。
在土地利用规划中,地形要素提取可以辅助规划人员快速了解土地利用现状,评估土地利用潜力。
在环境保护中,地形要素提取可以帮助监测地表的水资源、土壤质量和植被覆盖等,提供科学依据。
ArcGIS实验操作(八)地形特征信息提取数据:在data/Ex8/文件下·dem:分辨率为5米的栅格DEM数据。
·Result文件夹:·shanji:提取的山脊线栅格数据;·shangu:提取的山谷线栅格数据;·hillshade:地形晕渲图。
要求:利用所给区域DEM数据,提取该区域山脊线、山谷线栅格数据层。
操作步骤:1.加载DEM数据,设置默认存储路径,使用空间分析模块下拉箭头中的表面分析工具,选择坡向工具(Aspect),提取DEM的坡向数据层,命名为A。
该DEM的坡向数据如下图所示:提取A的坡度数据层,命名为SOA1。
3.求取原始DEM数据层的最大高程值,记为H:由此可见该最大高程值H为1153.79 使用栅格计算器,公式为(H-DEM),求反地形DEM数据如下:反地形DEM数据层calculation如下(可与原始DEM相比较):4.基于反地形DEM数据求算坡向值反地形DEM数据层calculation的坡向数据如下:5.提取反地形DEM坡向数据的坡度数据,记为SOA2,即利用SOA方法求算反地形的坡向变率。
6.使用空间分析工具集中的栅格计算器,求没有误差的DEM的坡向变率SOA,公式为SOA=(([SOA1]+[SOA2])-Abs([SOA1] -[SOA2]))/2其中,Abs为求算绝对值,可点击右下侧将其查找出来。
没有误差的DEM的坡向变率SOA如下图所示:7.再次点击初始DEM数据,使用空间分析工具集中的栅格邻域计算工具(NerghborhoodStatistics);设置统计类型为平均值(mean)邻域的类型为矩形(也可以为圆),邻域的大小为11×11(这个值也可以根据自己的需要进行改变),则可得到一个邻域为11×11的矩形的平均值数据层,记为B。
8.使用空间分析工具集中的栅格计算器,求算正负地形分布区域,公式为C = [DEM]-[B]。
地形特征点的提取实验报告1. 研究背景地形特征点的提取是地理信息领域的重要研究方向之一。
地形特征点是指地表上具有明显特征的点,如山脊、山谷、河流等。
提取地形特征点可以帮助我们了解地貌构造、地质特征以及进行地形分析和地貌模拟等工作。
2. 实验目的本实验旨在探索地形特征点的提取方法,通过实验验证不同算法对地形特征点的有效性和精度,并比较它们的优缺点。
3. 实验材料与方法3.1 数据集本实验使用了某山区的数字高程模型(DEM)数据作为实验材料。
该DEM数据以栅格形式存储,每个栅格代表一单位面积内的高程值。
3.2 实验流程1.数据预处理:对DEM数据进行滤波、降噪等处理,以减少噪声对特征点提取的影响。
2.特征点提取方法比较:2.1 方法A:利用梯度变化法提取特征点,即通过计算DEM数据在各方向上的梯度变化来找到高度变化明显的地方。
2.2 方法B:利用曲率法提取特征点,即通过计算DEM数据的曲率来找到高度变化明显的地方。
2.3 方法C:利用局部最大值法提取特征点,即通过寻找DEM数据中局部最高点来找到地形上的山峰等特征点。
3.实验评估:对比不同方法提取的特征点,分析其准确性、覆盖范围和处理效率等指标。
4. 实验结果与分析4.1 方法A的结果与分析使用梯度变化法提取特征点后,我们得到了一系列特征点的坐标,其中包括山脊、山谷等地形特征。
经与地图对比,发现大部分特征点的位置与真实地形基本吻合,但也存在一些误差,这可能是由于数据噪声和算法的不足导致的。
4.2 方法B的结果与分析使用曲率法提取特征点后,我们得到了另一组特征点的坐标,并将其与方法A提取的特征点进行对比。
发现曲率法能够更好地捕捉到地形的细节特征,尤其是一些地貌变化相对缓和的地方。
然而,与方法A相比,曲率法提取的特征点数量较少,覆盖范围较窄。
4.3 方法C的结果与分析使用局部最大值法提取特征点后,我们得到了一些山峰等特征点的坐标,与方法A和方法B提取的特征点进行了对比。
地形指标的提取地形指标是最基本的一些地理自然要素信息,地形指标的提取有利于对水土流失、土地利用、土地资源评价等进行分析。
本篇主要包括坡度变率、坡向变率、地形起伏度、地面粗糙度四个基本地形指标的提取操作介绍。
1.坡度变率:坡度变率是地面坡度的变化率,也就是坡度的坡度(SOS),坡度变率在一定程度上反映了坡面曲率的信息。
提取操作如下:选择【系统工具箱→Spatial Analyst Tools→表面分析→坡度】工具,得到坡度数据层Slope。
选择【系统工具箱→Spatial Analyst Tools→表面分析→坡度】工具,对坡度数据层Slope提取坡度,得到坡度变化率数据层SOS。
2.坡向变率:坡向变率是指在提取坡向数据的基础上提取坡向的变化率,也就是坡向之坡度(SOA),坡向变率可以很好地反映等高线的弯曲程度。
SOA在提取过程中在背面坡将会有误差产生(北面坡坡向值范围是0°90°和270°360°,在正北方向附近如15°~345°两个坡向差值只有30°,而计算结果却是330°),因此需要将北坡向的坡向变率进行误差纠正处理。
选择【系统工具箱→3D Analyst Tools→栅格表面→坡向】工具,提取原始DEM的坡向数据。
选择【系统工具箱→3D Analyst Tools→栅格表面→坡度】工具,提取上一步得到的坡向数据层的坡度数据,得到坡向变率数据层SOA1。
使用原始DEM中的最大值减去原始栅格,得到反地形DEM栅格图像。
然后依次选择【系统工具箱→3D Analyst Tools→栅格表面→坡向】工具和选择【系统工具箱→3D Analyst Tools→栅格表面→坡度】工具,得到坡向变率数据层SOA2。
选择【系统工具箱→Spatial Analyst Tools→地图代数→栅格计算器】工具,输入(("SOA_1" + "SOA_2") - Abs("SOA_1" - "SOA_2")) / 2地图代数公式,得到没有误差的DEM的坡向变率SOA。
ENVI 实验六基本地形因子提取一、实验目的1熟悉ENVI软件能够从DEM 中提取地形特征。
2掌握DEM提取地形特征的方法。
二、实验要求完成运用ENVI 进行从DEM 中提取地形特征,包括山顶、山脊、平原、水平面、山沟和凹谷。
三、实验仪器每人计算机一台。
四、实验内容1在Toolbox中,启动/Terrain/Topographic Features,在Topographic Feature Input DEM对话框中,选择DEM.tif 文件,点击OK,打开Topographic Features Parameters 对话框,需要设置一些参数。
(1)坡度容差:1。
以度为单位;(2)曲率容差:0.1;(3)地形核大小:7。
2在Select Feature to Classify 列表中选择所有的地形特征。
3选择输出路径及文件名,单击OK 执行地形特征提取。
4通视域分析:使用Viewshed Analysis Workflow 工具,设置点、线、面作为观测源进行可视域分析。
将通视分析结果输出为矢量和图像结果有三种方法:(1)点观测源a. 在Toolbox 中,启动/Terrain/Viewshed Analysis Workflow,打开文件选择面板File Selection;b. 分别选择对应的文件DEM File:DEM.tif;Image File:Orthoimagery.tif,单击Next进入Viewshed Analysis 面板;c.在Viewshed Analysis 面板中,设置以下几个参数:可视距离Default View Range:1000可视高度Default View Height:100d.默认鼠标的状态是绘制“点注记”,在正射影像上绘制几个观测点。
如果鼠标当前状态是其他,可在工具栏中选择对应的工具绘制:,绘制4 个点;e.选择Any Source (四个观测点的并集),勾选Preview预览结果,红色表示可视区域,黑色表示不可视区域;f.分别选择All Sources(四个观测点的交集),预览结果;g.单击Next进入Viewshed Export面板,可以将通视分析结果输出为矢量和图像结果。
ENVI提取地形特征要素ENVI是一款专门用于遥感图像处理和分析的软件。
它提供了丰富的工具和功能,可以用于从卫星图像中提取地形特征要素。
在这篇文章中,我们将探讨如何使用ENVI进行地形特征要素提取。
首先,ENVI可以用来生成数字高程模型(Digital Elevation Model,DEM),也就是地形表面的三维模型。
生成DEM是提取地形特征要素的第一步。
ENVI提供了多种算法来生成DEM,包括基于光学影像的立体匹配算法、雷达影像的合成孔径雷达干涉测量等。
通过生成DEM,可以获得地形的高程信息,为后续的地形特征要素提取提供基础。
接下来,ENVI可以通过一系列的工具和算法来提取地形特征要素。
其中一种常用的特征要素是地表的山脊和河流。
ENVI提供了边缘检测算法,可以用来检测山脊和河流的边界。
通过对DEM进行边缘检测,可以得到地表上的山脊和河流的特征信息。
此外,ENVI还可以用来提取地表的斜坡和坡向。
斜坡是地表的倾斜程度,坡向是地表的倾斜方向。
这些信息对于地形分析和规划非常重要。
ENVI提供了坡度计算和坡向计算工具,可以通过DEM计算出地表的斜坡和坡向信息。
除了山脊、河流、斜坡和坡向之外,ENVI还可以提取其他地形特征要素,如谷底、高原和陡坡等。
通过结合上述的工具和算法,可以提取出更多的地形特征要素信息。
最后,ENVI还可以进行地形特征要素的可视化和分析。
提取出的地形特征要素可以通过ENVI的渲染和可视化功能进行展示和分析。
此外,ENVI还提供了一些其他的地形分析工具,如流动性分析、坡面指数计算和地形湿度指数计算等,可以进一步深入地进行地形特征要素的分析和研究。
总之,ENVI是一款强大的软件,可以用于提取地形特征要素。
通过生成DEM和使用一系列的工具和算法,可以从卫星图像中提取出地表的各种特征要素信息。
这些信息对于地理信息系统、土地利用规划和环境监测等领域都有着重要的应用价值。
实验项目名称:地形特征信息提取(山脊线、山谷线提取)1、背景地信特征要素,主要是指对地形对地表的空间分布特征具有控制作用的点、线或面状要素。
特征地形要素构成地表地形与起伏变化的基本框架。
特征地形要素的提取更多地应用较为复杂的技术方法,如山谷线、山脊线等的提取采用了全局分析法,成为栅格数据地学分析中很具特色的数据处理内容。
自动提取山脊线和山谷线的主要方法都是基于规则格网DEM数据的,算法有多种,其中,平面曲率与坡形组合法方法简便,效果好。
该方法基本处理过程为:首先利用DEM数据提取地面的平面曲率及地面的正负地形,取正地形上平面曲率的大值即为山脊,负地形上平面曲率的大值为山谷。
实际应用中,由于平面曲率的提取比较繁琐,而坡向变率(SOA)在一定程度上可以很好地表征平面曲率。
因此,提取过程中可以SOA代替平面曲率。
2、目的通过本实例,使学生掌握山脊线和山谷线这两个基本地形特征信息的理论及其基于DEM的提取方法与原理。
同时,熟练掌握利用ArcGIS软件对这两个地形特征信息的提取方法。
3、数据某区域栅格DEM。
4、要求利用所给区域DEM数据,提取该区域山脊线、山谷线栅格数据层。
补充资料:1、坡度变率:地面坡度变率,是地面坡度在微分空间的变化率,是依据坡度的求算原理,在所提取的坡度值的基础上对地面每一点再求算一次坡度,即坡度之坡度(Slope of Slope,SOS)。
坡度是地面高程的变化率的求解,因此,坡度变率表征了地表面高程相对于水平面变化的二阶导数。
2、反地形DEM数据:求取原始DEM数据层的最大高程值,记为H,通过公式(H-DEM),得到与原来地形相反的DEM数据层,即反地形DEM数据。
3、地面坡向变率:是指在提取坡向基础上,提取坡向的变化率,亦即坡向之坡度(Slope of Aspect,SOA)。
它可以很好地反应等高线弯曲程度。
地面坡向变率在所提取的地表坡向矩阵的基础上沿袭坡度的求算原理,提取地表局部微小范围内坡向的最大变化情况。