基站天线选型
- 格式:doc
- 大小:38.00 KB
- 文档页数:7
不同场景下天线选取原则在移动通信网络中,天线是移动通信系统的重要组成部分,天线的选用与网络的覆盖和整体的运行质量密切相关。
在实际的网络应用中,根据网络的覆盖要求、话务量分布、抗干扰要求和网络服务质量等实际情况来合理的选择天线尤为重要。
天线类型的选择与地形、地物,以及话务量分布紧密相关,因此我们可以将天线使用环境大致分为五种类型:城区、密集城区、郊区、农村地区、交通干线等几类,以下就在不同天线场景的天线产品类型及基本情况进行说明。
第一部分:选型原则一、城区基站天线的选用城区有较多或较复杂的建筑物环境,如城镇、市区;发达的村镇、工业区等。
电磁环境比较复杂,多径反射严重,复杂的多径反射使电磁波的极化发生了不可预测的变化。
同时城区基站密度较高,单站预期覆盖范围较小,选择天线时应考虑以下几方面。
(1)在城区为减少干扰,应选用水平半功率角接近于60度的天线。
这样的天线所构成的辐射方向图接近于理想的三叶草型蜂窝结构,与现网适配性较好,有助于控制越区切换。
如下图所示。
(2)城区基站一般不要求大范围覆盖,而更注重覆盖的深度。
由于中等增益天线的有效垂直波束相比于高增益天线较宽,覆盖半径内有效的深度覆盖范围较大,可以改善室内覆盖效果,所以选用中等增益天线较好。
(3)由于城区天线安装空间往往有限,选用±45°双极化天线可获得较好的分集增益。
同时,极化分集天线具有更高的性价比,且选址和安装较空间分集天线更为简单。
城区基站天线的一般选用原则如下:对于话务量高度密集的地区,基站间距离大约在300~500米时,采用增益在15dBi 左右。
对于话务量中等密集的地区,基站间距离大于500米,采用增益在17到18dBi左右天线。
对于低话务量区,由于基站间距离可能更大一些,采用增益在18dBi左右天线。
对于GSM1800及WCDMA系统,由于其频率较高,空间传播损耗较大,宜选型增益在18dBi左右天线。
详细的天线产品类型见下表:二、高密集城区基站天线的选用(1)连续电调天线的选用在繁华的密集城区,多径反射复杂,且频率复用规划的站址间相互制约、相互干扰严重。
5g微基站天线类型5G微基站天线类型是指在5G通信系统中用于接收和发送信号的天线类型。
随着5G技术的不断发展,微基站天线类型也在不断创新和演进,以满足不同场景的通信需求。
本文将介绍几种常见的5G微基站天线类型,并为读者提供有关选择适合的天线类型的指导意义。
首先,5G微基站天线的一种常见类型是方向天线。
方向天线是一种具有高增益和狭窄主瓣宽度的天线,主要用于长距离通信和覆盖区域较大的场景。
方向天线可以将信号在特定方向上集中,提高信号强度和传输速率,同时降低干扰和噪声。
在城市高楼大厦密集的地区,方向天线尤其适用,能够实现大范围的覆盖和高速数据传输。
其次,5G微基站天线的另一种常见类型是宽波束天线。
宽波束天线具有较大的主瓣宽度和相对较低的增益,适用于需要更广角度覆盖的场景。
宽波束天线能够以较广的角度发送和接收信号,可以实现对不同方向的用户进行同时连接,提高系统的容量和覆盖范围。
在市区繁忙的街道和体育场等场所,宽波束天线能够更好地满足大量用户同时连接的需求。
此外,5G微基站天线的第三种常见类型是扇形天线。
扇形天线是一种将天线信号以扇形的形式辐射出去的天线,主要用于室内和短距离通信。
扇形天线能够实现在有限的范围内提供稳定的信号覆盖,适用于办公室、商场等小范围的通信环境。
扇形天线还可以通过调整天线的倾角和方向,实现更加灵活的覆盖需求。
最后,5G微基站天线的第四种常见类型是多输入多输出(MIMO)天线。
MIMO天线是一种采用多个发射和接收天线的技术,以提高信号质量和容量。
MIMO天线能够利用空间分集和空间复用技术,在同一时间和频率上服务多个用户,并提供更高的数据传输速率和可靠性。
在大型活动场所、人口稠密区域和移动车载通信等场景中,MIMO天线能够有效地提升网络性能和用户体验。
综上所述,5G微基站天线类型包括方向天线、宽波束天线、扇形天线和MIMO天线。
在选择适合的天线类型时,需要根据具体的通信需求和场景特点进行综合考虑。
天线都是有下倾角的.合理设置天线下倾角不但可以降低同频干扰的影响,有效控制基站的覆盖范围和整网的软切换比例(对CDMA网络而言),而且可以加强本基站覆盖区内的信号强度。
通常天线下倾角的设定有两方面侧重,即侧重于干扰抑制和侧重于加强覆盖。
这两方面侧重分别对应不同的下倾角算法。
一般而言,对基站分布密集的地区应侧重于考虑干扰抑制(大下倾角)。
而基站分布较稀疏的地区则侧重于考虑加强覆盖(小下倾角)。
基站天线的知识:一、天线类型选择在移动通信网工程设计中,应该根据网络的覆盖要求、话务量分布、抗干扰要求和网络服务布紧密相关,可以将天线使用环境大致分为五种类型:城区、密集城区、郊区、农村地区、交通干线等。
1、城区基站天线城区基站密度较高,单站预期覆盖范围较小,选择基站天线时应考虑以下几方面。
(1)为减少干扰,应选用水平半功率角接近于60度的天线。
这样的天线所构成的辐射方向图接近于理想的三叶草型蜂窝结构,与现网适配性较好,有助于控制越区切换。
如下图所示。
(2)城区基站一般不要求大范围覆盖,而更注重覆盖的深度。
由于中等增益天线的有效垂直波束相比于高增益天线较宽,覆盖半径内有效的深度覆盖范围较大,可以改善室内覆盖效果,所以选用中等增益天线较好。
(3)由于城区基站天线安装空间往往有限,所以选用双极化天线比较切合实际。
综上所述,城区基站宜选用水平半功率角为60度左右的中等增益的双极化天线。
例如水平半功率角为65度的15dBi双极化天线。
2、密集城区基站天线密集城区基站天线的选择与一般城区基站类似。
但由于密集城区基站站距往往只有400米到600米,在使用水平半功率角为65度的15dBi双极化天线,且天线有效挂高35米的情况下,天线下倾角可能设置在14.0度到11.5度之间。
此时如果单纯采用机械下倾的方式,倾角过大将引起水平波束变宽,干扰增大,同时上副瓣也会引入较大干扰;而采用电子式倾角天线,则可以较好的解决波形畸变的问题,产生的干扰相对较小。
基站天线的选型原则一、生产厂家的选择二、关于三阶互调指标5基站天线的选型原则(建议)三、基站天线选型原则建议一、生产厂家的选择首先要考察厂家的生产能力、研发队伍、仪器设备、检测手段、售后服务、质量保证体系。
对具体的基站天线产品还应考察下列各项:1、为提高网络性能和降低成本,在城区使用的基站天线应具有极化分集代替空间分集的能力。
2、对天线罩因雨雪、裹冰造成的表面分布电容影响,应有一定的防范能力。
3、为保证天线的最大增益,天线应当采用低耗馈电网络技术。
4、全向天线高增益天线在确保电性能前提下,天线尺寸应尽量短。
5、为确保产品的一致性及坚固性。
生产厂家应有模具化生产能力。
6、生产厂家应对天线的驻波比及三阶互调指标100%检测,对抽检(例10%)产品应进行包括增益和方向图在内的全指标测试。
7、要有完善的密封工艺并采用优质密封胶,确保天线的防水性和寿命。
8、定型产品要按信息产业部的标准进行环境试验:高温、低温、振动、冲击、运输。
9、具有采用机械下倾、电下倾、电调下倾三种调整方式相结合,解决大机械倾角下波形畸变的能力。
10、在考虑产品的适用性后,还要考察所需基站天线的性能价格比和厂家的供货期。
二、关于三阶互调指标5基站天线的选型原则(建议)互调的定义•互调是指非线性射频线路中,两个或多个频率混合后所产生的噪音信号。
•互调产生的本来并不存在“错误”信号,此信号会被系统误认为是真实的信号。
•互调可由有源元件(无线电设备、二极管)或无源元件(电缆、接头、天线、滤波器)引起。
具有两个载波信号的互调失真频率实例频率A及B上的载波,产生如下互调信号:1阶:A,B2阶:(A+B),(A-B)3阶:(2A±B),(2B ±A)4阶:(3A±B),(3B ±A),(2A±2B)5阶:(4A±B),(4B ±A),(3A±2B),(3B ±2A)互调失真如何影响系统的性能?•较高功率的发射信号通常会混合产生互调信号,最后进入接收波段。
基站天线选型方法谢瑞华(中兴通讯上海第二研究所射频开发部)摘要本文针对基站天线的各项性能参数,阐述了基站天线选型的基本方法和注意事项。
一、引言近年来,在风风火火的移动通讯领域,国内国外天线品牌种类繁多使人目不暇接,而我们的客户中国移动和中国联通对天线的要求也逐渐由浅入深日趋细致,如何在满足覆盖降低成本的前提下,恰当选取天线各类参数,为客户提供良好的服务成为关键。
天线的合理选型会给公司带来事半功倍的效果。
以下将结合天线的各类电性能和机械性能参数,并总结曾经碰到的客户的各种天线选型要求,阐述基站天线选型的基本方法及其注意事项。
二、基站天线的选型方法1、天线的电性能参数天线工作频段的选取对各类基站而言,所选天线的工作频段应包含客户要求的频段,例如,为GSM900系统(890-960MHz)配置天线,工作频段为890-960MHz、870-960MHz、807-960 MHz和890-1880 MHz的双频天线均为可选。
从降低带外干扰信号的角度考虑,所选天线的带宽刚好满足频带要求即可。
但考虑到今后基站的扩容需要,宽频带天线也很受客户欢迎。
如可工作于GSM900和GSM1800频带的890-1880 MHz的双频天线。
它的价格较普通天线贵些。
天线辐射方向图的选取基站天线辐射方向图可分为全向辐射方向图和定向辐射方向图两大类,分别被称为全向天线和定向天线。
如图一所示,图中左边所示分别为全向天线的水平截面图和立体辐射方向图;图中右边所示分别为定向天线的水平截面图和立体辐射方向图。
全向天线在同一水平面内各方向的辐射强度理论上是相等的,它适用于全向小区;图中红色所示为定向天线罩中的金属反射板,它的存在使天线在水平面的辐射具备了方向性,适用于扇形小区的覆盖。
图一:基站天线及其空间辐射方向图天线极化方式的选取基站天线多采用线极化方式,如图二。
其中单极化天线多采用垂直线极化;双极化天线多采用±45︒双线极化。
由于一根双极化天线是由极化彼此正交的两根天线封装在同一天线罩中组成的(图三),采用双线极化天线,可以大大减少天线数目,简化天线工程安装,降低成本,减少了天线占地空间。
移动通信基站是实现无线通信的重要设备,而天线作为基站的重要组成部分之一,具有至关重要的作用。
本文将进一步探讨移动通信基站天线的相关知识,包括天线的类型、天线的性能要求、天线的选型原则、天线的安装和维护等方面。
引言概述:移动通信基站天线是将无线电频率信号转换为电磁波信号并发射到空中或接收空中的电磁波转换为电信号的设备。
它是实现无线通信的关键环节,对通信系统的覆盖范围和通信质量具有直接影响。
因此,选择适合的天线类型和正确的安装方式非常重要。
正文内容:一、天线类型1.定向天线:通过增大天线的增益和指向性来实现远距离传输和覆盖。
2.宽角度天线:通过扩大天线的辐射角来实现较大范围的覆盖,但传输距离相对较短。
二、天线性能要求1.增益:天线增益是指天线指向性的强度,高增益天线可以实现长距离传输。
2.辐射效率:天线辐射功率与输入功率之比,较高的辐射效率可以提高天线传输效果。
3.频率范围:天线应具有适应不同频段的能力。
4.方向性:天线应具备较好的指向性,以减少干扰和提高覆盖范围。
5.极化方式:天线的极化方式需要与基站系统相匹配,一般分为水平极化和垂直极化。
三、天线选型原则1.频率匹配:选择与系统频段相匹配的天线。
2.增益匹配:根据具体需求选择适当的天线增益,以实现预期的覆盖范围和通信质量。
3.空间需求:考虑基站所在位置的实际情况,选择合适的天线。
4.环境适应:根据基站所处环境的不同,选择适应不同气候条件和防护要求的天线。
5.成本效益:综合考虑天线性能、价格、使用寿命等因素,选择性价比较高的天线。
四、天线的安装和维护1.安装位置:根据天线类型和覆盖需求,选择适当的高度和方向,避免遮挡和多径干扰等问题。
2.安装角度:根据天线的辐射角和覆盖需求选择合适的安装角度,最大程度地提高天线的辐射效果。
3.安装固定:确保天线安装牢固,避免受风力等外力影响导致天线倾斜或脱落。
4.定期检查:定期检查天线的性能和连接,确保天线的正常运行。
WCDMA基站天线的选择【摘要】WCDMA基站天线的选择在无线通信网络中起着至关重要的作用,直接影响网络性能和覆盖范围。
本文介绍了WCDMA基站天线的类型、技术指标、安装位置、选取原则,以及调试和优化方法。
正确选择和优化WCDMA基站天线可以有效提高网络性能,增加覆盖范围,提升用户体验。
WCDMA基站天线的选择是建设和维护无线通信网络的关键。
通过本文的介绍和指导,读者可以更好地了解WCDMA基站天线的重要性,以及如何正确选择和优化WCDMA基站天线,从而提升网络性能和用户体验水平。
【关键词】WCDMA基站天线、选择、网络性能、类型、技术指标、安装位置、选取原则、调试、优化、无线通信网络、关键、提高、覆盖范围1. 引言1.1 WCDMA基站天线的选择的重要性WCDMA基站天线的选择在无线通信网络建设中起着至关重要的作用。
作为通信网络的核心组成部分,基站天线直接影响着网络性能和覆盖范围。
正确选择适合的基站天线可以提高网络的容量和覆盖范围,减少通信中的干扰和误码率,从而提高用户的通信质量和体验。
WCDMA基站天线的选择不仅涉及到技术和性能方面的考量,还需要考虑到网络的布局和覆盖需求。
不同类型的基站天线适用于不同的环境和场景,例如城市、郊区或农村地区。
在建设和优化无线通信网络时,必须根据具体情况选择合适的WCDMA基站天线,以实现最佳的网络性能和覆盖效果。
WCDMA基站天线的选择对于建设和维护无线通信网络至关重要。
只有正确选择并优化基站天线,才能提高网络性能,满足用户需求,实现通信网络的稳定运行和持续发展。
在进行基站天线选择时,务必认真考虑各种因素,以确保网络的高效运行和用户的满意度。
1.2 WCDMA基站天线的选择对网络性能的影响WCDMA基站天线的选择对网络性能的影响是非常重要的。
天线作为无线通信系统中的关键组成部分,直接影响着通信质量和覆盖范围。
在WCDMA系统中,选用合适的基站天线可以提高网络的容量和覆盖范围,减少信号干扰,增强信号的传输质量。
基站天线选型第1章不同应用环境下的天线选型在移动通信网络中,天线的选择是一个很重要的部分,应根据网络的覆盖要求、话务量、干扰和网络服务质量等实际情况来选择天线。
天线选择得当,可以改善覆盖效果,减少干扰,改善服务质量。
根据地形或话务量的分布可以把天线使用的环境分为8 种类型:市区(高楼多,话务大)、郊区(楼房较矮,开阔)、农村(话务少)、公路(带状覆盖)、山区(或丘陵,用户稀疏)、近海(覆盖极远,用户少)、隧道、大楼室内。
1.1市区基站天线选择应用环境特点:基站分布较密,要求单基站覆盖范围小,希望尽量减少越区覆盖的现象,减少基站之间的干扰,提高频率复用率。
天线选用原则:(1)极化方式选择:由于市区基站站址选择困难,天线安装空间受限,建议选用双极化天线;(2)方向图的选择:在市区主要考虑提高频率复用度,因此一般选用定向天线;(3)半功率波束宽度的选择:为了能更好地控制小区的覆盖范围来抑制干扰,市区天线水平半功率波束宽度选60~65°。
在天线增益及水平半功率角度选定后,垂直半功率角也就定了;(4)天线增益的选择:由于市区基站一般不要求大范围的覆盖距离,因此建议选用中等增益的天线。
同时天线的体积和重量可以变小,有利于安装和降低成本。
根据目前天线型号,建议市区天线增益视基站疏密程度及城区建筑物结构等选用15-18dBi增益的天线。
若市区内用作补盲的微蜂窝天线增益可选择更低的天线如10-12dBi的天线;(5)预置下倾角及零点填充的选择:市区天线一般来都要设置一定的下倾角,因此为增大以后的下倾角调整范围,可以选择具有固定电下倾角的天线(建议选3-6°)。
由于市区基站覆盖距离较小,零点填充特性可以不作要求;(6)下倾方式选择:由于市区的天线倾角调整相对频繁,且有的天线需要设置较大的倾角,而机械下倾不利于干扰控制,所以在可能的情况下建议选用预置下倾天线。
条件成熟时可以选择电调天线;(7)下倾角调整范围选择:由于在市区出于干扰控制的原因,需要将天线的下倾角调得较大,一般来说电调天线在下倾角的调整范围方面是不会有问题的。
但是在选择机械下倾的天线时,建议选择下倾角调整范围更大的天线,最大下倾角要求不小于14°;(8)在城市内,为了提高频率复用率,减小越区干扰,有时需要设置很大的下倾角,而当下倾角的设置超过了垂直面半功率波束宽度的一半时,需要考虑上副瓣的影响。
所以建议在城区选择第一上副瓣抑制的赋形技术天线,但是这种天线通常无固定电下倾角。
推荐:半功率波束宽度65°/中等增益/带固定电下倾角或可调电下倾+机械下倾的双极化天线。
1.2农村基站天线选择应用环境特点:基站分布稀疏,话务量较小,覆盖要求广。
有的地方周围只有一个基站,覆盖成为最为关注的对象,这时应结合基站周围需覆盖的区域来考虑天线的选型。
一般情况下是希望在需要覆盖的地方能通过天线选型来得到更好的覆盖。
天线选用原则:1、极化方式选择:从发射信号的角度,在较为空旷地方采用垂直极化天线比采用其他极化天线效果更好。
从接收的角度,在空旷的地方由于信号的反射较少,信号的极化方向改变不大,采用双极化天线进行极化分集接收时,分集增益不如空间分集。
所以建议在农村建议选用垂直单极化天线。
2、方向图选择:如果要求基站覆盖周围的区域,且没有明显的方向性,基站周围话务分布比较分散,此时建议采用全向基站覆盖。
需要特别指出的是:这里的广覆盖并不是指覆盖距离远,而是指覆盖的面积大而且没有明显的方向性。
同时需要注意的是:全向基站由于增益小,覆盖距离不如定向基站远。
同时全向天线在安装时要注意塔体对覆盖的影响,并且天线一定要与地平面保持垂直,具体要求见《全向天线安装规范》。
如果局方对基站的覆盖距离有更远的覆盖要求,则需要用定向天线来实现。
一般情况下,应当采用水平面半波束宽度为90 °、105 °、120 °的定向天线;在某些基站周围需要覆盖的区域呈现很明显的形状,可选择地形匹配波束天线进行覆盖;3、天线增益的选择:视覆盖要求选择天线增益,建议在农村地区选择较高增益(16-18dBi)的定向天线或9-11dBi的全向天线;4、预置下倾角及零点填充的选择:由于预置下倾角会影响到基站的覆盖能力,所以在农村这种以覆盖为主的地方建议选用不带预置下倾角的天线。
但天线挂高在50米以上且近端有覆盖要求时,可以优先选用零点填充(大于15%)的天线来避免塔下黑问题;5、下倾方式的选择:在农村地区对天线的下倾调整不多,其下倾角的调整范围及特性要求不高,建议选用价格较便宜的机械下倾天线;对于定向站型推荐选择:半功率波束宽度90°、105°/中、高增益/单极化空间分集,或90°双极化天线,主要采用机械下倾角/零点填充大于15%。
对于全向站型推荐:零点填充的天线,若覆盖距离不要求很远,可以采用电下倾(3°或5°)。
天线相对主要覆盖区挂高不大于50m时,可以使用普通天线。
另外,对全向站还可以考虑双发天线配置以减小塔体对覆盖的影响。
必须通过功分器把发射信号分配到两个天线上。
1.3郊区基站天线选择应用环境特点:郊区的应用环境介于城区环境与农村环境之间,有的地方可能更接近城区,基站数量不少,频率复用较为紧密,这时覆盖与干扰控制在天线选型时都要考虑。
而有的地方可能更接近农村地方,覆盖成为重要因素。
因此在天线选型方面可以视实际情况参考城区及农村的天线选型原则。
在郊区,情况差别比较大。
可以根据需要的覆盖面积来估计大概需要的天线类型。
一般可遵循以下几个基本原则:1、根据情况选择水平面半功率波束宽度为65 °的天线或选择半功率波束宽度为90 °的天线。
当周围的基站比较少时,应该优先采用水平面半功率波束宽度为90 °的天线。
若周围基站分布很密,则其天线选择原则参考城区基站的天线选择。
若周围基站较很少,且将来扩容潜力不大,则可参考农村的天线选择原则;2、考虑到将来的平滑升级,所以一般不建议采用全向站型;3、是否采用预置下倾角应根据具体情况来定。
即使采用下倾角,一般下倾角也比较小。
推荐选择:半功率波束宽度90°/中、高增益的天线,可以用电调下倾角,也可以是机械下倾角。
具体在选择时可以参考市区与农村的天线选择列表。
1.4公路覆盖基站天线选择应用环境特点:该应用环境下话务量低、用户高速移动、此时重点解决的是覆盖问题。
而公路覆盖与大中城市或平原农村的覆盖有着较大区别,一般来说它要实现的是带状覆盖,故公路的覆盖多采用双向小区;在穿过城镇,旅游点的地区也综合采用三向、全向小区;再就是强调广覆盖,要结合站址及站型的选择来决定采用的天线类型。
不同的公路环境差别很大,一般来说有较为平直的公路,如高速公路、铁路、国道、省道等等,推荐在公路旁建站,采用S1/1/1、或S1/1站型,配以高增益定向天线实现覆盖。
有蜿蜒起伏的公路如盘山公路、县级自建的山区公路等等。
得结合在公路附近的乡村覆盖,选择高处建站。
站型得灵活配置,可能会用到全向加定向等特殊站型。
不同的路段环境差别也很大,如高速公路与铁路所经过的地形往往复杂多变,有平原、高山、树林、隧道等,还要穿过乡村和城镇,所以对其无线网络的规划及天线选型时一定要在充分勘查的基础上具体对待各段公路,灵活规划。
在初始规划进行天线选型时,应尽量选择覆盖距离广的高增益天线进行广覆盖,在覆盖不到的盲区路段可选用增益较低的天线进行补盲。
天线选型原则:1、方向图的选择:在以覆盖铁路、公路沿线为目标的基站,可以采用窄波束高增益的定向天线。
可根据布站点的道路局部地形起伏和拐弯等因素来灵活选择天线形式。
如果覆盖目标为公路及周围零星分布的村庄,可以考虑采用全向天线或变形全向天线,如八字形或心形天线。
纯公路覆盖时根据公路方向选择合适站址采用高增益(14dBi)8字型天线(O2/O1),或考虑S0.5/0.5 的配置,最好具有零点填充;对于高速公路一侧有小村镇,用户不多时,可以采用210 °-220°变形全向天线;2、极化方式选择:从发射信号的角度,在较为空旷地方采用垂直极化天线比采用其他极化天线效果更好。
从接收的角度,在空旷的地方由于信号的反射较少,信号的极化方向改变不大,采用双极化天线进行极化分集接收时,分集增益不如空间分集。
所以建议在进行公路覆盖时选用垂直单极化天线;3、天线增益的选择,若不是用来补盲,定向天线增益可选17dBi-22dBi的天线(有些高增益天线目前还未认证)。
全向天线的增益选择11dBi。
若是用来补盲,则可根据需要选择增益较低的天线;4、预置下倾角及零点填充的选择:由于预置下倾角会影响到基站的覆盖能力,所以在公路这种以覆盖为主的地方建议选用不带预置下倾角的天线。
在50米以上且近端有覆盖要求时,可以优先选用零点填充(大于15%)的天线来解决塔下黑问题;5、下倾方式的选择:公路覆盖一般不打下倾。
地区对天线的下倾调整不多,其下倾角的调整范围及特性要求不高,建议选用价格较便宜的机械下倾天线;6、前后比:由于公路覆盖大多数用户都是快速移动用户,所以为保证切换的正常进行,定向天线的前后比不宜太高,否则可能会由于两定向小区交叠深度太小而导致切换不及时造成掉话的情况。
对于高速公路和铁路覆盖,建议优先选择“8”字形天线或S0.5/0.5 配置,以减少高速移动用户接近/离开基站附近时的切换。
1.5山区覆盖基站天线选择应用环境特点:在偏远的丘陵山区,山体阻挡严重,电波的传播衰落较大,覆盖难度大。
通常为广覆盖,在基站很广的覆盖半径内分布零散用户,话务量较小。
基站或建在山顶上、山腰间、山脚下、或山区里的合适位置。
需要区分不同的用户分布、地形特点来进行基站选址、选型、选择天线。
以下这几种情况比较常见的:盆地型山区建站、高山上建站、半山腰建站、普通山区建站等。
在盆地中心选址建站,如果盆地范围不大,推荐采用全向O2站型;如果盆地范围较大,或需要兼顾到某条出入盆地的交通要道,推荐采用S1/1/1或O+S的站型。
有时受制于微波传输的因素,必须在某些很高的山上建站,此时天线离用户分布面往往有150米以上的落差。
如果覆盖的目标区域就在山脚下附近,此时需配以带电子下倾角的全向天线,使信号波形向下,避免出现“塔下黑”的现象。
在半山腰建站,基站天线的挂高低于山顶,山的背面无法覆盖。
因此只需用定向小区,用半功率角较大的天线,覆盖山的正面。
普通地形起伏不大的山区,推荐采用S1/1/1站型,尽量增加信号强度,给信号衰减留下更多的余量。
天线选择原则:1、方向图的选择:视基站的位置、站型及周边覆盖需求来决定方向图的选择,可以选择全向天线,也可以选择定向天线。