光伏电站组件容量配比优化方案
- 格式:doc
- 大小:109.50 KB
- 文档页数:5
光伏超配最佳比例
光伏超配的最佳比例取决于多种因素,包括系统设计、光照条件、组件铺设的倾斜角度等。
根据应用研究,为了使系统平均化度电成本最低,各种情况下的最优容配比都大于1:1。
一般来说,在光伏电站设计时,如果逆变器的容量与组件发电量保持1:1适配,逆变器可能会长期处于非满载运行的状态,降低逆变器的利用率,从而造成发电收益的损失。
因此,在选择逆变器的功率时,组件与逆变器的容配比范围应该在1.1-1.3之间。
此外,可以通过计算来确定最佳容配比。
假若初始电站设计容量为A(MW),通过计算当电站电池板扩容到B(MW)时,电站的全局投资性价比为最优,此时该电站的最佳容配比为:K=B/A。
当超过逆变器标称功率的100%、105%、110%时,其最优容量配比分别为1.05、1.1、1.15。
请注意,具体的最佳容配比应基于系统的具体情况来确定。
在设计光伏系统时,需要综合考虑多种因素,并进行详细计算和评估,以确定最佳的超配比例。
光伏电站建设中组件与逆变器容配比最优方案研究摘要:本文首先简要阐述了容配比影响因素,进而分别从容配比计算原则、容配比计算边界条件、容配比计算结果进行系统分析,从光伏系统的实际输出功率和度电成本出发,从限功率和经济性角度探索最优容配比方案,为后续光伏电站建设提供良好基础。
关键词:光伏电站;组件;逆变器引言:在光伏电站建设中,光伏系统的发电能力将会受到环境温度、系统容配比等诸多因素的限制和影响,其中组件和逆变器容配比则是主要的影响因素。
想要显著提高光伏系统经济性,对光伏电站建设中组件与逆变器容配比最优方案展开分析便显得至关重要。
1.容配比的影响因素为了带动光伏系统综合利用率和经济效益的提高,各个地区都开始采用提高光伏电站组件容配比的方式,但是在实际的光伏电站建设过程中,光伏组件的功率往往会受到诸多外在因素影响,无论是组件安装方式,还是地区光照条件,都有可能促使逆变器输出功率发生变化。
一方面,地区辐照度将会影响到容配比。
我国地域辽阔,不同地区的辐照度差异可能会出现较为明显的差异,全年辐射量则会呈现很大差别。
另一方面,系统损耗也会影响到容配比。
光伏组件输出到逆变器,将会经过诸多环节,每个环节都有可能出现系统损耗,使得传输功率有可能低于组件额定功率。
二、容配比计算1.容配比计算原则事实上,容配比也可以按照计算原则,进行系统性的区分,主要包括两种容配比计算基本原则,分别是补偿超配、主动超配。
第一种容配比计算基本原则是补偿超配,默认光伏系统并不会造成限功率的情况,从而不断增大组件与逆变器容配比,进行整体分析和观察。
第二种容配比计算基本原则是主动超配,默认系统度电成本最低,从而不断增大组件与逆变器容配比,需要注意的是,采用这种容配比计算原则与方法,从经济角度出发,将投资和产出等因素进行综合考量,能够在一定程度上尽可能降低度电成本,但是整个系统运作过程中很容易出现逆变器限功率的问题,这也就使得系统的能量损失较为严重[1]。
光伏发电系统最优容配比分析光伏发电系统最优容配比分析随着环境问题的日益突出,使用清洁能源逐渐成为人们关注的焦点。
光伏发电作为一种环保、清洁、可再生的新能源,在近年来得到了越来越广泛的应用。
光伏发电系统中,最优的容配比对于提高光伏发电系统的电能转化效率和降低其成本非常重要,因此对光伏发电系统最优容配比进行分析和研究,具有重要意义。
本文就光伏发电系统最优容配比展开分析,主要包括以下几个方面:一、光伏发电系统的组成和工作原理光伏发电系统主要由太阳能电池板、电池并联、电源交流正弦逆变器组成。
当阳光照射太阳能电池板时,光子被吸收,使得电子从价带跃迁到导带中,从而产生电流。
电池并联则将多个太阳能电池板组合在一起,加强了发电量,交流逆变器则将直流电转化成家庭及公用电网所需的电能。
二、最优容配比在光伏发电系统中,最优容配比是指最大化光伏发电系统的输出功率和转化效率,以便实现最大的能源收益。
1、电池容量电池容量是指储存电能的能力。
在光伏发电系统中,电池容量的大小对于系统的总输出功率有着重要的影响。
2、太阳能电池板数量太阳能电池板的数量应选择能够满足系统所需功率的最小数量,这将降低系统的总成本,提高光伏发电系统的效率。
3、电池布局电池布局是指将电池放置在合适的地方,采取合适的布局方式,使系统的能量收益最大化。
三、最优容配比分析在分析光伏发电系统最优容配比时,需要从以下几个方面进行研究:1、不同电池容量的影响实验结果表明,当电池容量大于太阳能电池板输出容量时,电池的运行效率更高。
2、不同太阳能电池板数的影响太阳能电池板的数量应相对较少,同时能够满足光伏发电系统的功率需求。
如果数量太多,则会增加系统成本,同时对其效率也会有所影响。
3、不同电池布局的影响电池布局的选择应取决于具体的光照条件。
如果电池可以放置在常年充足的阳光下,则应该将其放置在向阳的朝向,在夏季时更应注意。
四、结论最优容配比是光伏发电系统性能优化的关键。
通过分析和研究不同容配比对光伏发电系统的影响,可以找到最适合系统的容配比,从而提高系统的功率输出和转化效率,降低系统成本。
户用光伏电站中组件容量与逆变器配比优化分析!一、哪些因素影响了逆变器的输入功率1、温度折减温度系数是光伏组件非常重要的一个参数。
一般情况下,晶硅电池的温度系数一般是-0.35~-0.45%/℃,非晶硅电池的温度系数一般是-0.2%/℃左右。
而光伏组件的温度并不等于环境温度。
图1就是光伏组件输出功率随组件温度的变化情况。
表1组件电性能参数对系统效率的影响在正午12点附近,图中光伏组件的温度达到60摄氏度左右,光伏组件的输出功率大约仅有85%左右。
温度造成的折减,可以根据光伏组件的温度系数和当地的气温进行估算。
2、光伏组件的匹配度虽然组件的标称参数是一样的,但实际上输出特性曲线是有差异的,这就造成多个组件串联时因电流不一致产生的效率降低。
图1 光伏组件输出功率随组件温度的变化3、直流线损一个1MW单元的面积大约14000 m²。
要将这么大面积光伏组件发出的电送到一处地方,就需要很长的直流线路。
一般情况下,直流线损可以按2~3%来估算。
4、光伏组件灰尘损失在西北地区,一次沙尘暴可能会造成发电量直接降低5%以上;在东部,严重的雾霾天气时光伏电站几乎没有出力。
下图是清洗前后光伏电站的出力对比。
图2 光伏组件清洗前后出力对比5、光伏组件功率衰减损失光伏组件的衰减过快也是造成发电量达不到预期的重要原因。
一般厂家承诺头两年衰减不超过2%,10年不超过10%,25年不超过20%。
10年和20年的情况暂时还没有准确的数据,据了解,前2年衰减在2%的光伏组件比较少。
随着时间的推移,组件的发电功率在降低,逆变器的输入功率将逐年减小。
6、MPPT偏离损失大型电站通过汇流箱将光伏组件的直流电汇集至集中逆变器,而大型逆变器依赖于一路MPPT来跟踪。
山地项目中,由于地区地形复杂,平地很少,无法做土地平整,电池板朝向各异;不同组件到汇流箱距离差异很大,汇流箱至逆变器的距离也有很大差异,这都将影响逆变器的输入功率。
7、系统的PR值通过上述各环节的衰减,总结出光伏电站的PR损失示意图如图3所示:图3 光伏电站PR损失示意图从这张图中我们可以看到,从光伏组件到逆变器、箱变之间,有很多环节的出力损失。
关于光伏发电站容配比计算方法及设计建议摘要:随着新能源行业的快速发展,如何降低项目的工程造价和度电成本,提高企业的竞争力是各个企业面临的主要问题。
作为新能源发电两大支柱之一的光伏发电项目,由于受到关键设备组件功率提升较慢的制约,如何从技术上降低成本受关注度较小,同时作为一个降低度电成本重要手段之一的容配比设计,不了解或理解错误的从业人员也比较多。
本文针对上述情况,对光伏电站容配比概念进行分析,并提出了最优容配比的计算方法和不同项目建设条件下容配比如何设计和选择,希望能为本行业技术人员提供借鉴和指导。
关键词:光伏发电站光伏发电单元容配比度电成本建设条件0.引言:保护与改善人类赖以生存的环境,实现可持续发展,是世界各国人民的共同愿望。
我国政府已把可持续发展作为经济社会发展的基本战略,并采取了一系列重大举措,合理开发和节约使用自然资源,改进资源利用方式,调整资源结构配置,提高资源利用率。
作为可再生能源发电的主要方向之一,太阳能发电尤其是光伏发电,由于其技术含量相对较低、投资额度和建设地点比较灵活、建设周期短,发展比较迅速。
随着光伏行业的发展,在土地资源和电网资源有限的情况下,行业内的竞争也越来越激烈。
2020年,国家发展改革委印发《关于2020年光伏发电上网电价政策有关事项的通知》提出:对集中式光伏发电继续制定指导价,新增集中式光伏电站上网电价原则上通过市场竞争方式确定,不得超过所在资源区指导价。
在平价上网甚至低于地方指导电价的情况下,如何降低光伏电站的单位造价,进一步降低光伏发电的度电成本,提高企业的竞争力,已经成为光伏发电投资企业面临的主要问题。
根据作者多年从业经验,容配比设计是影响度电成本重要因素之一。
如何结合项目实际情况进行容配比设计,确定最优容配比是每个光伏项目都要考虑的问题。
下面作者结合本人工作经历来谈一下容配比设计相关问题,希望对行业同仁有借鉴和参考意义。
1.光伏发电站容配比概念及提高容配比设计意义1.1光伏发电站容配比概念释义对于光伏电站容配比定义,目前行业内有不同的理解,因为涉及到后续容配比的计算和光伏电站最优容配比如何确定,下面我们先对容配比定义进行分析。
光伏发电单元布置及容量优化设计苏毅;刘海波;汪建;覃琳捷;叶任时【摘要】In each power generation unit of photovoltaic power station, a reasonable allocation of photovoltaic array and inverter capacity are needed by considering the different lengths of DC bus cable due to the different arrangements and the influences of different installed capacities on construction cost and generation capacity. In view of design analysis and engineering practice, this paper proposes that the units should be arranged as a square with the inverter room in the geometric center of each unit, and the idea of MW-level PV installation capacity ( more than the inverter rated capacity) is adopted. It is indicated that the optimal design can lessen the amount of cable in MW-level PV power generation unit, reduce power consumption and improve the e-quipment utilization rate.%在光伏电站的每个光伏发电单元内,考虑到不同布置格局的光伏发电单元直流汇流电缆工程量差别大,不同装机规模对工程建设成本及发电量的影响,需合理配置光伏阵列与逆变器容量。
光伏电站组件容量超配比例分析【摘要】本文分析了光伏电站应进行组件容量超配的原因,并通过计算及软件模拟,论证光伏组件超配的必要性以及超配的合理比例,分析了超配对逆变器及变压器的影响。
同时,提出了了主动超配的分析方法,以实现光伏电站最低的度电成本。
【关键词】光伏发电;超配;系统效率;容配比;逆变器;度电成本;0 引言光伏发电作为新型清洁能源,近年取得了快速发展,光伏装机容量及发电量不断攀升,截止2018年底,全国光伏发电装机容量达174GW,年发电量达1775亿kWh。
光伏的快速发展,得益于对新能源电源的需求以及光伏度电成本的不断下降,降低度电成本一直以来是光伏产业链各个企事业努力的方向,如何确定合理的光伏组件容配比,对降低光伏度电成本具有重要意义。
早期光伏电站在设计过程中,组件容量与逆变器功率均按照1:1的比例配置,即1kWp 的组件对应1kW的逆变器,近几年,组件的超配比例不断再提高,国外部分项目容配比已提高至1.4:1~1.5:1,本文拟分析各因素对超配比例的影响,提出合理的超配比例及计算方法。
1 超配原因光伏电源不同于常规水电、风电等电源,组件标称功率为峰值功率,以常规315Wp组件为例,在标准测试环境下,当辐照度达到1000W/m²,组件温度为25℃时,组件的输出功率才能达到315W,而在实际工况下,太阳辐照度大部分时间均在1000W/m²以下,当辐照度达到最大时,基本在夏季正午前后,其组件温度也高于25℃,组件功率很难达到315W。
根据厂家提供的产品参数,在正常电池工作温度下(NOCT),辐照度为800W/m²,环境温度20℃,风速1m/s时,315Wp组件输出功率仅能达到229Wp,减少了约27.3%的功率输出。
同时考虑光伏电站的系统效率,光伏发电系统受光伏灰尘、组件参数不匹配、温升、电缆损耗、逆变器损耗、变压器损耗、开关设备等损耗,整站的系统效率一般为80%左右,即光伏电站在光照、温度等较理想的情况下,整站最大功率为光伏组件安装容量的80%,而在实际复杂工作条件下,最大功率会更低。
光伏电站组件容量配比优化方案
近年来,不同地区的光伏电站采用光伏组件容量与逆变器容量配比值大于1的设计的思路,以达到提高逆变器的运行效率、电站收益的目的。
本文将基于某地的实测辐射值进行分析,并计算不同配比值情况下的电站新增发电量与新增投资的关系,以确定合理的配比值。
一、某地实测辐射数据分析
本文采用某地某全年的实测辐射数据。
选取其中的水平面总辐射、温度数据进行计算分析。
实测数据采样时间为1min,共计525600组,数据完备率96.32%。
完成缺失数据插补后,该地全年水平面总辐射量为6262.5MJ/m2。
根据上述数据得出如下:逐月、年代表日逐时、月代表日逐时的辐射量(值)分布图。
(其中:数据已调整为真太阳时):
图1该地区逐月总辐射量直方图
图2该地区年代表日总辐射值分布图
图3该地区逐月代表日总辐射值分布图根据上图可得出如下结论:
(1)该地月总辐射量最大值发生在春、夏换季的5月;且全年逐月总辐射量较平均,有利于光伏电站平稳出力;
(2)该地年代表日总辐射极大值差异较小,4个年代表日差异主要是日照时长及当日天气情况而引起的日总辐射量的差异。
(3)该地5月至8月的正午(真太阳时)存在总辐射值超过1000W/m2的情况发生,根据对数据的分析。
超过总辐射值超过1200W/m2在6月时有发生。
(4)该地10月至次年4月的空气质量好,透明度高,日总辐射值变化较平稳。
二、不同容量配置比值的计算
本文将采用基于实测的辐射数据完成光伏电站全年逐时(分钟)的发电功率计算。
计算时根据如下步骤分别进行计算:
(1)光伏组件容量与逆变器容量配比值选择1、1.05、1.1、1.15、1.20分别计算全年逐时发电功率。
(2)考虑各光伏电站实际效率存在差异,光伏组件至逆变器直流母线的效率分别取80%、85%对步骤(1)的各计算结果进行折算。
(3)考虑到逆变器具备的短时超发能力,分别计算超过逆变器标称功率100%、105%、110%的能量损失。
(4)根据步骤(1)~(3)的计算结果,综合计算因光伏组件超配增发的功率与不同效率值、逆变器不同超发能力情况下而限电的最终增发的功率比值。
(5)光伏电站综合单位投资分别取7.5元/W(其中组件价格取3.5元/W)、8元/W(其中组件价格取4元/W)进行光伏电站新增投资比例的计算;
(6)综合步骤(4)、(5)的计算结论,计算△发电量与△投资的比值,其结果如下:
图4不同条件下△发电量/△投资分布曲线
因本文略去(1)~(5)的计算结果,对图4曲线说明如下:
(1)模型一:光伏组件至逆变器直流母线的效率取80%、投资8元/W(其中组件价格4元/W)的条件下分别计算步骤(1)中的各值,结果为步骤(3)中逆变器的各超发能力条件下的△发电量/△投资分布曲线;
(2)模型二:光伏组件至逆变器直流母线的效率取80%、投资7.5元/W(其中组件价格3.5元/W)的上述各条件下计算结果;
(3)模型三:光伏组件至逆变器直流母线的效率取85%、投资8元/W(其中组件价格4元/W)的上述各条件下计算结果;
(4)模型四:光伏组件至逆变器直流母线的效率取85%、投资7.5元/W(其中组件价格3.5元/W)的上述各条件下计算结果。
三、结论及建议
(1)建议光伏电站在前期设计中,应完成场址所在地的太阳能资源的实测工作,其将为电站的设备选型及后期分析提供必要的基础设计资料。
本文分析结果仅适用于涉及场地的实测辐射数据,因各地的辐射数据、能量分布情况存在差异(见本文的(一)部分),如分析其他地区,需采用文章中方法进行重新计算、分析。
(2)不建议该地光伏电站的组件与逆变器容量配比取1:1。
从模型一~二结果得:无论逆变器是否具备超发能力,最优容量配比均大于1。
当超过逆变器标称功率的100%、105%、110%时,其最优容量配比分别为1.05、1.1、1.15。
从模型三~四结果可以看出:当超过逆变器标称功率的100%、105%、110%时,其最优容量配比分别为1(即,此时再增加光伏组件容量,其收益将降低)、1~1.05、1.05~1.1。
(3)光伏电站实际效率的高低直接影响最优容量配比。
随着电站效率的提高,最优配置比将减小。
电站将因减少光伏组件的投入而降低初投资,同时还可提高电站收益。
(4)建议电站在设备选型时,应结合当地的太阳能资源合理选用具备短时超发能力的逆变器。
针对该地,其逆变器选型应要求其具备110%的短时超发能力(其超发时间的要求可根据计算的逐时发电功率进行统计分析)。
在110%的超发能力下,模型一~二中的光伏电站采用的最优容量配置比取1.15,相应增加发电量为11.53%。
(5)该地光伏电站最优容量配置比不宜大于1.2。
在模型一、二中:当最优容量配置比大于1.15时,发电量的增长将低于投资的增长;模型三、四中:当大于1.1时,亦出现上述情况。
(6)光伏电站最优容量配置比是的影响因素包括:太阳能资源、电站效率、逆变器超发能力、电站综合单价以及光伏组件单价等。
(7)由于电站效率为设计取值,投产运行的光伏因施工图设计的思路、设备选型、施工精度的管控、调试的消缺等原因,将引起电站的效率的差异。
如可以预见电站的实际效率低于设计值,上述结论中的取值可适当加大;反之,应减小。
(8)本文的分析未考虑因光伏组件超配引起逆变器的实际工作效率的提高(本文的效率特指:光伏组件至逆变器的直流母线侧)。
在电站实际运行后,实际运行数据将略高于本文中提高发电量的结论。
故光伏电站最优容量配置比应在设计前期结合上述各因素综合分析,以增强光伏电站的综合效益。
(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
可复制、编制,期待你的好评与关注)。