七年级初一数学角测试题
- 格式:doc
- 大小:164.50 KB
- 文档页数:10
初一数学三角形的外角试题1.已知,如图,点是中边上的一点,点是边延长线上一点,说明:.【答案】见解析【解析】本题主要考查的是三角形外角与内角的关系. 由于∠DCB是△DCE的一个外角,所以∠DCB>∠CDE;又因为∠ADB是△BCD的一个外角,所以∠ADB>∠DCB,故∠ADB>∠CDE.证明:∵∠DCB是△DCE的一个外角∴∠DCB>∠CDE∵∠ADB是△BCD的一个外角∴∠ADB>∠DCB∴∠ADB>∠CDE2.已知,如图,中,的平分线与的平分线交于点,若,求的度数.【答案】【解析】本题考查的是三角形内角和定理、三角形内角及外角平分线的性质. 根据三角形外角的性质和角平分线的性质表示出两角和的一半,用180°减去两角和的一半即可.∵∠ACE是△ABC的外角,∴∠ACE=∠A+∠ABC,∵BD是∠ABC的角平分线,∴∠DBC=∠ABC,∵CD是外角∠ACE的角平分线,∴∠DCE=∠ACD=∠ACE,∵∠D=∠DCE-∠DBC=∠ACE-∠ABC=(∠ACE-∠ABC)=∠A=×80°=40°.∴∠D的度数是40°.3.已知,如图,在中,是高和的交点,观察图形,试猜想和之间具有怎样的数量关系,并论证你的猜想.【答案】.证明见解析【解析】本题主要考查了三角形的外角性质和三角形内角和定理. 由于∠DOE是△AOE的外角,故∠DOE=∠OAE+∠AEO=∠OAE+90°=∠OAE+∠ADC,即∠C+∠DOE=∠OAE+∠ADC+∠C=180°解:∠C+∠DOE=180°.∵AD,BE是△ABC的高(已知),∴∠AEO=∠ADC=90°(高的意义),∵∠DOE是△AOE的外角(三角形外角的概念),∴∠DOE=∠OAE+∠AEO(三角形的一个外角等于不相邻的两个内角的和)=∠OAE+90°(∠AEO=90°)=∠OAE+∠ADC(∠ADC=90°)∴∠C+∠DOE=∠OAE+∠C+∠ADC=90°+90°=180°.另法:在四边形CEOD中,∠C+∠EOD+90°+90°=360°,则∠C+∠EOD=180°.4.如图所示,已知AB∥CD,∠A=55°,∠C=20°,则∠P= ;O【答案】35°【解析】本题主要考查的是平行线的性质及三角形内角与外角的关系.∵AB∥CD,∠A=55°∴∠AOC=∠A=55°∵∠C=20°∴∠P=∠AOC-∠C=55°-20°=35°5.如图所示,∠A +∠B+∠C+∠D+∠E= ;【答案】180°【解析】本题主要考查了三角形的外角和内角和定理因为∠1=∠B+∠D,∠2=∠C+∠E,所以∠A +∠B+∠C+∠D+∠E=∠A+∠1+∠2=180°6.如图所示,已知AB∥CD,则()A.∠1=∠2+∠3 .B.∠1=2∠2+∠3C.∠1=2∠2-∠3D.∠1=180°-∠2-∠3【答案】A【解析】本题主要考查的是平行线的性质及三角形内角与外角的关系.因为AB∥CD,所以∠ABD=∠3,因此∠1=∠2+∠ABD=∠2+∠3;7.若一个三角形三个内角的度数之比为1∶2∶3,则与之相邻的三个外角的度数之比为()A.1∶2∶3B.3∶2∶1C.3∶4∶5D.5∶4∶3【答案】D【解析】本题主要考查了三角形内角和定理及内角与外角的关系. 先根据三角形的三个内角度数之比为1∶2∶3及三角形内角和定理求出三个内角的度数,再分别求出其对应的外角度数即可设三角形三个内角分别为,则,解得,所以三角形三个内角分别为30°,60°,90°,与之相邻的三个外角的度数分别为150°,120°,90°,故选D8.一个零件的形状如图所示,按规定∠A应等于90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=148°,就断定这个零件不合格,运用三角形的有关知识说明零件不合格的理由.【答案】不合格【解析】本题主要考查了三角形内角和定理. 连接AD,利用三角形内角与外角的关系求出此零件合格时∠BDC的度数与已知度数相比较即可.解:如图,连接AD并延长至E,则∠CDE=∠C+∠CAD,∠BDE=∠B+∠BAD,所以∠BDC=∠CDE+∠BDE=∠C+∠CAD+∠B+∠BAD=21°+32°+90°=143°≠148°,所以这个零件不合格.9.图中()是△ABC的外角.A.∠1B.∠2C.∠3D.∠4【答案】C【解析】本题考查的是三角形外角的定义根据三角形外角的定义解答.根据三角形外角的定义可知,∠3是此三角形的外角.故选C.10.如图,△ABC中,D是BC上一点,F是BA延长线上一点,连接DF交AC于E,且∠B=42°,∠C=59°,∠DEC=47°,求∠F的度数.【答案】【解析】本题考查的是三角形内角和定理、外角定理、对顶角相等由∠B=42°,∠C=59°,根据三角形的外角定理即可求得∠FAE,再根据对顶角相等求得∠AEF,最后根据三角形内角和定理即可求得∠F的度数.∠B=42°,∠C=59°,∠FAE=∠B+∠C=101°,∠DEC=47°,∠AEF=47°,∠∠FAE∠AEF。
初一上册数学角试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项不是角的分类?A. 锐角B. 直角C. 钝角D. 线段答案:D2. 一个角的度数是60°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:A3. 一个角的度数是180°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:D4. 一个角的度数是90°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:B5. 一个角的度数是360°,这个角是:A. 锐角B. 直角C. 钝角D. 周角答案:D6. 一个角的度数是120°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:C7. 一个角的度数是30°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:A8. 如果一个角的度数是45°,那么它的补角是:A. 45°B. 90°C. 135°D. 180°答案:B9. 如果一个角的度数是75°,那么它的余角是:A. 15°B. 45°C. 75°D. 90°答案:A10. 如果一个角的度数是150°,那么它的补角是:A. 30°B. 45°C. 60°D. 90°答案:A二、填空题(每题2分,共20分)1. 一个角的度数是90°,它是一个________。
答案:直角2. 一个角的度数是180°,它是一个________。
答案:平角3. 一个角的度数是360°,它是一个________。
答案:周角4. 如果一个角的度数是120°,那么它的补角是________。
答案:60°5. 如果一个角的度数是45°,那么它的余角是________。
答案:45°6. 锐角是指度数小于________的角。
初一数学角的比较试题1.下列说法错误的是( )A.角的大小与角的边画出部分的长短没有关系;B.角的大小与它们的度数大小是一致的;C.角的和差倍分的度数等于它们的度数的和差倍分;D.若∠A+∠B>∠C,那么∠A一定大于∠C。
【答案】D【解析】根据角的比较大小方法依次分析各项即可判断.A、B、C均正确;D.若∠A+∠B>∠C,无法判断∠A与∠C的大小关系,故错误,本选项符合题意.【考点】本题考查的是角的比较大小点评:解答本题的关键是熟记角的大小与角的边画出部分的长短没有关系,只与角的两边张开的程度有关.2.用一副三角板不能画出( )A.75°角B.135°角C.160°角D.105°角【答案】C【解析】先判断出一副三角板上的度数,再把这些度数相加减即可判断.A.45°+30°=75°,B.45°+90°=135°,D.45°+60°=105°,均可以画出,不符合题意;C.160°角无法画出,故本选项正确.【考点】本题考查的是直角三角板点评:解答本题的关键是熟练掌握一副三角板上的度数分别为30°、45°、60°、90°.3.如图,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是( )A.∠AOD>∠BOC B.∠AOD<∠BOC;C.∠AOD=∠BOC D.无法确定【答案】C【解析】由∠AOC=∠BOD,再同时加上公共角∠COD,即可判断.∵∠AOC=∠BOD,∴∠AOC+∠COD=∠BOD+∠COD,即∠AOD=∠BOC,故选C.【考点】本题考查的是角的大小比较点评:解答此类角的大小比较的问题时,要注意题目中的公共角等隐含条件.4.如图,∠AOB______∠AOC,∠AOB_______∠BOC(填>,=,<);用量角器度量∠BOC=____°,∠AOC=______°,∠AOC______∠BOC.【答案】,,25°,30°,【解析】根据图形的特征即可比较∠AOB与∠AOC,∠AOB与∠BOC的大小;先用量角器度量出∠BOC与∠AOC的度数,即可比较大小.由图可知∠AOB∠AOC,∠AOB∠BOC;用量角器度量∠BOC=25°,∠AOC=30°,∠AOC∠BOC.【考点】本题考查的是角的大小比较点评:解答本题的关键是熟练掌握根据图形的特征比较角的大小的方法,同时熟记量角器度量角的方法.5.如图,∠AOC=______+______=______-______;∠BOC="______-______=" _____-________.【答案】∠AOB,∠BOC,∠AOD,∠COD;∠BOD,∠COD,∠AOC,∠AOB【解析】根据图形的特征即可得到结果.∠AOC=∠AOB+∠BOC=∠AOD-∠COD;∠BOC=∠BOD-∠COD=∠AOC-∠AOB.【考点】本题考查的是角的大小比较点评:解答本题的关键是熟练掌握根据图形的特征比较角的大小的方法.6. OC是从∠AOB的顶点O引出的一条射线,若∠AOB=90°,∠AOB=2∠BOC,求∠AOC的度数.【答案】45°或135°【解析】题目中没有明确射线OC的位置,故要分情况讨论.∵∠AOB=90°,∠AOB=2∠BOC,∴∠BOC=45°,当射线OC在∠AOB的内部时,∠AOC=∠AOB-∠BOC=45°,当射线OC在∠AOB的外部时,∠AOC=∠AOB+∠BOC=135°.【考点】本题考查的是角的大小比较点评:解答此类没有明确射线位置的问题,要分射线在角的内部与射线在角的外部讨论.7.如图,BD平分∠ABC,BE分∠ABC分2:5两部分,∠DBE=21°,求∠ABC的度数.【答案】98°【解析】根据BE分∠ABC分2:5两部分,可设∠ABE=2x°,则∠CBE=5x°,再结合BD平分∠ABC,即可列方程求解.设∠ABE=2x°,得2x+21=5x-21,解得x=14,所以∠ABC=14°×7=98°。
人教版七年级数学《角度换算》计算题专项练习(含答案)人教版七年级数学《角度换算》计算题专项练1.计算:13°58′+28°37′×2.解答】13°58′+28°37′×2=13°58′+57°14′=71°12′.2.计算(结果用度、分、秒表示):22°18′20″×5﹣28°52′46″.解答】22°18'20''×5﹣28°52'46''=110°90'100''﹣28°52'46''=82°38'54''.3.计算:1)90°﹣36°12'15″2)32°17'53“+42°42'7″3)25°12'35“×5;4)53°÷6.解答】(1)90°﹣36°12'15″=53°′45″;2)32°17'53“+42°42'7″=74°59′60″=75°;3)25°12'35“×5=125°60′175″=126°2′55″;4)53°÷6=8°50′.5.计算:1)27°26′+53°48′2)90°﹣79°18′6″.解答】(1)27°26′+53°48′=81°14′;2)90°﹣79°18′6″=10°41′54″.6.计算1)25°34′48″﹣15°26′37″2)105°18′48″+35.285°.解答】(1)25°34′48″﹣15°26′37″=10°8′11″;2)105°18′48″+35.285°=140°28′48″.7.计算:1)40°26′+30°30′30″÷6;2)13°53′×3﹣32°5′31″.解答】(1)40°26′+30°30′30″÷6=45°31′;2)13°53′×3﹣32°5′31″=41°32′59″.8.计算:180°﹣48°39′40″.解答】180°﹣48°39′40″=131°20′20″.9.计算:26°21′30″+42°38′30″.解答】26°21′30″+42°38′30″=69°60′=70°.10.(1)180°﹣(34°55′+21°33′);2)(180°﹣91°31′24″)÷2.解答】(1)180°﹣(34°55′+21°33′)=123°12′;2)(180°﹣91°31′24″)÷2=44°14′18″.11.计算:72°35′÷2+18°33′×4.解答】72°35′÷2+18°33′×4=36°17′30″+74°12′=110°29′30″.12.计算:48°39′+67°41′.解答】48°39′+67°41′=116°20′.13.计算:18°20′32″+30°15′22″.解答】18°20′32″+30°15′22″=48°35′54″.14.计算:180°﹣22°18′×5.解答】180°﹣22°18′×5=67°30′.15.计算:56°31′+29°43′×6.解答】56°31′+29°43′×6=245°19′.16.计算:49°28′52″÷4.解答】49°28′52″÷4=12°22′13″.4.计算:(1) 27°26′+53°48′。
人教版数学初一上《角》测试题(含答案及解析)时间:60分钟总分:100题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.一副三角板按如图所示的方法摆放,且∠1的度数是∠2的3倍,则∠2的度数为()A. 20∘B. 22.5∘C. 25∘D. 67.5∘2.如图所示,能用∠AOB,∠O,∠1三种要领表示联合个角的图形是()A. B.C. D.3.下列说法正确的是()A. 平角是一条直线B. 角的边越长,角越大C. 大于直角的角叫做钝角D. 两个锐角的和不一定是钝角4.下列说法中正确的个数有()①议决一点有且只有一条直线;②相连两点的线段叫做两点之间的隔断;③射线比直线短;④ABC三点在联合直线上且AB=BC,则B是线段AC的中点;⑤在联合平面内,两条直线的位置干系有两种:平行与相交;⑥在8:30时,时钟上时针和分针的夹角是75∘.A. 1个B. 2个C. 3个D. 4个5.下图中能用一个字母表示的角()A. 三个B. 四个C. 五个D. 没有6.甲、乙两人都从A地出发,分别沿北偏东30∘、60∘的偏向抵达C地,且BC⊥AB,则B地在C地的()A. 北偏东30∘的偏向上B. 北偏西30∘的偏向上C. 南偏东30∘的偏向上D. 南偏西30∘的偏向上第 1 页7.钟表盘上指示的时间是10时40分,此刻时针与分针之间的夹角为()A. 60∘B. 70∘C. 80∘D. 85∘8.下列四个图形中,能同时用∠1,∠ABC,∠B三种要领表示联合个角的图形是()A. B.C. D.9.在8点30分时,时针上的时针与分针之间的夹角为()A. 85度B. 75度C. 70度D. 60度10.在时刻9:30时,时钟上的时针与分针间的夹角是()A. 75∘B. 90∘C. 105∘D. 120∘二、填空题(本大题共10小题,共30.0分)11.如图,∠1=∠2,则∠1+∠3=______度.12.如图,锐角的个数共有______个.13.如图,A岛在B岛的北偏东30∘偏向,C岛在B岛的北偏东80∘偏向,A岛在C岛北偏西40∘偏向,从A岛看B,C两岛的视角∠BAC是______ 度.14.如图,∠AOB=90∘,以O为极点的锐角共有______个.15.如图所示,能用一个字母表示的角有______个,以A为极点的角有______个,图中所有角有______个.16.如图,用字母A、B、C表示∠α、∠β.则∠α=______,∠β=______.17.把一个周角7平分,每一份是______ 度______ 分(准确到1分).18.如图,把一根小棒OC一端钉在点O,旋转小木棒,使它落在不同的位置上形成不同的角,此中∠AOC为______,∠AOD为______,∠AOE为______,木棒转到OB时形成的角为______.(回答钝角、锐角、直角、平角)19.当时针指向2:30时,时针与分针的夹角是______ 度.20.已知一个锐角为(5x−35)∘,则x的取值范畴是______.三、谋略题(本大题共4小题,共24.0分)21.钟面上的角的标题.(1)3点45分,时针与分针的夹角是几多?(2)在9点与10点之间,什么时候时针与分针成100∘的角?22.如图所示,直线AB上有一点O,恣意画射线OC,已知OD,OE分别是∠AOC,∠BOC的中分线,求∠DOE的度数.23.如图所示,OM是∠AOC的中分线,ON是∠BOC的中分线,(1)要是∠AOC=28∘,∠MON=35∘,求出∠AOB的度数;(2)要是∠MON=n∘,求出∠AOB的度数;(3)要是∠MON的巨细改变,∠AOB的巨细是否随之改变?它们之间有怎样的巨细干系?请写出来.24.如图,直线AB、CD相交于点O,∠EOD=∠AOC,OF中分∠AOE,若∠AOC=28∘,求∠EOF的度数.第 3 页四、解答题(本大题共2小题,共16.0分)25. 请将图中的角用不同要领表示出来,并填写下表:∠ABE∠1∠2∠326. 图中,以B 为极点的角有几个?把它们表示出来.以D 为极点的角有几个?把它们表示出来.答案和剖析【答案】 1. B 2. D 3. D 4. C5. A6. C7. C8. B 9. B 10. C11. 180 12. 5 13. 70 14. 515. 0;4;1516. ∠CAB 或∠BAC 表示∠α;∠CBA 或∠ABC 17. 51;2618. 锐角;直角;钝角;平角 19. 10520. 7<x <2521. 解:(1)如图,∵由3点到3点45分,分针转了270∘,时针转了270∘×112,∴时针与分针的夹角是:180∘−270∘×112=157.5∘;(2)设分针转的度数为x ,则时针转的度数为x 12, 得①90∘+x −x12=100∘, 解得,x =12011∘,12011∘÷6∘=2011(分);②90∘+x12−(x −180∘)=100∘,第 5 页解得,x =204011∘,204011∘÷6∘=34011(分);∴9点过2011或34011分钟时,时针与分针成100∘的角.22. 解:∵OD ,OE 分别是∠AOC ,∠BOC 的中分线,∴∠AOD =∠COD =12∠AOC ,∠BOE =∠COE =12∠BOC ,∵∠AOC +∠BOC =180∘,即2∠COD +2∠COE =180∘,∴∠DOE =∠DOC +∠COE =90∘.23. 解:(1)∵OM 是∠AOC 的中分线,∠AOC =28∘, ∴∠COM =12∠AOC =14∘,∵∠MON =35∘,∴∠CON =∠MON −∠COM =35∘−14∘=21∘, ∵ON 是∠BOC 的中分线,∴∠BOC =2∠CON =2×21∘=42∘,∴∠AOB =∠AOC +∠BOC =28∘+42∘=70∘;(2)∵OM 是∠AOC 的中分线,ON 是∠BOC 的中分线, ∴∠COM =12∠AOC ,∠CON =12∠BOC ,∴∠MON =∠COM +∠CON =12∠AOC +12∠BOC =12(∠AOC +∠BOC)=12∠AOB , ∵∠MON =n ∘,∴∠AOB =2∠MON =2n ∘;(3)根据(2)的推导,∠AOB 随∠MON 巨细的改变而改变,∠AOB =2∠MON . 24. 解:∵∠AOC =28∘, ∴∠BOD =∠AOC =28∘,∴∠AOE =180∘−56∘=124∘, 又∵OF 中分∠AOE , ∴∠EOF =62∘. 故答案为62∘.25. 解:由图可知,∠ABE =∠α,∠1=∠ABC ,∠2=∠ACB ,∠3=∠ACF . 故答案为∠α,∠ABC ,∠ACB ,∠ACF .26. 解:以B 为极点的角有3个,分别是:∠ABD 、∠ABC 、∠DBC ,以D 为极点的角有6个,分别是∠ADE 、∠EDC 、∠ADB 、∠BDC.∠ADC ,∠BDE 【剖析】1. 【剖析】本题主要考察了余角、补角和角的概念,能根据图形求出∠1+∠2=90∘是解此题的要害.求出∠1+∠2=90∘,根据∠1的度数是∠2的3倍得出4∠2=90∘,即可求出答案. 【解答】解:根据图形得出:∠1+∠2=180∘−90∘=90∘, ∵∠1的度数是∠2的3倍, ∴∠2+3∠2=90∘, 即4∠2=90∘,∴∠2=22.5∘.故选B.2. 解:A、以O为极点的角不止一个,不能用∠O表示,故A选项错误;B、以O为极点的角不止一个,不能用∠O表示,故B选项错误;C、以O为极点的角不止一个,不能用∠O表示,故C选项错误;D、能用∠1,∠AOB,∠O三种要领表示联合个角,故D选项正确.故选:D.根据角的四种表示要领和具体要求回答即可.本题考察了角的表示要领的应用,掌握角的表示要领是解题的要害.3. 解:A、平角是两条射线组成的一条直线,故此选项错误;B、角的边越长,与角的巨细无关,故此选项错误;C、大于直角且小于180∘的角叫做钝角,故此选项错误;D、两个锐角的和不一定是钝角,正确.故选:D.直接利用角的定义以及钝角的定义分别剖析得出答案.此题主要考察了角的定义以及钝角的定义,正确把握定义是解题要害.4. 解:①议决两点有且只有一条直线,故本小题错误;②应为相连两点的线段的长度叫做两点的隔断,故本小题错误;③射线与直线不能比较长短,故本小题错误;④因为A、B、C三点在联合直线上,且AB=BC,所以点B是线段AC的中点,故本小题正确;⑤在联合平面内,两条直线的位置干系有两种:平行,相交,故本小题正确;⑥在8:30时,时钟上时针和分针的夹角是75∘,正确.综上所述,正确的有④⑤⑥共3个.故选C.根据直线的性质,两点间隔断的概念,射线与直线的意义,线段中点的概念,联合平面内两条直线的位置干系,钟面角的谋略,对各小题逐一剖析鉴别后,利用消除法求解.本题考察了直线的性质,两点间隔断的定义,射线与直线的意义,线段中点的定义,两条直线的位置干系,钟面角,是基础题,熟记性质与概念是解题的要害.5. 解:∵只有在极点处只有一个角的环境,才可用极点处的一个字母来记这个角,∴图中能用一个字母表示的角有三个:∠A、∠B、∠C.故选:A.只有在极点处只有一个角的环境,才可用极点处的一个字母来记这个角,不然分不清这个字母结局表示哪个角,据此鉴别出图中能用一个字母表示的角有几个即可.此题主要考察了角的表示要领,要熟练掌握,解答此题的要害是要明确:角可以用一个大写字母表示,也可以用三个大写字母表示.此中极点字母要写在中间,唯有在极点处只有一个角的环境,才可用极点处的一个字母来记这个角,不然分不清这个字母结局表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.6. 解:∵∠1=30∘,BC⊥AB,∴∠2=30∘,∴∠3=∠2=30∘,∴B地在C地的南偏东30∘的偏向上,故选C.此题考察了学生对偏向角的理解及直角三角形的鉴定等知识点的掌握环境.7. 解:10×30+40×0.5−6×40=320−240=80(∘),故选:C.可画出草图,利用钟表表盘的特性解答.本题考察钟表时针与分针的夹角.在钟表标题中,常利用时针与分针转动的度数干系:)∘,而且利用开始时间时针和分针的位置干系建立分针每钟转动6∘,时针每分钟转动(12角的图形.8. 解:A、由于B为极点的角有四个,不可用∠B表示,故本选项错误;B、由于B为极点的锐角有一个,可用∠ABC,∠B,∠1三种要领表示联合个角,故本选项正确;C、由于B为极点的锐角有三个,不可用∠B表示,故本选项错误;D、由于B为极点的有二个,不可用∠B表示,故本选项错误.故选:B.根据角的表示要领对四个选项逐个举行剖析即可.本题考察了角的概念,要熟悉角的三种表示要领所适用的条件.9. 解:8点30分,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30∘,∴8点30分分针与时针的夹角是2.5×30∘=75∘.故选:B.根据钟表上12个数字,每相邻两个数字之间的夹角为30∘谋略得到答案.本题考察了钟面角,用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30∘.−6×30∘=105∘,10. 解:9:30时,时钟上的时针与分针间的夹角9×30∘+30∘×12故选:C.根据时针旋转的速度乘以时针旋转的时间,可得时针的旋转角,根据分针旋转的速度成分针旋转的时间,即是分针旋转的角度;再根据时针的角减去分针旋转的角即是时针与分针的夹角,可得答案.本题考察了钟面角,利用了时针的旋转角减去分针的旋转的角即是时针与分针的夹角.11. 解:∵∠2与∠3是邻补角,∴∠2+∠3=180∘,又∵∠1=∠2,∴∠1+∠3=180∘.充分运用邻补角的数量干系及等量代换解题.本题利用了两个补角的和为180∘和等量代换.12. 解:以OA为一边的角∠AOB=20∘,∠AOC=20∘+30∘=50∘,∠AOD=20∘+30∘+ 50∘=100∘(钝角舍去),以OB为一边的角∠BOC=30∘,∠BOD=50∘+30∘=80∘,以OC为一边的角∠COD=50∘.共有∠AOB,∠AOC,∠BOC,∠BOD,∠COD.故答案为5个.分别以OA、OB、OC为一边,数出所有角,相加即可.此题考察了角的数法,要以每条边为始边,数出所有角,要注意,不能漏数,也不能多数.13. 解:∵A岛在B岛的北偏东30∘偏向,即∠DBA=30∘,∵C岛在B岛的北偏东80∘偏向,即∠DBC=80∘;第 7 页∵A岛在C岛北偏西40,即∠ACE=40∘,∴∠ACB=180∘−∠DBC−∠ACE=180∘−80∘−40∘=60∘;在△ABC中,∠ABC=∠DBC−∠DBA=80∘−30∘=50∘,∠ACB=60∘,∴∠BAC=180∘−∠ABC−∠ACB=180∘−50∘−60∘=70∘.利用方位角的概念连合图形解答.解答此类题需要从运动的角度,正确画出方位角,再连合三角形的内角和定理与平行线的性质解答.14. 解:以OA为一边的角,∠AOD,∠AOC;以OD为一边的角,∠DOC,∠DOB;以OC为一边的角,∠COB.共5个角.故答案是:5.明确角的概念,依次数出以OA、OD、OC为一边的角的个数即可.此题考察了角的概念,首先要明白图中所示的角,再依次数出图中的角,要注意不要漏数,也不要多数.15. 解:能用一个字母表示的角有0个,以A为极点的角有4个,图中所有角有15个,故答案为:0,4,15.根据角的概念逐个得出即可.本题考察了角的概念,能数出相符的所有角是解此题的要害.16. 解:由图可知,∠α=∠CAB或∠BAC;∠β=∠CBA或∠ABC.故答案为∠CAB或∠BAC,∠CBA或∠ABC.根据角的定义找到图中角,用三个字母表示角时,将表示极点的字母置于三个字母中间.此题考察了角的多种表示要领,当极点处只有一个角时,此角可用多种要领表示,如有多个角,则不能只用一个字母表示,以免混淆.17. 解:由题意,得360∘÷7=51∘26′,故答案为:51,26.根据度分秒的除法,可得答案.本题考察了度分秒的换算,利用度分秒的除法是解题要害.18. 解:根据角的定义,∠AOC为锐角,∠AOD为直角,∠AOE为钝角,木棒转到OB时形成的角为平角.利用角的概念求解.互相垂直时,夹角是直角,即90∘;大于90∘小于180∘是钝角,小于90∘大于0∘是锐角,即是180度叫平角.由一点放射出两条射线,要是两条射线的夹角为90度叫直角,大于90度小于180度的叫钝角,在0度到90度之间的叫锐角,即是180度叫平角.19. 解:2:30时,时针与分针相距3.5份,2:30时,时针与分针的夹角是30∘×3.5=105∘,故答案为:105.根据钟面均匀分成12份,可得每份是30∘,根据时针与分针相距的份数乘以每份的度数,可得答案.本题考察了钟面角,利用了时针与分针相距的份数乘以每份的度数.20. 解:由题意可知:0<5x−35<90解得:7<x<25故答案为:7<x<25根据锐角的概念即可求出x的范畴.本题考察角的概念,解题的要害是根据锐角的定义列出不等式,本题属于基础题型.第 9 页21. (1)由图知,由3点到3点45分,分针转了270∘,时针转了270∘×112,180∘减去时针转的度数,即为夹角;(2)设分针转的度数为x ,则时针转的度数为x12,可根据干系式,①90∘+x −x12=100∘,②90∘+x12−(x −180∘)=100∘,求得x 值,根据分针走1分,其转动6∘,可得到时间; 本题考察了钟表分针所转过的角度谋略.在钟表标题中,常利用时针与分针转动的度数干系:分针每转动1∘时针转动(112)∘,而且利用开始时间时针和分针的位置干系建立角的图形.22. 由OD ,OE 分别为角中分线,利用角中分线定义得到两对角相等,而这四个角之和为一个平角,等量代换即可求出∠DOE 的度数.此题考察了角中分线定义,熟练掌握角中分线定义是解本题的要害.23. (1)根据角中分线的定义求出∠COM 的度数,再求出∠CON 的度数,然后根据角中分线的定义求出∠BOC 的度数,与∠AOC 相加即可得解; (2)根据角中分线的定义,用∠NOC 表示出∠BOC ,用∠COM 表示出∠AOC ,然后即可得解; (3)根据(2)的推导得解.本题考察了角中分线的定义以及角的谋略,熟记角中分线的定义是解题的要害.24. 先根据∠EOD =∠AOC =28∘,连合平角定义,求出∠EOA 的度数,再由角中分线的性质求出∠EOF 的度数即可.本题主要考察角中分线的概念,需要熟练掌握.25. 图中角的表示有多种,一个大写英文字母;三个大写英文字母;一个阿拉伯数字;一个希腊字母,择其适合者填表. 此题考察了角的表示要领,根据图形特点将每个角用合适的要领表示表现了一个别的数学基本功,必须重视这方面的训练.26. 先找到图中角的极点,再找到角的双方,从而找到角,以各极点为切入点,不要漏数也不要多数.此题考察了角的定义,也考察了角的表示,除用三个大写字母表示外,也可用数字或希腊字母来表示,但需在靠近极点处加上弧线.。
初一数学用尺规作角试题1.(2010•佛山)尺规的作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具【答案】C【解析】根据尺规作图的定义作答.解:根据尺规作图的定义可知:尺规作图是指用没有刻度的直尺和圆规作图.故选C.点评:尺规作图是指用没有刻度的直尺和圆规作图.2.(2007•开封)下列关于作图的语句中正确的是()A.画直线AB=10厘米B.画射线OB=10厘米C.已知A,B,C三点,过这三点画一条直线D.过直线AB外一点画一条直线和直线AB平行【答案】D【解析】根据基本作图的方法,逐项分析,从而得出正确的结论.解:A、直线没有长度,错误;B、射线没有长度,错误;C、三点有可能在一条直线上,可画出一条直线,也可能不在一条直线上,此时可画出三条直线,错误;D、正确.故选D.点评:本题考查常见的易错点,需在做题过程中加以熟练掌握.3.(2005•荆门)用一把带有刻度的直角尺,(1)可以画出两条平行线;(2)可以画出一个角的平分线;(3)可以确定一个圆的圆心.以上三个判断中正确的个数是()A.0个B.1个C.2个D.3个【答案】D【解析】根据基本作图的方法,逐项分析,从而得出正确个数.解:(1)任意画出一条直线,在直线的同旁作出两条垂线段,并且这两条垂线段相等.过这两条垂线段的另一端点画直线,与已知直线平行,正确;(2)可先在这个角的两边量出相等的两条线段长,过这两条线段的端点向角的内部应垂线,过角的顶点和两垂线的交点的射线就是角的平分线,正确;(3)可让直角顶点放在圆上,先得到直径,进而找到直径的中点就是圆心,正确.故选D.点评:本题考查带有刻度的直角尺的一些常用的用法.4.下列作图语句正确的是()A.过点P作线段AB的中垂线B.在线段AB的延长线上取一点C,使AB=BCC.过直线a,直线b外一点P作直线MN使MN∥a∥bD.过点P作直线AB的垂线【答案】D【解析】根据基本作图的方法,逐项分析,从而得出结论.解:A、只有过线段中点的垂线才叫中垂线,P是任意一点,错误;B、应为在线段AB的延长线上取一点C,使BC=AB,错误;C、a和b的位置不一定是平行,错误.D、正确.故选D.点评:本题考查常见的易错点,需在做题过程中加以熟练掌握.5.下列关于几何画图的语句正确的是()A.延长射线AB到点C,使BC=2ABB.点P在线段AB上,点Q在直线AB的反向延长线上C.将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角D.已知线段a,b满足2a>b>0,在同一直线上作线段AB=2a,BC=b,那么线段AC=2a﹣b【答案】C【解析】根据射线、直线、以及角的定义可判断出正确答案.解:A、延长射线AB到点C,使BC=2AB,说法错误,不能延长射线;B、点P在线段AB上,点Q在直线AB的反向延长线上,说法错误,直线本身是向两方无限延长的,不能说延长直线;C、将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角,说法正确;D、已知线段a,b满足2a>b>0,在同一直线上作线段AB=2a,BC=b,那么线段AC=2a﹣b,说法错误,AC也可能为2a+b;故选:C.点评:此题主要考查了尺规作图,关键是掌握射线是向一方无限延长的,直线是向两方无限延伸的.6.下列作图语句错误的是()A.过直线外的一点画已知直线的平行线B.过直线上的一点画已知直线的垂线C.过∠AOB内的一点画∠AOB的平分线D.过直线外一点画此直线的两条斜线,一条垂线【答案】C【解析】根据平行线的作法、垂线的作法、角平分线的作法进行选择即可.解:A、过直线外的一点画已知直线的平行线,此说法正确,故本选项错误;B、过直线上的一点画已知直线的垂线,此说法正确,故本选项错误;C、过∠AOB内的一点画∠AOB的平分线,此说法不正确,故本选项正确;D、过直线外一点画此直线的两条斜线,一条垂线,此说法正确,故本选项错误;故选C.点评:本题考查了尺规作图的定义,是基础知识要熟练掌握.7.下列作图语言叙述规范的是()A.过点P作线段AB的中垂线B.在线段AB的延长线上取一点C,使AB=ACC.过点P作线段AB的垂线D.过直线a,b外一点P作直线MN,使MN∥a∥b【答案】C【解析】根据常见的几何作图语言对各选项分析判断后利用排除法求解.解:A、过点P作线段AB的中垂线,叙述错误,故此选项错误;B、在线段AB的延长线上取一点C,使AB=AC,叙述错误,应为AB=BC,故此选项错误;C、过点P作线段AB的垂线,叙述正确;D、过直线a外一点P作直线MN,使MN∥a,不能同时作平行于两条直线的直线;故选:C.点评:本题考查了几何语言的规范性,是基础题,在平时的学习中要注意总结积累.8.尺规作图是指()A.用量角器和刻度尺作图B.用圆规和有刻度的直尺作图C.用圆规和无刻度的直尺作图D.用量角器和无刻度的直尺作图【答案】C【解析】根据尺规作图的定义:尺是不带刻度的直尺,规是圆规进而得出答案.解:尺规作图所用的作图工具是指不带刻度的直尺和圆规.故选:C.点评:本题考查了尺规作图的主要工具,熟练记住尺规作图实用工具中直尺是无刻度直尺是解题关键.9.下列语句()正确.A.射线比直线短一半B.延长AB到CC.两点间的线叫做线段D.经过三点A,B,C不一定能画出直线来【答案】D【解析】根据直线、射线、线段有关知识,对每个选项注意判断得出正确选项.解:A、直线和射线都没有长短,所以射线比直线短一半错误,故本选项错误;B、延长AB到C,正确的说法是延长线段AB到C,故本选项错误;C、两点间的线叫做线段,不符合线段的定义,故本选项错误;D、若三点A,B,C在一条直线上,则经过三点A,B,C能画出直线来;若三点A,B,C不在一条直线上,则经过三点A,B,C不能画出直线来.所以说经过三点A,B,C不一定能画出直线来,故本选项正确.故选:D.点评:此题考查的知识点是作图﹣﹣尺规作图的定义,熟练掌握概念是解题的关键.10.下列作图语言规范的是()A.过点P作线段AB的中垂线B.过点P作∠AOB的平分线C.在直线AB的延长线上取一点C,使AB=ACD.过点P作直线AB的垂线【答案】D【解析】根据常见的几何作图语言对各选项分析判断后利用排除法求解.解:A、过点P作线段AB的中垂线,不规范,点P不一定在线段AB的中垂线上,故本选项错误;B、过点P作∠AOB的平分线,不规范,点P不一定在∠AOB的平分线上,故本选项错误;C、在直线AB的延长线上取一点C,使AB=AC,不规范,直线是向两方无限延伸的,不需要延长,故本选项错误;D、过点P作直线AB的垂线,规范,不论点P在直线上还是直线外都可以,故本选项正确.故选D.点评:本题考查了几何语言的规范性,是基础题,在平时的学习中要注意总结积累.。
初一数学角的计算能力训练题1、(1)如图1,∠AOB和∠COD都是直角,①若∠BOC=60°,则∠BOD=°,∠AOC=°;②改变∠BOC的大小,则∠BOD与∠AOC相等吗?为什么?(2)如图2,∠AOB=∠COD=80°,若∠AOD=∠BOC+40°,求∠AOC的度数;(3)如图3,将三个相同的等边三角形(三个内角都是60°)的一个顶点重合放置,若∠BAE=10°, ∠HAF=30°,则∠1=°.2、(1)如图1,若CO⊥AB,垂足为O,OE、OF分别平分∠AOC与∠BOC.求∠EOF的度数;(2)如图2,若∠AOC=∠BOD=80°,OE、OF分别平分∠AOD与∠BOC. 求∠EOF的度数;(3)若∠AOC=∠BOD=α,将∠BOD绕点O旋转,使得射线OC与射线OD的夹角为β,OE、OF分别平分∠AOD与∠BOC。
若α+β≤180°,α>β,则∠EOC=。
(用含α与β的代数式表示)3、已知∠AOB=100°,∠COD=40°,OE平分∠AOC,OF平分∠BOD(题中的角均为大于0°且小于等于180°的角).(1)如图1,当OB、OC重合时,求∠EOF的度数;(2)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<90)时,∠AOE﹣∠BOF的值是否为定值?若是定值,求出∠AOE﹣∠BOF的值;若不是,请说明理由.(3)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<180)时,满足∠AOD+∠EOF=6∠COD,则n=__________.4、如图1,将一副三角板的两个锐角顶点放到一块,∠AOB=45°,∠COD=30°,OM,ON分别是∠AOC,∠BOD的角平分线.(1)当∠COD绕着点O逆时针旋转至射线OB与OC重合时(如图2),则∠MON的大小为_____;(2)如图3,在(1)的条件下,继续绕着点O逆时针旋转∠COD,当∠BOC=10°时,求∠MON 的大小,写出解答过程;(3)在∠COD绕点O逆时针旋转过程中,∠MON=__________°.5、若∠C=,∠EAC+∠FBC=(1)如图①,AM是∠EAC的平分线,BN是∠FBC的平分线,若AM∥BN,则与有何关系?并说明理由。
ABC 4.3 角的度量一、选择:1.下列关于角的说法正确的个数是( )①角是由两条射线组成的图形;②角的边越长,角越大; ③在角一边延长线上取一点D;④角可以看作由一条射线绕着它的端点旋转而形成的图形. A.1个 B.2个 C.3个 D.4个2.下列4个图形中,能用∠1,∠AOB,∠O 三种方法表示同一角的图形是( )AA1BO BA1B OCA B OCDA 1BOD3.图中,小于平角的角有( )A.5个B.6个C.7个D.8个 二、填空:4.将一个周角分成360份,其中每一份是______°的角, 直角等于____°,平角等于______°.5.30.6°=_____°_____′=_______′;30°6′=_______′______°. 三、解答题:6.计算:(1)49°38′+66°22′; (2)180°-79°19′; (2)22°16′×5; (4)182°36′÷4.7.根据下列语句画图: (1)画∠AOB=100°;(2)在∠AOB的内部画射线OC,使∠BOC=50°;(3)在∠AOB的外部画射线OD,使∠DOA=40°;(4)在射线OD上取E点,在射线OA上取F,使∠OEF=90°.8.任意画一个三角形,估计其中三个角的度数,再用量角器检验你的估计是否准确.9.分别确定四个城市相应钟表上时针与分钟所成的角的度数.10.九点20分时,时钟上时钟与分钟的夹角a等于多少度?11.马路上铺的地砖有很多种图案,如图所示的图案是某街面方砖铺设的示意图,请你用量角器量一下其中出现的所有的角度?12.如图,在∠AOB的内部引一条射线OC,可得几个小于平角的角? 引两条射线OC、OD呢?引三条射线OC、OD、OE呢?若引十条射线一共会有多少个角?ABO13.请用直线、线段、角等图形设计成表示客观事物的图画,如图, 并为你的图画命名.一盏吊灯一帆风顺答案:1.A2.B3.D4.1,90,1805.30,36,1836;1806,30.16.(1)116°;(2)100°41′;(3)111°20′;(4)45°39′.9.30°;0°;120°;90°10.160°12. 引1条射线有2+1=3个角;引2条射线有3+2+1=6个角;引3条射线有4+3+2+1=10个角;引10条射线有11+10+9+……+3+2+1=66个角.。
初一数学角与角的度量试题1.下列各图中表示角的是()【答案】D【解析】本题主要考查的是角的定义根据角的定义:有公共端点的两条射线组成的图形叫做角,依次分析各项即可。
根据角的定义:有公共端点的两条射线组成的图形叫做角,可知只有D选项中的图表示角,故选D.思路拓展:有公共端点的两条射线组成的图形叫做角,注意不要忽略“公共端点”.2.钟面上时针1小时转______度,分针每分钟转_______度。
【答案】30,6【解析】本题考查的是钟表表盘与角度相关的特征钟表表盘被分成12大格,每一大格所对角的度数为30°,每一大格又被分为5小格,故表盘共被分成60小格,每一小格所对角的度数为6°,根据时针1小时转一大格,分针每分钟转一小格即可得到结果。
钟面上时针1小时转30度,分针每分钟转6度。
思路拓展:钟表表盘被分成12大格,每一大格又被分为5小格,故表盘共被分成60小格,每一小格所对角的度数为6°.分针转动一圈,时间为60分钟,则时针转1大格,即时针转动30°,逆过来同理.3.14400"等于多少分?等于多少度?【答案】240¹,4º【解析】本题考查的是度、分、秒的转化运算进行度、分、秒的转化运算,注意以60为进制.先将秒的部分除以60化为分,再将分的部分除以60化为度.根据1°=60′,1′=60″得,14400"÷60=240′,240′÷60=4°,所以14400"等于240¹,等于4º.思路拓展:由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由小单位化大单位要除以60,由大单位化小单位要乘以60.4.下列语句正确的是()A.两条直线相交组成的图形叫角;B.一条直线可以看成一个平角;C.一个平角的两边可以看成一条直线;D.周角就是一条射线【答案】C【解析】此题考查了角的定义根据角的组成、平角、周角的定义解答,只要举出一个反例即可证明命题错误.A、有公共端点的两条射线组成的图形叫做角,故本选项错误;B、直线和平角是两个概念,平角是由处在同一直线上方向相反的两条射线构成的角,不能将直线和射线混为一谈,故本选项错误;C、平角等于180 º,故一个平角的两边可以看成一条直线,本选项正确;D、有公共端点的两条射线组成的图形叫做角,周角等于360 º,周角的两边重合,故本选项错误;思路拓展:解答此题,必须明确角的边、顶点、平角与直线的区别与联系,侧重于对基本概念的理解.5.下列四个图形中,能同时用∠1,∠ABC,∠B三种方法表示同一个角的图形是()【答案】B【解析】本题考查的是角的表示方法根据角的表示方法进行逐一分析,即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.A、因为顶点B处有四个角,所以这四个角均不能用∠B表示,故本选项错误;B、因为顶点B处只有一个角,所以这个角能用∠1,∠ABC,∠B表示,故本选项正确;C、因为顶点B处有三个角,所以这三个角均不能用∠B表示,故本选项错误;D、因为顶点B处有三个角,所以这三个角均不能用∠B表示,故本选项错误.故选B.思路拓展:角的表示方法一般有以下几种:①一个大写字母,②一个希腊字母,③一个阿拉伯数字,④三个大写字母且表示顶点的字母写在中间.要注意,当顶点处有多个角时,不能用一个大写字母表示,以免混淆.6.下列关于角的描述正确的是:()A.角的边是两条线段;B.角是由两条射线组成的图形C.角可以看成一条射线绕着它的端点旋转而成图形;D.角的大小与边的长短有关【答案】C【解析】本题主要考查的是角的定义根据角的定义:有公共端点的两条射线组成的图形叫做角,角的大小与边的长短无关,只与两边张开的程度有关,依次分析各项即可。
初一数学角的度量试题1.把10.26°用度、分、秒表示为()A.10°15′36″B.10°20′6″C.10°14′6″D.10°26″【答案】 A【解析】解:因为0.26°×60=15.6′,0.6′×60=36″,∴10.26°用度、分、秒表示为10°15′36″.2.把2.36°用度、分、秒表示正确的是()A.2°3′6″B.2°30′6″C.2°21′6″D.2°21′36″【答案】 D【解析】解:根据角的换算可得2.36°=2°+0.36×60′=2°+21.6′=24°+21′+0.6×60″=2°21′36″.3.计算180°-48°39′40″-67°41′35″的值是()A.63°38′45″B.58°39′40″C.64°39′40″D.63°78′65″【答案】A【解析】解:180°-48°39′40″-67°41′35″=63°38′45′′.4.若∠α=30°,则∠α的补角是()A.30°B.60°C.120°D.150°【答案】 A【解析】解:由互补的概念,可得180°-30°=150°.5.已知∠1=28°24′,∠2=28.24°,∠3=28.4°,下列说法正确的是()A.∠1=∠2B.∠1="∠3"C.∠1<∠2D.∠2>∠3【答案】B【解析】解:∠1=28°24′=28.4°.故∠1=∠3,而∠2最小.6.已知∠1与∠2互余,∠1=55°,则∠2=_______.【答案】35°【解析】解:由互余的概念知∠2=90°-∠1=90°-55°=35°.7.将一副直角三角板按图示方法放置(直角顶点重合),则∠AOB+∠DOC=________度.【答案】180°【解析】解:因为∠AOB+∠DOC=∠AOC+∠BOD-∠COD+∠DOC=∠AOC+∠BOD=90°+90°=180°.8.已知一个角的补角是128°37′,那么这个角的余角是_______.【答案】38°37′【解析】解:先求出这个角=180°-128°37′=51°23′,然后根据互余的概念求出其余角.9.比较大小:32.5°______32°5'(填“>”、“=”或“<”).【答案】>【解析】解:32.5°=32°30′,32.5°>32°5'.10.32°44′24″用度来表示为______度.【答案】32.74°【解析】解:根据1°=60′,1′=60″得,24″÷60=0.4′,44.4′÷60=0.74°,所以32°44′24″用度来表示为32.74°.。
角的单元练习角的概念填空题:1.在∠AOB的内部引出OC、OD两条射线,图中共有_________角。
2.在图1-13中,以C为顶点的角共有___________个。
3.在图1-14中,共有__________个角,以A为顶点的角分别是__________________。
选择题:4.下列说法中正确的是()(A)由两条射线组成的图形叫做角(B)有公共端点的两条射线所组成的图形叫做角(C)角是两条射线(D)角是射线旋转而成5.如图1-15中,下列表示∠A方法不正确的是()(A)∠1 (B)∠BAC(C)∠ADC(D)∠DAC6.一条射线绕它的端点旋转一圈的过程中,你可能得到所学过的角有()。
(A)1种(B)4种(C)5种(D)6种7.下列说法中正确的是()(A)一条直线是一个平角(B)角的两边越长,角的度数越大(C)周角的两边重合成一条射线(D)在∠AOB内部引一条射线,则该图中共有两个角解答题:*8.已知在∠AOE的内部从O引出3条射线,求图中共有多少个角,如果引出99条射线有多少个角?角的比较选择题:1.图1-16中,小于平角的角共有() (A )7个(B )6个 (C )5个 (D )4个2.已知OC 平分∠AOB ,下列各式:①∠AOC =21∠AOB ②∠AOC =∠COB③∠AOB =2∠AOC ,其中正确的是( )(A )只有① (B )只有①、② (C )只有②、③ (D )只有①、②和③3.已知∠AOB =30°,∠BOC =80°,∠AOC =50°,那么() (A )射线OB ∠AOC 内(B )射线OB 在∠AOC 外 (C )射线与射线OA 重合 (D )射线OB 与射线OC 重合4.OB 在∠AOC 的平分线,且∠AOB =30°,则∠BOC =___________度,∠AOC =_______度。
5.如图1-17中,若∠AOB =2∠AOC ,则OC 是∠AOB 的_____________线,若∠AOC = 25°,则∠BOC =______________度,∠AOB =________________度。
6.如图1-18中,∠ABC =_______+________,∠ADE +_______=180°,∠AEC -∠DEC =___________,∠DEC -__________=∠BEC 。
7.如图1-19,已知∠ABD =∠BCE ,BF 平分∠ABD ,CG 平分∠BCE ,则图中共有________对相等的角。
解答题:*8.如图1-20,∠AOB 的平分线为OM ,ON 为∠MOA 内的一条射线,OG 为∠AOB 外的一条射线。
求证:(1))(21AON BON MON ∠-∠=∠; (2))(21BOG AOG MOB ∠-∠=∠;角的度量(上)填空题:1.如图1-21,AOB 是一条直线,OC 是一条射线。
(1)∠AOB 是 __________角,∠AOB =_____________度。
(2)∠BOC =_____________度,它是_________角。
(3)∠AOC 是__________角,∠AOC=_________度。
2.看钟表回答下列条件的时针和分针所成的角分别是什么角:(1)上午9:00,________________角;(2)下午5:00,________________角;(3)午夜1:00,________________角;(4)早晨6:00,________________角;3.一直角=_______________平角=__________________周角=_______________度。
4.一个角等于周角的51时,这个角是________度;大于直角且小于平角的角是______角。
5.用度、分、秒表示下列各角:(1)159.34°=_______度_______分_______秒(2)73.5°=_______度_______分6.用度表示下列各角:(1)"12'1957︒=____________度;(2)"36'27115︒=___________度;7.如图1-22,AOB 是一条直线,射线OE 、OC 分别是∠AOD 、∠DOB 的平分线,则∠EOC =_______________度,它是________角。
*8.用量角器分别画锐角、钝角、直角,并用不等式表示锐角和钝角的取值范围:解答题:*9.以∠AOB 的顶点O 为端点引射线OC ,使∠AOC :∠BOC =5:4。
(1)∠AOB =18°,求∠AOC 与∠BOC 的度数。
(2)∠AOB =m °,求∠AOC 与∠BOC 的度数(用m 表示)角的度量(中)计算:1."30'12105"32'2136︒+︒2."52'4039180︒-︒3.)"46'2954"15'3027(180︒+︒-︒4.4"25'1540⨯︒5.2"28'1343÷︒6.5180÷︒7.已知:如图1-23,AOB 是一条直线,OD 是∠COB 的平分线,如果∠AOC ='2638︒,求∠BOD 的度数。
*8.甲从O 点出发沿北偏西30°方向走了50米到达A 点,乙也从O 点出发,沿南偏东35°方向走了80米到达B 点,求∠AOB 的度数。
*9.证明题:已知:如图1-24,∠ABC=∠ACB,∠1=∠2,∠3=∠4,求证:∠2=∠4.角的度量(下)选择题:1.互为余角的角()(A)只和位置有关(B)只和数量有关(C)和位置、数量都有关(D)和位置、数量都无关2.如果两个角互为补角,那么这两个角()(A)都是直角(B)一个角是锐角,一个角是钝角(C)这两个角的和的度数等于平角的度数(D)都是钝角或锐角3.如图1-25,A、O、B在一条直线上,OD平分∠BOC,OE平分∠AOC,那么下列说法中错误的是()。
(A)∠DOC与∠AOE互余(B)∠C OE与∠BOD互余(C)∠AOE与∠BOC互补(D)∠AOD与∠BOD互补填空题:4.若∠1与∠2分别是∠3的余角,则∠1与∠2________________;若∠1是∠3的余角,∠2是∠4的余角,∠3=∠4则∠1_______________∠2。
5.互为余角的两个角之差为35°,则较大角的补角是_______________度。
6.有两个角∠α、∠β,已知∠α比∠β多4°,3∠α+11∠β是平角,那么∠α=______________度。
解答题:7.一个角比它的补角的3倍少20°,求这个角的度数。
8.已知:一个角的补角与它的余角的比是5:2,求这个角的度数。
*9.两个角的比是5:4,两个角的差是20°,求这两个角。
这两个角一定是互为补角吗?一定是邻补角吗?为什么?角的画法(上)1.利用三角板画出下列各角:(1)135°(2)150°(3)75°(4)15°2.如图1-26中,已知∠α,用量角器画∠AOB,使∠AOB=∠α。
3.用三角板画∠AOB=60°,并把它二等分。
4.如图1-27,已知∠α,(1)画一个角,使它等于∠α的一半;(2)画一个角,使它等于∠α的2倍;5.一个角的补角和这个角的余角互补,求这个角的度数并画出这个角。
6.如图1-28,将你手中含30°和45°的两块三角板叠在一起,使直角的顶点重合于O 点,求∠AOB +∠DOC 的度数,并画出这个角。
角的画法(下)1.如图1-29,已知∠α,画出它的补角。
2.如图1-30,已知∠α.(1)画∠α的余角;(2)画∠α的补角,并将这个补角二等分;3.用三角板画135°角,你能想出几种画法,请将图画在下面。
4.试画出所学过的各类角,并用文字注明角的类型。
5.已知∠α="15'3255︒,∠β="45'2734︒,它们的和是一个什么角?请画图表示。
6.已知一个钝角α,画一个角β,使它等于∠α补角的余角。
答案角的概念1.在∠AOB的内部引出OC、OD两条射线,图中共有____6____角。
2.在图1-13中,以C为顶点的角共有______10___个。
3.在图1-14中,共有_____8____个角,以A为顶点的角分别是_∠DAC、∠BAC、∠DAB________。
选择题:BCCC解答题:*8.6,5050角的比较选择题:CDA4.OB在∠AOC的平分线,且∠AOB=30°,则∠BOC=____30_____度,∠AOC=____60_度。
5.如图1-17中,若∠AOB=2∠AOC,则OC是∠AOB的____平分______线,若∠AOC =25°,则∠BOC=______25______度,∠AOB=______50________度。
6.如图1-18中,∠ABC=_∠ABE___+__∠EBC___,∠ADE+__∠BDE__=180°,∠AEC-∠DEC=___∠AED_____,∠DEC-____∠DEB__=∠BEC。
7.如图1-19,已知∠ABD=∠BCE,BF平分∠ABD,CG平分∠BCE,则图中共有__6_____对相等的角。
解答题:略角的度量(上)填空题:1.如图1-21,AOB 是一条直线,OC 是一条射线。
(1)∠AOB 是 ____平______角,∠AOB =_____180_____度。
(2)∠BOC =______50_____度,它是____锐_____角。
(3)∠AOC 是____钝______角,∠AOC=____130__度。
2.看钟表回答下列条件的时针和分针所成的角分别是什么角:(1)上午9:00,_____直___________角;(2)下午5:00,_____钝___________角;(3)午夜1:00,______锐__________角;(4)早晨6:00,_______平_________角;3.一直角=______12_________平角=_________14_________周角=_______90______度。
4.一个角等于周角的51时,这个角是__72____度;大于直角且小于平角的角是___钝___角。
5.用度、分、秒表示下列各角:(1)159.34°=__159__度___20__分___24__秒(2)73.5°=___73__度___30__分6.用度表示下列各角:(1)"12'1957︒=____57.32___度;(2)"36'27115︒=____115.46_度;7.如图1-22,AOB 是一条直线,射线OE 、OC 分别是∠AOD 、∠DOB 的平分线,则∠EOC =__90___________度,它是___直_____角。