第六章解线性方程组的迭代法
- 格式:doc
- 大小:638.50 KB
- 文档页数:12
第六章解线性方程组的迭代法习题六
1.证明对于任意的矩阵A,序列
2. 方程组
J法与GS法均收敛。
具有严格对角占优,故
(2)J法得迭代公式是
取
证明解此方程的Jacobi迭代法与Gauss-Seidel迭代法同时收敛或发散
解:Jacobi迭代为
,而Gauss-Seide 迭代法为
其迭代矩阵
解:Jacobi法的迭代矩阵是
即
5. 设
得GS法收敛得充要条件是
7当
若取
第
对上题求出SOR迭代法的最优松弛因子及渐近收敛速,题第
度,并求J法与GS法的渐近收敛速度.若要使
,故
J法收敛速度
72`*+b数
各a K=15
对于GS法
,取K=5
8. 填空题
(1)
7则解此方程组的Jacobi迭代法是否收敛().它的渐近收敛速度R(B)=().
(3) 设方程组Ax=b,其中
(4) 用GS法解方程组
,a为实数.当a满足(),且0<ω<2时SOR迭代法收敛.
答:
(1)
(3)J法迭代矩阵是
(4)
(5)。
线性方程组的迭代式求解方法迭代法解方程的基本原理1.概述把 Ax=b 改写成 x=Bx+f ,如果这一迭代格式收敛,对这个式子不断迭代计算就可以得到方程组的解。
道理很简单:对 x^{(k+1)}=bx^{(k)}+f 两边取极限,显然如果收敛,则最终得到的解满足 \lim_{k\rightarrow\infty } x^{(k)}=x^*=Bx^*+f ,从而必然满足原方程 Ax^*=b 。
迭代方法的本质在于这一次的输出可以当作下一次的输入,从而能够实现循环往复的求解,方法收敛时,计算次数越多越接近真实值。
2.收敛条件充要条件:迭代格式 x=Bx+f 收敛的充要条件是 \rho (B)<1充分条件: \Vert B\Vert <1即 \Vert B\Vert <1 \Rightarrow \rho(B)<1\Leftrightarrow 迭代收敛一、Jacobi迭代法怎样改写Ax=b ,从而进行迭代求解呢?一种最简单的迭代方法就是把第i行的 x_i 分离出来(假定 a_{ii} \ne 0 ):\sum_{j=1}^{n}a_{ij}x_j=b_i\Rightarrow x_i=\frac{b_i-\sum_{j=1,j\ne i}^{n}a_{ij}x_j}{a_{ii}}\quad \\这就是Jacobi(雅可比)迭代法。
迭代格式给定x^{(0)}=\left[x_1^{(0)},x_2^{(0)},\cdots,x_n^{(0)}\rig ht]^T ,则Jacobi法的迭代格式(也称分量形式)为x_i^{(k+1)}=\frac{1}{a_{ii}}\left ( {b_i-\sum_{j=1,j\ne i}^{n}a_{ij}x_j^{(k)}}\right),\quadi=1,2,\cdots,n\\矩阵形式设 A=D-L-U。
Jacobi法的矩阵形式(也称向量形式)为x^{(k+1)}=B_Jx^{(k)}+D^{-1}b\\其中迭代矩阵 B_J=D^{-1}(L+U)收敛条件\begin{eqnarray} \left. \begin{array}{lll} \VertB_J\Vert <1 \\ A 严格对角占优\\ A, 2D-A对称正定\end{array} \right \} \end{eqnarray} \Rightarrow \rho (B_J)<1\Leftrightarrow 迭代收敛特别地,若 A 对称正定且为三对角,则 \rho^2(B_J)=\rho (B_G)<1 。
数值分析引论课后习题与答案易大义版第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。
解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。
解:直接根据定义和式(1.2.2)(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。
(1)(2)4.近似数x*=0.0310,是 3 位有数数字。
5.计算取,利用:式计算误差最小。
四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限.解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。
线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3)由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。
1 / 8数值分析实验六:解线性方程组的迭代法2016113 张威震1 病态线性方程组的求解1.1 问题描述理论的分析表明,求解病态的线性方程组是困难的。
实际情况是否如此,会出现怎样的现象呢?实验内容:考虑方程组Hx=b 的求解,其中系数矩阵H 为Hilbert 矩阵,,,1(),,,1,2,,1i j n n i j H h h i j n i j ⨯===+-这是一个著名的病态问题。
通过首先给定解(例如取为各个分量均为1)再计算出右端b 的办法给出确定的问题。
实验要求:(1)选择问题的维数为6,分别用Gauss 消去法、列主元Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法求解方程组,其各自的结果如何?将计算结果与问题的解比较,结论如何?(2)逐步增大问题的维数(至少到100),仍然用上述的方法来解它们,计算的结果如何?计算的结果说明了什么?(3)讨论病态问题求解的算法1.2 算法设计首先编写各种求解方法的函数,Gauss 消去法和列主元高斯消去法使用实验5中编写的函数myGauss.m 即可,Jacobi 迭代法函数文件为myJacobi.m ,GS 迭代法函数文件为myGS.m ,SOR 方法的函数文件为mySOR.m 。
1.3 实验结果1.3.1 不同迭代法球求解方程组的结果比较选择H 为6*6方阵,方程组的精确解为x* = (1, 1, 1, 1, 1, 1)T ,然后用矩阵乘法计算得到b ,再使用Gauss 顺序消去法、Gauss 列主元消去法、Jacobi 迭代法、G-S 迭代法和SOR 方法分别计算得到数值解x1、x2、x3、x4,并计算出各数值解与精确解之间的无穷范数。
Matlab 脚本文件为Experiment6_1.m 。
迭代法的初始解x 0 = (0, 0, 0, 0, 0, 0)T ,收敛准则为||x(k+1)-x(k)||∞<eps=1e-6,SOR方法的松弛因子选择为w=1.3,计算结果如表1。
线性方程组求解的迭代算法线性方程组是数学中常见的问题之一,求解线性方程组是很多科学和工程领域中必需的基本任务。
而迭代算法是一种常见的求解线性方程组的方法之一,通过不断逼近线性方程组的解来达到求解的目的。
本文将介绍一些常见的线性方程组迭代算法及其原理。
一、雅可比迭代法雅可比迭代法是最早被提出的线性方程组迭代算法之一。
其思想是通过不断迭代,在每一步都利用先前求得的近似解来逼近方程组的解。
具体算法如下:假设给定的线性方程组为Ax=b,其中A为系数矩阵,b为常数向量,x为未知向量。
1. 首先,将方程组转化为x=D^-1(b-Rx),其中D为一个对角矩阵,R为矩阵A的剩余部分。
2. 设定一个初始解向量x0。
3. 迭代计算:重复执行以下步骤,直到满足终止条件。
a. 计算下一次迭代的解向量:x_k+1 = D^-1(b-Rx_k),其中k为当前迭代的次数。
b. 检查终止条件是否被满足,如果是,则停止迭代;否则,返回步骤a。
雅可比迭代法的收敛性与系数矩阵A的特征值有关。
当A是严格对角占优矩阵时,迭代法收敛。
二、高斯-赛德尔迭代法高斯-赛德尔迭代法是雅可比迭代法的一种改进方法。
在每一次迭代中,新的解向量x_k+1的计算会利用到之前已经计算得到的近似解向量的信息,从而加快迭代的速度。
具体算法如下:1. 设定一个初始解向量x0。
2. 迭代计算:重复执行以下步骤,直到满足终止条件。
a. 对于每个方程i,计算下一次迭代的解向量的每个分量:x_k+1[i] = (1/A[i][i]) * (b[i]-Σ(A[i][j]*x_k[j],其中j为1到i-1之间的所有整数。
b. 检查终止条件是否被满足,如果是,则停止迭代;否则,返回步骤a。
高斯-赛德尔迭代法相比于雅可比迭代法,在每一次迭代中都会利用到之前计算得到的近似解向量的信息,因此收敛速度更快。
三、超松弛迭代法超松弛迭代法是对雅可比迭代法和高斯-赛德尔迭代法的进一步改进。
通过引入松弛因子ω,可以加速迭代的收敛速度。
数值分析第六章线性方程组迭代解法线性方程组是数值分析中的重要内容之一,其求解方法有很多种。
其中一种常用的方法是迭代解法,即通过不断迭代逼近方程组的解。
本文将介绍线性方程组迭代解法的基本思想和常用方法。
线性方程组可以用矩阵形式表示为Ax=b,其中A是系数矩阵,b是常数向量,x是未知向量。
线性方程组的解可以是唯一解,也可以是无穷多个解。
迭代解法的基本思想是通过不断迭代,并利用迭代序列的极限,逼近线性方程组的解。
迭代解法适用于大型的线性方程组,而直接求解法则适用于小型的线性方程组。
常用的迭代解法有雅可比迭代法、高斯-赛德尔迭代法和逐次超松弛迭代法。
雅可比迭代法是最简单的线性方程组迭代解法之一、它的基本思想是将线性方程组的每个方程都单独表示为未知数x的显式函数,然后通过不断迭代求解。
雅可比迭代法的迭代公式为:x(k+1)=D^(-1)(b-(L+U)x(k))其中,D是A的对角元素构成的对角矩阵,L是A的下三角矩阵,U 是A的上三角矩阵,x(k)是第k次迭代的解。
高斯-赛德尔迭代法是雅可比迭代法的改进版。
它的基本思想是将每个方程的解带入到下一个方程中,而不是等到所有方程都迭代完毕后再计算下一组解。
高斯-赛德尔迭代法的迭代公式为:x(k+1)=(D-L)^(-1)(b-Ux(k))其中,D是A的对角矩阵,L是A的下三角矩阵(除去对角线),U是A的上三角矩阵(除去对角线),x(k)是第k次迭代的解。
逐次超松弛迭代法是对高斯-赛德尔迭代法的改进。
它引入了松弛因子w,通过调节松弛因子可以加快收敛速度。
逐次超松弛迭代法的迭代公式为:x(k+1)=(D-wL)^(-1)[(1-w)D+wU]x(k)+w(D-wL)^(-1)b其中,D是A的对角矩阵,L是A的下三角矩阵(除去对角线),U是A的上三角矩阵(除去对角线),w是松弛因子,x(k)是第k次迭代的解。
线性方程组迭代解法需要设置迭代停止准则,通常可以设置迭代次数上限或者设置一个精度要求。