二元函数可导 可微与连续性的关系
- 格式:pdf
- 大小:58.89 KB
- 文档页数:1
一、引言对于一元函数而言,函数y=f(x在点x0处连续、导数存在、可微这三个概念的关系是很清楚的,即可微一定连续,但连续不一定可微,可微和导数存在是等价的。
对多元函数而言,由于偏导数的出现,使得他们之间的关系要复杂的多。
下面以二元函数为例,探讨其在点(x0,y0处连续、偏导数存在、可微、偏导数连续之间的关系。
二、二元函数连续、偏导数存在、可微、偏导数连续之间的关系1.可微与连续的关系假设函数f(x,y在点(x0,y0处可微,那么在该点连续,但反之不成立(同一元函数。
证明:因为f(x,y在点(x0,y0处可微,因此有0≤f(x0+△x,y0+△y-f(x0,y0≤A△x+B△y+O(O→(△x→0,△y→0,所以lim(△x,△y→(0,0f(x0+△x,y0+△y=f(x0,y0,故f(x,y在点(x0,y0处连续。
反之不成立。
例1.f(x,y=x2yx2+y2,x2+y2≠00,x2+y2=$在点(0,0处连续,但在该点不可微。
2.偏导数存在与可微的关系由定理17.1[1](可微的必要条件,函数f(x,y在点(x0,y0处可微,那么f(x,y在点(x0,y0的偏导数一定存在;但反之不成立,如例1中函数f(x,y在点(0,0处偏导数存在,但在此点不可微。
3.偏导数连续与可微的关系由定理17.2[2](可微的充分条件知,函数f(x,y在点(x0,y0处偏导数连续,那么f(x,y 在点(x0,y0处可微;但反之不成立,例2.f(x,y=(x2+y2sin1x2+y2,x2+y2≠00,x2+y2=%’’’&’’(0在点(0,0处可微,但偏导数在点(0,0不连续。
4.连续与偏导数存在之间的关系二元函数连续与偏导数存在之间没有必然的联系。
例3f(x,y=x2+y2(圆锥在点(0,0连续但在该点不存在偏导数。
更值得注意的是,即使函数在某点存在对所有自变量的偏导数,也不能保证函数在该点连续。
例4.f(x,yxyx2+y2,x2+y2≠00,x2+y2=$在点(0,0不连续,但f y(0,0=lim△y→∞0-0=0,f y(0,0=lim△y→∞0-0△y=0。
可导,连续,可微,可积之间的关系在微积分学中,可导、连续、可微和可积是几个基本概念,它们之间的关系非常密切。
本文将从这几个概念的定义入手,逐一探讨它们之间的联系和区别。
一、可导和连续在数学中,函数的可导性是指函数在某一点处的导数存在。
而连续性则是指函数在某一点处的极限存在且等于函数在该点的函数值。
可导和连续的关系非常密切,它们之间的联系可以用以下定理来描述:定理1:若函数f(x)在点x0处可导,则f(x)在x0处连续。
证明:根据导数的定义,我们有:f'(x0)=lim(h->0)[f(x0+h)-f(x0)]/h因此,当h->0时,f(x0+h)-f(x0)趋近于0,即:lim(h->0)[f(x0+h)-f(x0)]=0因此,f(x)在x0处连续。
从上述定理可以看出,可导性是连续性的一种更高级别的要求。
如果一个函数在某一点处可导,那么它在该点处一定连续。
二、可微和可导在微积分学中,可微性是指函数在某一点处存在一个线性逼近,该逼近可以用函数在该点处的导数来表示。
而可导性是指函数在某一点处的导数存在。
可微和可导的关系可以用以下定理来描述:定理2:若函数f(x)在点x0处可微,则f(x)在x0处可导。
证明:根据可微性的定义,我们有:f(x)=f(x0)+f'(x0)(x-x0)+o(x-x0)其中,o(x-x0)表示x->x0时,x-x0趋近于0的高阶无穷小量。
将x=x0+h代入上式,得到:f(x0+h)=f(x0)+f'(x0)h+o(h)因此,当h->0时,f(x0+h)-f(x0)趋近于0,即:lim(h->0)[f(x0+h)-f(x0)]/h=f'(x0)因此,f(x)在x0处可导。
从上述定理可以看出,可微性是可导性的一种更高级别的要求。
如果一个函数在某一点处可微,那么它在该点处一定可导。
三、可积和连续在微积分学中,可积性是指函数在某一区间上的积分存在。
摘要 (1)关键词 (1)Abstract (1)Key words (1)引言 (1)1二元函数连续、偏导数、可微三个概念的定义 (1)2二元函数连续、偏导数、可微三个概念之间的关系 (2)二元函数连续与偏导数存在之间的关系 (2)二元函数连续与可微之间的关系 (3)二元函数可微与偏导数存在之间的关系 (3)二元函数可微与偏导数连续之间的关系 (4)二元函数连续、偏导数、可微的关系图 (6)参考文献 (7)致谢 (8)二元函数的连续、偏导数、可微之间的关系摘要 一元函数可微与可导等价,可导必连续.但二元函数并非如此,以下文章给出了二元函数连续、偏导数、可微之间的关系,并给出了简单的证明,且用实例说明了它们之间的无关性和在一定条件下所具有的共性.关键词 二元函数 连续 偏导数 可微The Relationship among Continuation, Partial Derivativesand Differentiability in Binary FunctionAbstract Unary function differentiable with derivative equivalent, will be continuously differentiable. But the dual function is not the case, the following article gives a continuous function of two variables, partial derivatives, can be said the relationship between them, and gives a simple show, and illustrated with examples related between them and under certain conditions have in common..Key words binary function continuation partial derivatives differentiability引言 二元函数的偏导数存在、函数连续、可微是二元函数微分学的三个重要概念.对于学习数学分析的人来说,必须弄清三者之间的关系,才能学好、掌握与之相关的理论知识.本文详细讨论这三者之间的关系.1 二元函数连续、偏导数、可微三个概念的定义定义1 设f 为定义在点集2D R ⊂上的二元函数,0D P ∈(0P 或者是D 的聚点,或者是D 的孤立点),对于任给的正数ε,总存在相应的正数δ,只要0,)(D P U P δ⋂∈,就有0)||()(f P f P ε<-,则称f 关于集合D 在点0P 连续.定义2 设函数(,),(,)z f x y x y D =∈,若00,)(y D x ∈且0,)(y f x 在0x 的某一邻域内有定义,则当极限00000000(,))(,)(,limlimx x x f x y f x y f x x y x x∆→∆→+-=∆∆∆∆存在时,则称这个极限为函数f 在点00,)(y x 关于x 的偏导数,记作0(,)|x y fx∂∂.定义3 设函数(,)z f x y =在点000,)(y P x 某邻域0()U P 内有定义,对于0()U P 中的点00,)(,)(y P x y x x y ++=∆∆,若函数f 在点0P 处的全增量可表示为0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+,其中A 、B 是仅与点0P 有关的常数,()ορρ=是较ρ高阶的无穷小量,则称函数f 在点0P 处可微.2 二元函数连续、偏导数、可微三个概念之间的关系二元函数连续与偏导数存在之间的关系例[1]122,(,)(0,0)(,)0,(,)(0,0)xyx y x yf x y x y ⎧≠⎪+=⎨⎪=⎩在(0,0)偏导数存在但不连续. 证明 因为 00(,0)(0,0)00(0,0)limlim 0x x x f x f f x x→→--===, 同理可知 (0,0)0y f =. 所以 (,)f x y 在(0,0)偏导数存在. 因为220,0limx y xyx y →→+ 极限不存在,所以 (,)f x y 在(0,0)不连续.例2[2](,)f x y =在(0,0)点连续,但不存在偏导数. 证明 因为0,00,lim (,)lim0(0,0)x y x y f x y f →→→→===,所以(,)f x y =在(0,0)点连续,因为00(,0)(0,0)(0,0)lim x x x f x f f x →→-== ,该极限不存在,同理 (0,0)y f 也不存在.所以(,)f x y =在点(0,0)连续,但不存在偏导数.此二例说明: 二元函数连续与偏导数存在不等价,偏导数存在不一定连续,连续不一定偏导数存在.这与一元函数不同.一元函数中,可导一定连续,连续不一定可导. 二元函数连续与可微之间的关系定理1[3] 若(,)z f x y =在点(,)x y 可微,则(,)z f x y =在点(,)x y 一定连续. 证明 (,)z f x y =在点(,)x y 可微,0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+ (1)所以 当0,0x y ∆→∆→时,有0z ∆→,即 (,)z f x y =在该点连续.例3[4]证明(,)(0,0)(,)0,(,)(0,0)x y f x y x y ≠==⎩在(0,0)点连续,但在(0,0)点不可微.证明 令cos ,sin x r y r θθ==,则(,)00x y r →⇔→.因为2cos sin |||cos sin |0(0)r r r r r θθθθ==≤→→,所以(,)f x y 在(0,0)点连续.按偏导数定义00(,0)(0,0)0(0,0)lim lim 0x x x f x f f xx ∆→∆→∆-===∆∆, 同理 (0,0)0y f = .若(,)f x y 在点(0,0)可微,则(0,0)(0,0)(0,0)(0,0)x y z dz f x y f f x f y ∆-=+∆+∆--∆-∆=应是ρ=较高阶的无穷小量. 因为220limlimz dzx yx y ρρρ→→∆-∆∆=∆+∆ 该极限不存在,所以(,)f x y 在点(0,0)不可微.此例说明: 二元函数在某点连续,不一定可微,但可微一定连续.这与一元函数有相同的结论.二元函数可微与偏导数存在之间的关系定理2[5] 若二元函数f 在其定义域内一点00,)(y x 处可微,则f 在该点关于每个自变量的偏导数都存在,且(1)式中的0000,),,)((x y A f y B f y x x ==.证明 因为 (,)z f x y =在点(,)x y 可微,则0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+.若令上式中0y ∆= ,则0000(,)(,)(||)z f x x y f x y A x x ο=+∆∆-=∆+∆, 所以 000000(,)(,)(||)lim lim x x A xf x x y f x y x A x ο∆→∆→=∆+∆-∆+=∆. 即A zx=∂∂.类似可证B z y =∂∂. 例4[6]设2222222,0(,)0,0x y x y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩,则(,)f x y 在点(0,0)偏导数存在,但在该点不可微.解 事实上(1)0(,0)(0,0)(0,0)lim0x x f x f f x →-==,(0,)(0,0)(0,0)lim0y y f y f f y→-==,故 (,)f x y 在点(0,0)偏导数存在. (2)因为200,limlimx y f dfρρ→∆→∆→∆-=,此时若令y k x ∆=∆,则230,0,lim limx y x y ∆→∆→∆→∆→=此极限显然不存在,所以0limf dfρρ→∆-不存在,所以 (,)f x y 在点(0,0)不可微.此例说明: 二元函数中,偏导数存在不一定可微;可微则偏导数存在.这与一元函数中,可微与可导等价有区别. 函数可微与偏导数连续之间的关系定理3[7] 若二元函数(,)z f x y =的偏导数在点00(,)x y 的某邻域内存在,且x f 与yf 在点00(,)x y 处连续,则函数f 在点00(,)x y 处可微.证明 我们把全增量0000,)(,)(y f x y z f x x y ++-∆=∆∆00000000[,),)][,)(,)](((y y y f x y f x x y f x y f x y =++-+++-∆∆∆∆在第一个括号里,它是函数0,)(y f x y +∆关于x 的偏增量;在第二个括号里,则是函数0(,)f x y 关于y 的偏增量.对它们分别应用一元函数的拉格朗日中值定理,得 010002,),(()x y y y z f x x y x f x y y θθ++++∆=∆∆∆∆∆ 12,10θθ<< (2) 由于x f 与y f 在点00(,)x y 处连续,因此有 01000,)(,)(x x y x y f x x y f θα++=+∆∆, (3)00200,(,)()y y y x y f x y f θβ++∆= ,(4)其中 当0,0x y ∆→∆→时,有0,0αβ→→. 将(3) ,(4)代入(2)式,则得0000(,)(,)x y x y x y z f x f y x y αβ=+∆∆∆+∆+∆. 所以 函数f 在点00(,)x y 处可微.例5[8]22()sin (,)(0,0)(,)0,(,)(0,0)x y x y f x y x y ⎧+≠⎪=⎨⎪=⎩在(0,0)处可微,但(,)x f x y 与(,)y f x y 均在(0,0)处不连续.解因为220,0lim ()sin0(0,0)x y x y f →→+==,所以 (,)f x y 在(0,0)处连续.00(,0)(0,0)(0,0)lim 0x x x f x f f x→→-===,同理 (0,0)0y f =.当220x y +≠时,0,0lim 2sinx x y f x →→=极限不存在,故(,)x f x y 在点(0,0)不连续. 同理可证(,)y f x y 在(0,0)处不连续.lim0f dfρρρ→→∆-==,所以(,)f x y 在(0,0)处可微.此例说明 二元函数偏导数连续并不是可微的必要条件.由此可知定理3是可微的充分条件.由此引出定理4,降低函数可微的条件.定理4[9] 若(,)f x y 在0()U P 内(,)x f x y 存在,且(,)x f x y 在00(,)o P x y 连续,(,)y f x y 在0P 存在,证明:f 在0P 可微.证明 0000(,)(,)f f x x y y f x y ∆=+∆+∆-00000000[(,)(,)][(,)(,)]f x x y y f x y y f x y y f x y =+∆+∆-+∆++∆- 由已知 (,)x f x y 存在,且在0(,)o x y 连续,有0000010(,)(,)(,)x f x x y y f x y y f x x y y xθ+∆+∆-+∆=+∆+∆∆11(,)(0)xf x y x x αα=∆+∆→,因为 0000000(,)(,)lim(,)y y f x y y f x y f x y y∆→+∆-=∆,所以 00000022(,)(,)(,)(0)y f x y y f x y f x y y y αα+∆-=∆+∆→ , 又因 1212||||||0x yααααρ∆+∆≤+→,所以 f 在点0P 可微. 注 此定理中(,)x f x y 与(,)y f x y 互换,结论仍然成立. 二元函数连续、偏导数、可微的关系如图二元函数连续二元函数偏导数存在二元函数可微二元函数偏导数连续参考文献[1]常庚哲,史济怀,数学分析[M].北京:高等教育出版社,:97[2]刘文灿,刘夜英,数学分析[M].西安:陕西人民出版社,:116[3]朱正佑,数学分析[M].上海:上海大学出版社,:188[4]黄玉民,李成章,数学分析[M].北京:科学出版社,:61-62[5]华东师范大学数学系. 数学分析(第二版)[M].北京:高等教育出版社,110[6]周良金,王爱国,函数连续及可微的关系[J].高等函授学报,19(5):35[7]陈纪修,於崇华,金路,数学分析(第二版)[M].北京:高等教育出版社,:142-143[8]刘新波,数学分析选讲[M].哈尔滨:哈尔滨工业大学出版社,:151[9]《大学数学名师导学丛书》编写组,数学分析名师导学[M].北京:中国水利水电出版社,2004:147-148致谢感谢老师对本论文从选题、构思、资料收集到最后定稿的各个环节给予的指引和教导,使我对分段函数的分析性质有了更深刻的认识,并最终得以完成毕业论文,对此我表示衷心的感谢,老师严谨的治学态度、丰富渊博的知识、敏锐的学术思维、精益求精的工作态度、积极进取的科研精神以及诲人不倦的师者风范是我毕生的学习楷模.通过这一阶段的努力,我的毕业论文已接近尾声,作为一个本科生的毕业论文,由于经验的匮乏,难免有许多考虑不周全的地方,如果没有老师的亲切关怀和悉心指导,完成本次毕业论文将变得十分困难.老师平日工作繁多,但在这篇论文的写作过程中,老师不辞辛劳,多次就论文中许多核心的问题做深入细致的探讨并给我提出切实可行的指导性建议,才最终得以完成本次毕业论文.老师的这种一丝不苟的负责精神,使我深受感动.在此,请允许我向尊敬的老师表示真挚的谢意.最后,还要感谢我的辅导员在这四年来对我的帮助与鼓励,以及院系的所有领导对我的栽培与支持.并向在百忙中抽出时间对本论文进行评审,并提出宝贵意见的各位老师表示衷心的感谢,致以最崇高的敬意.。
二元函数的连续性、偏导及可微之间的联系二元函数连续性、偏导数存在性、及可微的定义 1.二元函数的连续性定义 设f 为定义在D 上的二元函数,0P D ∈(它或者是D 的聚点,或者是D 的孤立点) ,对于任给的正数ε,总存在相应的正数δ,只要()0;P P D δ∈⋂,就有()()0f P f P ε-<, 则称f 在P 点连续2.二元函数的偏导数定义 设函数(,)z f x y =在点000(,)P x y 的某一邻域内有定义,当y 固定在0y 而x 在0x 处有增量x ∆ 时,相应地函数有增量x z ∆=0000(,)(,)f x x y f x y +∆-如果 00000(,)(,)limx f x x y f x y x∆→+∆-∆存在,则称此极限为函数z (,)f x y =在点000(,)P x y 处对x 的偏导数,记作00(,)x f x y 或()00,x y fx ∂∂对y 的偏导数同理 3.二元函数的可微性定义 设函数(,)z f x y =在点()000,P x y 的某邻域()0U P 内有定义,对于()0U P 中的点()00,(,)P x y f x x y y =+∆+∆,若函数f 在0P 处的全增量z ∆可表示为:()()0000(,),z f x x y y f x y A x B y o ρ∆=+∆+∆-=∆+∆+, (1)其中AB 是仅与点P 0有关的常数,ρ=,()o ρ是较高阶的无穷小量,则称函数f 在点P 0可微.并称(1)中A x B y ∆+∆为f 在点P 0的全微分,记作000(,)P dz df x y A x B y ==∆+∆说明:1)A 、B 是与x ∆y ∆无关的常数,但与0P 可能有关;2) dz 是z ∆的线性主部0lim0z dzρρ→∆-=二元函数连续性、偏导数存在性、及可微的联系多元函数是一元函数的推广,因此它保留着一元函数的许多性质,但也有些差异,这些差异主要是由多元函数的“多元”而产生的.对于多元函数,我们着重讨论二元函数,在掌握了二元函数的有关理论和研究方法之后,在将它推广到一般的多元函数中去.本文将通过具体实例来讨论二元函数连续性、偏导数存在性、及可微的联系. 一、二元函数连续性与偏导存在性间的关系偏导存在不一定连续,反之连续不一定有偏导存在 1)函数(,)f x y 在点000(,)p x y 连续,但偏导不一定存在. 例1.证明函数(,)f xy =(0,0)连续偏导数不存在.证明:∵(,)(0,0)(,)lim (,)lim0(0,0)x y x y f x y f →→===,故函数(,)f x y =(0,0)连续.由偏导数定义:001,(0,0)(0,0)(0,0)limlim 1,x x x x f x f f x x ∆→∆→∆>⎧+∆-===⎨-∆<∆⎩故(0,0)x f 不存在.同理可证(0,0)y f 也不存在.2)函数(,)f x y 在点000(,)P x y 偏导存在,但不一定连续.例 2.证明函数22,0(,)1,0x y xy f x y xy ⎧+==⎨≠⎩在点(0,0)处(0,0)x f ,(0,0)y f 存在,但不连续证明 : 由偏导数定义:00(0,0)(0,0)(0,0)lim lim 0x x x f x f f x x→∆→+∆-==∆=∆ 同理可求得(0,0)0y f =∵22(,)(0,0)(,)(0,0)lim (,)lim ()1(0,0)0x y x y f x y x y f →→=+=≠=故函数22,0(,)1,0x y xy f x y xy ⎧+==⎨≠⎩在点(0,0)处不连续.综上可见,二元函数的连续性与偏导存在性间不存在必然的联系. 二、二元函数的可微性与偏导间的关系1.可微性与偏导存在性1) 可微则偏导存在(可微的必要条件1)若二元函数(,)f x y 在其定义域内一点000(,)P x y 处可微,则f 在该点关于每个自变量的偏导都存在,且000000(,)(,)(,)x y df x y f x y dx f x y dy =+注1 定理1的逆命题不成立,2)偏导存在,不一定可微.例3证明函数22220(,)0,0x y f x y x y +≠=+=⎩在原点两个偏导存在,但不可微.证明 由偏导数定义:00(0,0)(0,0)00(0,0)lim lim 0x x x f x f f xx ∆→∆→+∆--===∆∆同理可求得(0,0)0y f =下面利用可微的定义来证明其不可微性. 用反证法.若函数f 在原点可微,则[](0,0)(0,0)(0,0)(0,0)x y f df f x y f f dx f dy ⎡⎤∆-=+∆+∆--+=⎣⎦应是较ρ=2200lim lim f df x y x y ρρρ→→∆-∆∆=∆+∆ 当动点(,)x y 沿直线y mx =趋于(0,0)时,则(,)(0,0)2222(,)(0,0)lim lim 11x y y mxx y xy m mx y m m →=→==+++ 这一结果说明动点沿不同斜率m 的直线趋于原点时,对应的极限值也不同.因此所讨论的极限不存在.故函数f 在原点不可微.例4. 22220(,)0,x y f x y x y +≠=+=⎪⎩在(0,0)处两个偏导存在,但不可微.证明 由偏导数定义:00(0,0)(0,0)00(0,0)limlim 0x x x f x f f x x∆→∆→+∆--===∆∆ 同理可求得(0,0)0y f =下面利用可微的定义来证明其不可微性.[](0,0)(0,0)(0,0)(0,0)x y f df f x y f f dx f dy ⎡⎤∆-=+∆+∆--+=⎣⎦为此考察极限limf dfρρρ→→∆-=当动点(,)x y 沿直线y =趋于时,则(,)(0,0)(,)limlim x y y mxx y →=→==0≠因此f 在原点不可微例5. 证明函数2222222,0(,)0,0x y x y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩在(0,0)两个偏导存在,但不可微.证明 由偏导数定义:00(0,0)(0,0)00(0,0)limlim 0x x x f x f f x x∆→∆→+∆--===∆∆ 同理可求得(0,0)0y f =下面利用可微的定义来证明其不可微性.(0,0)(0,0)0,x y df f dx f dy =+= 222(,)(0,0)x yf f x y f x y ∆∆∆=∆∆-=∆+∆从而()222230,(0,0)222limlimlim0()()x y x y f dfx y x y x y x y ρρρρ→→∆∆→∆∆∆-∆∆∆+∆==≠=∆+∆取因此f 在原点不可微注:本题还可以说明连续不一定可微例6.证明函数2222322222,0(,)()0,0x y x y f x y x y x y ⎧+≠⎪=⎨+⎪+=⎩在(0,0)连续,且两个偏导数都存在但不可微.证明(1)∵223222()x y x y ≤+∴0,4,εδεδε∀>∃=<<∴(,)(0,0)lim (,)0(0,0)x y f x y f →==故函数(,)f x y 在点(0,0)连续.(2)又00(,0)(0,0)0(0,0)lim lim 0x x x f x f f xx →→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===(3) (0,0)(0,0)0,x y df f x f y =∆+∆=(,)(0,0)(,)f f x y f f x y ∆=∆∆-=∆∆从而222220limlim ()()f dfx y x y x y ρρρ→→∆-∆∆=∆=∆∆+∆取不存在 故 f 在原点不可微注:本题还可以说明连续不一定可微2. 偏导连续与可微1)偏导连续,一定可微.(可微的充分条件)若二元函数(,)z f x y =的偏导在点000(,)P x y 的某邻域内存在,且x f 与y f 在点000(,)P x y 处连续,则函数(,)f x y 在点000(,)P x y 可微.注2 偏导连续是函数可微的充分而非必要条件.2)可微,偏导不一定连续例7.证明函数()222222221sin ,0(,)0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩在点(0,0)处可微,但(,)x f x y ,(,)y f x y 在(0,0)处不连续.证明 22(,),0x y x y ∀+≠,有222222121(,)2sincos x x f x y x x y x y x y =-+++222222121(,)2sin cos y y f x y y x y x y x y =-+++ (1)当y=x 时,极限2200111lim (,)lim(2sin cos )22x x x f x x x x x x→→=-不存在,则(,)x f x y 在(0,0)点不连续.同理可证(,)y f x y 在(0,0)点不连续.(2)∵ 200(,0)(0,0)1(0,0)limlim sin 0x x x f x f f x x x→→-===200(0,)(0,0)1(0,0)lim lim sin 0y y y f y f f y y y→→-===则(0,0)(0,0)0,x y df f dx f dy =+=2222222211(,)(0,0)()sinsin ((,):0)f f x y f x y x y x y x y ρρ∆=-=+=∀+≠+ 从而2221sin1limlimlim sin0f dfρρρρρρρρρ→→→∆-===即函数(,)f x y 在点(0,0)可微.例8. 证明函数()2222220(,)0,0x y x y f x y x y ⎧++≠⎪=⎨⎪+=⎩在点(0,0)处可微,但(,)x f x y ,(,)y f x y 在(0,0)处不连续.证明 22(,),0x y x y ∀+≠,有(,)2x f x y x =(,)2y f x y y = (1)当y=x时,极限00lim (,)lim(2x x x f x x x →→=不存在,则(,)x f x y 在(0,0)点间断.同理可证(,)y f x y 在(0,0)点间断.(2)∵00(,0)(0,0)(0,0)limlim 0x x x f x f f x x→→-===00(0,)(0,0)(0,0)lim lim 0y y y f y f f y y→→-===则(0,0)(0,0)0,x y df f dx f dy =+=(,)(0,0)(,)f f x y f f x y ∆=-=从而201cos1limlimlim cos0f dfρρρρρρρρρ→→→∆-===即函数(,)f x y 在点(0,0)可微.例9.证明函数2222221sin ,0(,)0,0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在点(0,0)处可微,但(,)x f x y ,(,)y f x y 在(0,0)处不连续.证明 22(,),0x y x y ∀+≠,有22222222121(,)sin cos ()x x y f x y y x y x y x y =-+++22222222121(,)sin cos ()y xy f x y x x y x y x y =-+++(1)当y=x 时,极限2200111lim (,)lim(sin cos )222x x x f x x x x x x→→=-不存在,则(,)x f x y 在(0,0)点不连续.同理可证(,)y f x y 在(0,0)点不连续.(2)∵ 00(,0)(0,0)(0,0)limlim00x x x f x f f x→→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===则(0,0)(0,0)0,x y df f dx f dy =+=221(,)(0,0)sinf f x y f x y x y ∆=∆∆-=∆∆∆+∆从而()22,1limlimx y f dfx y ρρ→∆∆→∆-=∆+∆=0即函数(,)f x y 在点(0,0)可微.三、二元函数的连续性与可微性间的关系 1)可微,一定连续(可微的必要条件2)二元函数(,)f x y 在000(,)P x y 可微,则必然连续,反之不然.2)连续,不一定可微例10.证明函数3222222,0(,)0,0x x y f x y x yx y ⎧+≠⎪=+⎨⎪+=⎩在(0,0)连续,且偏导存在但不可微. 证明:(1)∵322222,x x x x x y x y=⋅≤++ ∴0,,,x y x εδεδδε∀>∃=<<<当时, ∴(,)(0,0)lim (,)0(0,0)x y f x y f →==故函数(,)f x y 在点(0,0)连续.(2) 00(,0)(0,0)(0,0)limlim 1x x x f x f xf xx →→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===(3) (0,0)(0,0),x y df f x f y x =∆+∆=∆(,)(0,0)(,)f f x y f f x y ∆=∆∆-=∆∆从而20limf dfρρρ→→∆-=不存在即函数(,)f x y 在点(0,0)不可微. 注:本题也可以说明偏导存在但不一定可微.例11.证明函数222222sin(),0(,)0,0x y xy x y x y f x y x y +⎧+≠⎪+=⎨⎪+=⎩在(0,0)连续,且偏导存在但不可微. 证明:(1)∵22sin(),222x y x y x y x y xy xy x y xy ++++≤⋅=≤+∴0,,,2x yx y εδεδδε+∀>∃=<<<当时, ∴(,)(0,0)lim (,)0(0,0)x y f x y f →==故函数(,)f x y 在点(0,0)连续.(2) 00(,0)(0,0)0(0,0)lim lim 0x x x f x f f xx →→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===(3) (0,0)(0,0)0,x y df f x f y =∆+∆=(,)(0,0)(,)f f x y f f x y ∆=∆∆-=∆∆从而0limf dfρρρ→→∆-=取y k x ∆=∆则23320022221sin (1)limlim (1)(1)x f dfk kx k k xk k ρρ→∆→∆-++=⋅=++ 不存在 故函数(,)f x y 在点(0,0)不可微.注:本题也可以说明偏导存在但不一定可微. 例12 .证明函数(,)f x y xy =在点(0,0)连续,但它在点(0,0)不可微.证明:(1)∵00lim (,)lim 0(0,0)x x y y f x y xy f →→→→===故函数(,)f x y xy =在点(0,0)连续.例13.证明函数222222,0(,)0,0xy x y x yf x y x y ⎧+≠⎪+⎪=⎨⎪⎪+=⎩在(0,0)连续 ,但不可微.证明:(1)∵2222222222x y xyx y x y x y++≤=++ ∴00lim (,)0(0,0)x y f x y f →→== 故函数(,)f x y 在点(0,0)连续.(2)不可微见例4综上所述二元函数连续性、偏导存在性及可微性间的关系如图所示:偏导连续可微连续 偏导存在补充1.确定α的值,使得函数()222222221sin ,0(,)0,0x y x y x y f x y x y α⎧++≠⎪+=⎨⎪+=⎩在点(0,0)处可微.2.设函数2222(,)sin 0(,)0,0g x y x y f x y x y ⎧+≠⎪=⎨⎪+=⎩, 证明:(1)若(0,0)0g =,g 在点(0,0)处可微,且(0,0)0dg =,则 f 在点(0,0)处可微,且(0,0)0df =.(2)若g 在点(0,0)处可导,且f 在点(0,0)处可微,则(0,0)0df =.3.确定正整数α的值,使得函数()22220(,)0,0x y x y f x y x y α⎧++≠⎪=⎨⎪+=⎩在点(0,0)处(1)连续,(2)偏导存在,(3)存在一阶连续偏导.4.设函数222222,0()(,)00,0px x y x y f x y p x y ⎧+≠⎪+=>⎨⎪+=⎩,试讨论它在(0,0)点处的连续性.。
知识点25可导可微与连续三个概念之间的关系
一、概念介绍
可导:可导指的是函数的可导定义。
函数可导是指一个函数在一些点
存在它的导数。
可微:可微指的是函数的可微定义,即函数在一些区域上的可微定义,这意味着该函数在区域里的每一点都存在导数。
可微函数具有一阶连续性,即如果函数在一点处可微,则它的一阶连续性是成立的,即在邻近的任意
一点处都存在函数的导数。
连续:连续函数是指在它的定义域的任意区域上,函数的值都是连续的,即它的值在它的定义域的任意一点处都可以被无穷小区间所连接到另
一点。
1.连续性是可导和可微的基础:函数可导和可微的前提是连续性,如
果函数不连续,那么它就不能被定义为可导和可微函数,因为可导和可微
函数的定义都要求函数在一些区域上是连续的。
2.可微性是可导的前提条件:如果需要确定函数是否可导,首先要确
定函数是否可微。
只有函数是可微才能被确定为可导函数。
3.连续性是可微函数的充要条件:为了判断函数是否可微,首先要确
定函数是否连续。
只有函数连续,它才能被定义为可微函数;只有连续函
数才能确保在整个定义域上都存在导数,从而满足可微性的定义。
多元函数连续,可导,可微之间的关系多元函数连续、可导,可微之间的关系多元函数是一种指在多元空间中使用多个变量来定义函数的数学形式,并可应用于工程与科学技术领域中,运用数学语言解释物理现象和模拟实际情况。
多元函数连续性、可导性和可微性,是多元函数的基本性质,也是多元函数作为数学形式必须具备的要求。
本文将从三个方面讨论这三个概念之间的关系:多元函数的连续性、可导性和可微性之间的关系,多元函数的可微性如何产生,以及从连续性和可导性到可微性的推导。
一、多元函数的连续性、可导性和可微性之间的关系在探讨多元函数连续可导可微之间的关系之前,有必要先了解这三个概念的含义:多元函数的连续性指的是若多元函数的取值在某一附近的点所具有的连续变动特性,可导指的是在任意一点处多元函数的梯度仍然存在,而可微则指的是多元函数的导数在任意一点处仍然存在。
由于多元函数的可导性是多元函数的连续性的推广,而且可微性又依赖于可导性,因此可以表明:多元函数的可微性是建立在多元函数的连续性和可导性之上的,多元函数连续性及可导性是多元函数可微性的必要条件。
二、多元函数的可微性如何产生多元函数可微性的概念是根据一阶导数概念产生的,即一阶导数表示多元函数在某一点处的增函数率,而一阶导数一般在点连续可导的多元函数上才存在,而多元函数的可微性是指在某一点处梯度的连续变动特性,这就需要多元函数具备可连续可导的特性。
三、从连续性和可导性到可微性的推导由此可知,多元函数的连续性和可导性是产生可微性的必要条件,因此从连续性和可导性推导可微性,可做如下分析:首先,多元函数必须具备连续性,即若多元函数的取值在附近的点所具有的连续变动特性,可以得出多元函数的取值在不同的点上也是连续的,表达在概念上的话就是某一点的函数值变化,另一点的函数值也可以作无限接近的变动,以满足连续性的要求。
其次,多元函数必须具备可导性,即在任意一点处多元函数的梯度仍然存在,可以通过求出梯度的方式,根据多元函数具有可导性的要求,获得一阶导数,由此可以进一步得出多元函数的可微性。
二元函数可微可导连续之间的关系在微积分学中,函数的连续性、可导性、可微性是非常重要的概念。
对于一元函数来说,这些概念都有明确的定义和证明,但对于二元函数来说,这些概念的关系就需要更深入的研究。
本文将探讨二元函数可微、可导和连续之间的关系。
一、连续性首先,我们来回顾一下二元函数的连续性。
对于二元函数$f(x,y)$,如果满足以下条件之一,就称 $f(x,y)$ 在点$(x_0,y_0)$ 处连续:1. $lim_{(x,y)rightarrow (x_0,y_0)} f(x,y) =f(x_0,y_0)$;2. $lim_{xrightarrow x_0} f(x,y_0) = f(x_0,y_0)$ 且$lim_{yrightarrow y_0} f(x_0,y) = f(x_0,y_0)$。
其中,条件 1 称为点极限的定义,条件 2 称为分量极限的定义。
二元函数的连续性是二元函数分析的基础,如果一个二元函数在某个点处不连续,那么这个点就不可能是这个函数的极值点或者奇点。
二、可导性接下来,我们来看二元函数的可导性。
对于二元函数$f(x,y)$,如果满足以下条件之一,就称 $f(x,y)$ 在点$(x_0,y_0)$ 处可导:1. $lim_{(x,y)rightarrow (x_0,y_0)} frac{f(x,y)-f(x_0,y_0)}{sqrt{(x-x_0)^2+(y-y_0)^2}}$ 存在;2. $lim_{hrightarrow 0} frac{f(x_0+h,y_0)-f(x_0,y_0)}{h}$ 和 $lim_{hrightarrow 0} frac{f(x_0,y_0+h)-f(x_0,y_0)}{h}$ 都存在。
其中,条件 1 称为偏导数的定义,条件 2 称为方向导数的定义。
如果一个二元函数在某个点处可导,那么这个点就一定是这个函数的极值点或者奇点。
三、可微性最后,我们来看二元函数的可微性。
多元函数可微可导连续之间的关系在微积分学中,函数的连续性、可导性和可微性是非常重要的概念。
对于一个多元函数来说,如果它在某个点处连续,则该点必须存在,且在该点处取值等于该点左右极限的平均值。
如果在某个点处可导,则该点处存在切平面,并且该点沿着任何方向的方向导数相同。
而可微性则强化了可导性的概念,要求函数在该点附近有一个唯一的线性逼近。
总的来说,可微性是比可导性更加严格的概念,而连续性则是更基本的概念。
对于一个多元函数来说,如果它在某个点处可微,则该点处必定存在连续性和可导性。
然而,反过来就不一定成立,即使一个函数在某个点处连续且可导,也不一定在该点处可微。
这是因为,除连续和可导外,可微性还需要满足一个更强的条件,即极限存在且唯一,因此连续性和可导性仅能保证在该点的某个邻域内存在函数值和导数的一阶逼近,但不能保证在该点处存在一个唯一的线性逼近。
在实际应用中,我们对于一个多元函数的连续性、可导性和可微性都需要进行研究和掌握,以便能更准确、完整地描述和分析这个函数的特性。
在具体问题中,我们需要根据实际需要选择不同的概念和方法,以便更好地解决问题。
除了上述的关系,我们还可以从另一角度来理解它们之间的关系。
对于一个多元函数,如果它在某个点处连续,则说明该点及其周围的点与该点的距离很小,函数值之间的差别也很小。
如果在该点处可导,则说明该点沿着任何方向的变化率相同,函数的变化率也比较平缓,更加光滑。
而可微性则说明该点附近存在一个线性逼近,函数的变化趋势是比较稳定的。
因此,我们可以认为连续性、可导性和可微性是函数光滑程度的不同描述方法。
连续性可以看作是函数在空间上的“连通性”或“完整性”,可导性则可以看作是函数的“斜率”或“变化率”,而可微性则是函数的“切线”或“局部逼近”。
这三种概念都是描述函数光滑程度的有效手段,能够帮助我们更加深入、全面地理解函数的特性。
需要注意的是,在实际应用中,连续性、可导性和可微性并不总是同时满足的,因此我们需要根据具体问题选择不同的分析方法,并特别留意函数在可能出现奇点、断点或不可导点的位置、特性和影响。