人教版数学九年级下学期第29章《投影与视图》测试卷含答案
- 格式:doc
- 大小:950.50 KB
- 文档页数:21
人教版九年级下册数学第二十九章投影与视图含答案一、单选题(共15题,共计45分)1、下列几何体中,俯视图为矩形的是()A. B. C. D.2、如图由七个相同的小正方体摆成的几何体,则这个几何体的主视图是()A. B. C. D.3、如图是一个几何体的三视图,则此几何体是()A.圆柱B.棱柱C.圆锥D.棱台4、如图是某个几个几何体的三视图,该几何体是()A.圆锥B.圆柱C.长方体D.正三棱柱5、如图,是由大小一样的小立方块摆成的立体图形的三视图,则摆成这个立体图形所需的小立方块的个数为()A.3B.4C.5D.66、如图是某几何体的三视图及相关数据,则判断正确的是()A.a>cB.b>cC.4a 2+b 2=c 2D.a 2+b 2=c 27、某几何体的三视图如图所示,则该几何体是()A.球B.圆柱C.三棱锥D.圆锥8、如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.云D.南9、图①是正方体的平面展开图,六个面的点数分别为1点、2点、3点、4点、5点、6点,将点数朝外折叠成一枚正方体骰子,并放置于水平桌面上,如图②所示,若骰子初始位置为图②所示的状态,将骰子向右翻滚,则完成1次翻转,此时骰子朝下一面的点数是2,那么按上述规则连线完成2次翻折后,骰子朝下一面的点数是3点;连续完成2019次翻折后,骰子朝下一面的点数是()A.2B.3C.4D.510、如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的从三个方向看得图形,下列说法正确的是()A.从正面看到的图相同B.从左面看到的图相同C.从上面看到的图相同D.从三个方向看到的图都不相同11、如图是由5个相同的小立方体搭成的一个几何体,从左面看这个几何体,看到的形状图是()A. B. C. D.12、若一个几何体的三视图如图所示,则这个几何体是()A.三棱柱B.四棱柱C.五棱柱D.长方体13、如图所示的几何体的左视图是()A. B. C. D.14、给出下列结论正确的有()①物体在阳光照射下,影子的方向是相同的②物体在任何光线照射下影子的方向都是相同的③物体在路灯照射下,影子的方向与路灯的位置有关④物体在光线照射下,影子的长短仅与物体的长短有关.A.1个B.2个C.3个D.4个15、用6个大小相同的正方体搭成如图所示的几何体,下列说法正确的是()A.主视图的面积最大B.左视图的面积最大C.俯视图的面积最大 D.主视图、俯视图的面积相等二、填空题(共10题,共计30分)16、物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是________ 现象.举例________ 、________ .17、一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n=________.18、写出一个主视图、左视图、俯视图都相同的几何体:________.19、某几何体的三视图如图所示,则组成该几何体的小正方体的个数是________.20、当太阳斜照或直照时,一个放在水平地面上的长方形状的箱子在地面上留下的影子是________.21、已知圆锥如图所示放置,.其主视图面积为12,俯视图的周长为6π,则该圆锥的侧面积为________.22、如图是一个多面体的表面展开图,如果面F在前面,从左面看是面B,那么从上面看是________面(填字母)。
2022-2023学年人教新版九年级数学下学期《第29章投影与视图》测试卷参考答案与试题解析一.选择题(共16小题)1.如图所示的主视图和俯视图对应的几何体(阴影所示为右)是()A.B.C.D.【分析】根据几何体的主视图确定A、B、D选项,然后根据俯视图确定B选项即可.【解答】解:A、B、D选项的主视图符合题意;B选项的俯视图符合题意,综上:对应的几何体为B选项中的几何体.故选:B.【点评】考查由视图判断几何体;由俯视图得到底层正方体的个数及形状是解决本题的突破点.2.如图是由5个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是()A.B.C.D.【分析】先细心观察原立体图形中正方体的位置关系,从正面看去,一共三列,左边有1竖列,中间有1竖列,右边是2竖列,结合四个选项选出答案.【解答】解:从正面看去,一共三列,左边有1竖列,中间有1竖列,右边是2竖列.故选:A.【点评】本题考查了由三视图判断几何体及简单组合体的三视图,重点考查几何体的三视图及空间想象能力.3.如图所示几何体的俯视图是()A.B.C.D.【分析】注意几何体的特征,主视图与左视图的高相同,主视图与俯视图的长相等,左视图与俯视图的宽相同.【解答】解:根据俯视图的特征,应选B.故选:B.【点评】本题考查了几何体的三视图,正确理解主视图与左视图以及俯视图的特征是解题的关键.4.如图,这是由7个相同的小正方体搭成的几何体,则这个几何体的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左面看第一层是三个小正方形,第二层左边一个小正方形.故选:C.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.如图所示几何体的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到的图形是:故选:B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.如图所示的几何体是由六个大小相同的小正方体组合而成的,它的俯视图为()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层是两个小正方形,第二层是三个小正方形,俯视图为:故选:D.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.7.将一个圆柱和一个正三棱柱如图放置,则所构成的几何体的主视图是()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形即可解答.【解答】解:根据主视图的概念可知,从物体的正面看得到的视图是选项A.故选:A.【点评】本题考查了简单几何体的主视图,注意主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形.8.如图所示,几何体的左视图是()A.B.C.D.【分析】根据从左面看得到的图形是左视图,可得答案.【解答】解:如图所示,几何体的左视图是:.故选:A.【点评】本题考查了简单组合体的三视图,从左面看得到的图形是左视图.9.展览厅内要用相同的正方体木块搭成一个三视图如右图的展台,则此展台共需这样的正方体()块.A.7B.8.C.9D.10【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:综合主视图,俯视图,左视图,底层有3+1+2=6个正方体,第二层有2个正方体,第三层有2个正方体,所以搭成这个几何体所用的小立方块的个数是6+2+2=10个.故选:D.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.10.某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均匀切成了8块,并将其中一块(经抽象后)按如图所示的方式放在自已正前方的水果盘中,则这块西瓜的三视图是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱长用实线表示,看不到的棱长用虚线的表示.【解答】解:观察图形可知,这块西瓜的三视图是.故选:B.【点评】此题主要考查了三视图的画法,注意实线和虚线在三视图的用法.11.下列立体图形中,俯视图是三角形的是()A.B.C.D.【分析】俯视图是从物体上面看所得到的图形,据此判断得出物体的俯视图.【解答】解:A、立方体的俯视图是正方形,故此选项错误;B、圆柱体的俯视图是圆,故此选项错误;C、三棱柱的俯视图是三角形,故此选项正确;D、圆锥体的俯视图是圆,故此选项错误;故选:C.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.12.小丽在两张6×10的网格纸(网格中的每个小正方形的边长为1个单位长度)中分别画出了如图所示的物体的左视图和俯视图,这个物体的体积等于()A.24B.30C.48D.60【分析】补全几何体左角,可见左角的体积是长宽高分别为4、2、1的小长方体体积的一半,大长方体长宽高分别为8、2、4,用大长方体体积减去小长方体体积就是物体体积.【解答】解:如图,补全几何体左角,根据左视图与俯视图标记几何体的尺寸.这个物体的体积:8×2×4﹣×4×1×2=64﹣4=60,故选:D.【点评】本题考查了几何体的三视图,熟练根据三视图数据标示几何体尺寸是解题的关键.13.如图是某几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.长方体D.正方体【分析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【解答】解:根据俯视图是三角形,长方体和正方体以及三棱锥不符合要求,B、C、D 错误;根据几何体的三视图,三棱柱符合要求.故选:A.【点评】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.14.圆形的纸片在平行投影下的正投影是()A.圆形B.椭圆形C.线段D.以上都可能【分析】根据在平行投影中,投影线垂直于投影面产生的投影叫做正投影解答即可.【解答】解:圆形的纸片在平行投影下的正投影可能是圆形、椭圆形、线段,故选:D.【点评】此题考查平行投影,关键是根据平行投影的有关概念解答.15.如图分别是某校体育运动会的颁奖台和它的主视图,则其俯视图是()A.B.C.D.【分析】根据俯视图是从上边看得到的图形,可得答案.【解答】解:从上边看是一个矩形被分为3部分,中面的两条分线是实线.故选:A.【点评】本题考查简单组合体的三视图,从上边看得到的图形是左视图,注意能看到的线用实线画,看不到的线用虚线画.16.如图2的三幅图分别是从不同方向看图1所示的工件立体图得到的平面图形,(不考虑尺寸)其中正确的是()A.①②B.①③C.②③D.③【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:从正面看可得到两个左右相邻的中间没有界线的长方形,①错误;从左面看可得到两个上下相邻的中间有界线的长方形,②错误;从上面看可得到两个左右相邻的中间有界线的长方形,③正确.故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.二.填空题(共19小题)17.一个由13个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,则这个几何体的搭法共有3种.【分析】由题意俯视图:除了A,B,C不能确定,其余位置上的小立方体是确定的数字如图所示.根据俯视图即可解决问题.【解答】解:由题意俯视图:除了A,B,C不能确定,其余位置上的小立方体是确定的数字如图所示.∵由13个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,∴A为1,B为2,C为2或A为2,B为2,C为1或A为2,B为1,C为2,共三种情形,故答案为3.【点评】本题考查三视图判定几何体,解题的关键是理解题意,灵活运用所学知识解决问题.18.如图是由一些大小相同的小正方体组成的简单几何体的左视图和俯视图,符合条件的几何体有7种.【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出每一层小正方体的层数和个数,从而得出答案.【解答】解:该几何体中小正方体的分布情况有如下7种可能结果,故答案为:7.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.19.如图所示,太阳光线AC和A′C′是平行的,同一时刻两个建筑物在太阳下的影子一样长,那么建筑物是否一样高?说明理由.(注:太阳光线可看成是平行的)【分析】根据已知同一时刻两个建筑物在太阳下的影子一样长,即可得出BC=B′C′,在直角三角形中,可考虑AAS证明三角形全等,从而推出线段相等.【解答】解:建筑物一样高.证明:∵AB⊥BC,A′B′⊥B′C′,∴∠ABC=∠A′B′C′=90°,∵AC∥A′C′,∴∠ACB=∠A′C′B′,在△ABC和△A′B′C′中,∵,∴△ABC≌△A′B′C′(ASA)∴AB=A′B′.即建筑物一样高.【点评】此题考查了全等三角形的应用以及平行投影的性质.在实际生活中,常常通过证明两个三角形得出线段相等.20.如图,小芸用灯泡O照射一个矩形相框ABCD,在墙上形成矩形影子A′B′C′D′.现测得OA=20cm,OA′=50cm,相框ABCD的面积为80cm2,则影子A′B′C′D′的面积为500cm2.【分析】易得对应点到对应中心的比值,那么面积比为对应点到对应中心的比值的平方,据此求解可得.【解答】解:∵OA:OA′=2:5,可知OB:OB′=2:5,∵∠AOB=∠A′OB′,∴△AOB∽△A′OB′,∴AB:A′B′=2:5,∴矩形ABCD的面积:矩形A′B′C′D′的面积为4:25,又矩形ABCD的面积为80cm2,则矩形A′B′C′D′的面积为500cm2.故答案为:500cm2.【点评】本题考查中心投影与位似图形的性质,用到的知识点为:位似比为对应点到对应中心的比值,面积比为位似比的平方.21.由几个相同的小正方体搭成的一个几何体如图所示,这个几何体的主视图可以看到5个小正方体的面,则俯视图与左视图能看到的小正方体的面的个数和为7.【分析】左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为1,2,1.据此计算即可.【解答】解:根据题意可得左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为1,2,1.∴俯视图与左视图能看到的小正方体的面的个数和为:2+1+1+2+1=7.故答案为:7【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.22.如图是某个几何体的三视图,请写出这个几何体的名称是圆锥.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故答案为:圆锥.【点评】本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.23.已知一个几何体的三视图如图所示,则这个几何体的侧面展开图的面积为65πcm2.【分析】由几何体的主视图和左视图都是等腰三角形,俯视图是圆,可以判断这个几何体是圆锥,结合图形可得出母线及底面半径,继而可求出圆锥侧面积.【解答】解:依题意知高线=12,底面半径r=5,由勾股定理求得母线长为:13cm,则由圆锥的侧面积公式得S=πrl=π•5•13=65πcm2.故答案为:65πcm2.【点评】本题主要考查三视图的知识和圆锥侧面面积的计算,学生由于空间想象能力不够,找不到圆锥的底面半径,或者对圆锥的侧面面积公式运用不熟练,易造成错误.24.在如图所示的几何体中,其三视图中有矩形的是①②.(写出所有正确答案的序号)【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此作答.【解答】解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.【点评】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.25.按《航空障碍灯(MH/T6012﹣1999)》的要求,为保障飞机夜间飞行的安全,在高度为45米至105米的建筑上必须安装中光强航空障碍灯(AviationObstructionlight).中光强航空障碍灯是以规律性的固定模式闪光.在下图中你可以看到某一种中光强航空障碍灯的闪光模式,灯的亮暗呈规律性交替变化,那么在一个连续的10秒内,该航空障碍灯处于亮的状态的时间总和最长可达7秒.【分析】观察者所处的位置定为一点,叫视点.当该航空障碍灯处于亮的状态的时间总和最长时,灯的亮暗呈规律性交替变化为亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,在这10秒中,航空障碍灯处于亮的状态的时间总和为7秒.【解答】解:根据题意,当该航空障碍灯处于亮的状态的时间总和最长时,灯的亮暗呈规律性交替变化为:亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,在这10秒中,航空障碍灯处于亮的状态的时间总和为7秒,故答案为7.【点评】本题考查了视点,正确理解图示是解题的关键.26.在正方体,圆柱,圆锥,球中,三视图均一样的几何体是球体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:正方体只有一个面正对时主视图、俯视图、左视图都是正方形;圆柱主视图和左视图是矩形,俯视图是圆;圆锥主视图和左视图是等腰三角形,俯视图是圆;球体主视图、俯视图、左视图都是圆;因此三视图都完全相同的几何体是球体.故答案为:球体.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.27.一个由9个大小相同的正方体组成的立体图形如图所示,从左面观察这个立体图形,将得到的平面图形的示意图画在如下的画图区中.【分析】根据从左面看得到的图形是左视图,可得答案.【解答】解:从左面观察这个立体图形,分别是2个正方形,1个正方形,1个正方形,如图所示:【点评】本题考查了简单组合体的三视图,关键是把握好三视图所看的方向,从左面看得到的图形是左视图.28.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为4m.【分析】利用中心投影的性质可判断△CDE∽△CBA,再根据相似三角形的性质求出BC 的长,然后计算BC﹣CD即可.【解答】解:∵DE∥AB,∴△CDE∽△CBA,∴=,即=,∴CB=6,∴BD=BC﹣CD=6﹣2=4(m).故答案为4.【点评】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.29.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是5.【分析】先得出从上面看所得到的图形,再求出俯视图的面积即可.【解答】解:从上面看易得第一行有3个正方形,第二行有2个正方形,共5个正方形,面积为5.故答案为5.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,同时考查了面积的计算.30.用若干个相同的小立方块搭一个几何体,使它主视图、俯视图都如图所示,则这样的几何体至少需要9个小立方块.【分析】由于主视图第一列为3层,故俯视图中第一列至少有一个是3层的,其余可是1~3层,同时可分析第2列和第三列,进而得到答案.【解答】解:由主视图可知,它自下而上共有3列,第一列3块,第二列2块,第三列1块.由俯视图可知,它自左而右共有3列,第第一列3块,第二列2块,第三列1块,从空中俯视的块数只要最底层有一块即可.因此,综合两图可知这个几何体的形状不能确定;并且最少时为6+2+1=9块.故答案为:9.【点评】本题考查简单空间图形的三视图,考查空间想象能力,是基础题,难度中等.31.正放的圆柱形水杯的正视图为长方形,俯视图为圆.【分析】依据圆柱体的三视图进行判断即可.【解答】解:正放的圆柱形水杯的正视图为长方形,俯视图为圆,故答案为:长方形,圆.【点评】本题主要考查了简单几何体的三视图,画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.32.如图,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG的中点,矩形EFGH与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是S1=S<S2(用“=、>或<”连起来)【分析】根据长方体的概念得到S1=S,根据矩形的面积公式得到S<S2,得到答案.【解答】解:∵立体图形是长方体,∴底面ABCD∥底面EFGH,∵矩形EFGH的投影是矩形ABCD,∴S1=S,∵EM>EF,EH=EH,∴S<S2,∴S1=S<S2,故答案为:S1=S<S2.【点评】本题考查的是平行投影和立体图形,平行投影:由平行光线形成的投影是平行投影.33.如图是由一些相同的小正方体构成的几何体从不同方向看得到的平面图形,这些相同的小正方体的个数是5.【分析】根据所给的图形可得,几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此小正方体的个数有5个.【解答】解:根据三视图的知识,几何体的底面有4个小正方体,该几何体有两层,第二层有1个小正方体,共有5个;故答案为5.【点评】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就能容易得到答案了.34.一个长方体的主视图和左视图如图所示(单位:cm),其表面积是6cm2.【分析】根据给出的长方体的主视图和左视图可得,俯视图的长方形的长与主视图的长方形的宽相等为3,俯视图的长方形的宽与左视图的长方形的宽相等为2.因此俯视图的面积是6cm2.进而可求出其表面积.【解答】解:俯视图是边长分别为3和2的长方形,因而该长方体的面积为6×2=12cm2.所以其表面积=3×4×2+2×4×2+12=52cm2,故答案为52.【点评】考查立体图形的三视图和学生的空间想象能力.35.一个几何体从正面、左面、上面看都是同样大小的圆,这个几何体是球体.【分析】从正面、左面、上面看得到的图形是几何体的主视图,左视图,俯视图,三视图都是圆的几何体是球.【解答】解:只有球的三视图都是圆,故这个几何体是球体.故答案为:球.【点评】本题考查了由三视图判断几何体,用到的知识点为:三视图相同的几何体有正方体和球体;球的三视图是全等的圆.2022-2023学年人教新版九年级数学下学期《第29章投影与视图》测试卷一.选择题(共16小题)1.如图所示的主视图和俯视图对应的几何体(阴影所示为右)是()A.B.C.D.2.如图是由5个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是()A.B.C.D.3.如图所示几何体的俯视图是()A.B.C.D.4.如图,这是由7个相同的小正方体搭成的几何体,则这个几何体的左视图是()A.B.C.D.5.如图所示几何体的主视图是()A.B.C.D.6.如图所示的几何体是由六个大小相同的小正方体组合而成的,它的俯视图为()A.B.C.D.7.将一个圆柱和一个正三棱柱如图放置,则所构成的几何体的主视图是()A.B.C.D.8.如图所示,几何体的左视图是()A.B.C.D.9.展览厅内要用相同的正方体木块搭成一个三视图如右图的展台,则此展台共需这样的正方体()块.A.7B.8.C.9D.1010.某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均匀切成了8块,并将其中一块(经抽象后)按如图所示的方式放在自已正前方的水果盘中,则这块西瓜的三视图是()A.B.C.D.11.下列立体图形中,俯视图是三角形的是()A.B.C.D.12.小丽在两张6×10的网格纸(网格中的每个小正方形的边长为1个单位长度)中分别画出了如图所示的物体的左视图和俯视图,这个物体的体积等于()A.24B.30C.48D.6013.如图是某几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.长方体D.正方体14.圆形的纸片在平行投影下的正投影是()A.圆形B.椭圆形C.线段D.以上都可能15.如图分别是某校体育运动会的颁奖台和它的主视图,则其俯视图是()A.B.C.D.16.如图2的三幅图分别是从不同方向看图1所示的工件立体图得到的平面图形,(不考虑尺寸)其中正确的是()A.①②B.①③C.②③D.③二.填空题(共19小题)17.一个由13个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,则这个几何体的搭法共有种.18.如图是由一些大小相同的小正方体组成的简单几何体的左视图和俯视图,符合条件的几何体有种.19.如图所示,太阳光线AC和A′C′是平行的,同一时刻两个建筑物在太阳下的影子一样长,那么建筑物是否一样高?说明理由.(注:太阳光线可看成是平行的)20.如图,小芸用灯泡O照射一个矩形相框ABCD,在墙上形成矩形影子A′B′C′D′.现测得OA=20cm,OA′=50cm,相框ABCD的面积为80cm2,则影子A′B′C′D′的面积为cm2.21.由几个相同的小正方体搭成的一个几何体如图所示,这个几何体的主视图可以看到5个小正方体的面,则俯视图与左视图能看到的小正方体的面的个数和为.22.如图是某个几何体的三视图,请写出这个几何体的名称是.23.已知一个几何体的三视图如图所示,则这个几何体的侧面展开图的面积为.24.在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)25.按《航空障碍灯(MH/T6012﹣1999)》的要求,为保障飞机夜间飞行的安全,在高度为45米至105米的建筑上必须安装中光强航空障碍灯(AviationObstructionlight).中光强航空障碍灯是以规律性的固定模式闪光.在下图中你可以看到某一种中光强航空障碍灯的闪光模式,灯的亮暗呈规律性交替变化,那么在一个连续的10秒内,该航空障碍灯处于亮的状态的时间总和最长可达秒.26.在正方体,圆柱,圆锥,球中,三视图均一样的几何体是.27.一个由9个大小相同的正方体组成的立体图形如图所示,从左面观察这个立体图形,将得到的平面图形的示意图画在如下的画图区中.28.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.。
人教版数学九年级下学期第29章《投影与视图》测试题(测试时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.如图所示几何体的主视图是().A. B. C. D.2.如图所示的几何体的俯视图是()A. B. C. D.3.如图用6个同样大小的立方体摆成的几何体,将立方体①移走后,所得几何体与原来几何体的()A.主视图改变,左视图改变 B.俯视图不变,左视图不变C.俯视图改变,左视图改变 D.主视图改变,左视图不变4.下列四个几何体中,它们的主视图、左视图、俯视图都是正方形的是()A. B. C. D.5.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()A. B. C. D.6.如图所示是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是().A. B. C. D.7.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是( ) 8.如图,按照三视图确定该几何体的全面积为(图中尺寸单位:cm)()A.128πcm2 B.160πcm2 C.176πcm2 D.192πcm29.如图所示的几何体的左视图是()A. B. C. D.10.如图,在房子屋檐E处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区是()A.△ACE B.△ADF C.△ABD D.四边形BCED二、填空题(每小题3分,共30分)11.苏轼的诗句“横看成岭侧成峰,远近高低各不同”把此诗句用在视图上,说明的现象是________.12.如图,请写出图,图,图是从哪个方向可到的:图________;图________;图________.13.图是一个几何体的主视图、左视图和俯视图,则这个几何体是________.(填序号)14.如图,②是①中图形的________视图.②15.下列投影:①阳光下遮阳伞的影子;②灯光下小明读书的影子;③阳光下大树的影子;④阳光下农民锄地的影子;⑤路灯下木杆的影子.其中属于平行投影的是_______,属于中心投影的是_____.(填序号) 16.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是_________.17.有两根大小、形状完全相同的铁丝,甲铁丝与投影面的夹角是45°,乙铁丝与投影面的夹角是30°,那么两根铁丝在投影面的正投影的长度的大小关系是:甲____乙(填“>”“<”或“=”).18.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,那么线段AC在AB上的正投影是___,线段CD在AB上的正投影是___,线段BC在AB上的正投影是___.19.如图,是一个包装盒的三视图,则这个包装盒的表面积是(结果保留π)20.如图,小明同学在非洲旅游期间想自己测出金字塔的高度,首先小明在阳光下测量出了长1 m的木杆CD的影子CE长1.5m;其次测出金字塔中心O到影子的顶部A的距离为201m。
春人教版九年级数学下册第29章投影与视图单元测试题一.选择题(共10小题)1.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③2.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.3.小红和小花在路灯下的影子一样长,则她们的身高关系是()A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定4.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m5.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了.这是因为()A.汽车开的很快B.盲区减小C.盲区增大D.无法确定6.如图所示的四棱柱的主视图为()A.B.C.D.7.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.8.如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是()A.B.C.D.9.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D10.如图是从三个方向看某个几何体得出的平面图形,该几何体是()A.棱柱体B.圆柱体C.圆锥体D.球体二.填空题(共8小题)11.已知操场上的篮球架上的篮板长1.8米,高1.2米,当太阳光与地面成45°角投射到篮板时,它留在地面上的阴影部分面积为.12.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.13.从正面看、从上面看、从左面看都是正方形的几何体是.14.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图①主视图、②左视图、③俯视图中,是中心对称图形的有.15.用硬纸壳做一个如图所示的几何体,其底面是圆心角为300°的扇形,则该几何体的表面积为cm2.16.如图是一个几何体的三个视图,若这个几何体的体积是24,则它的主视图的面积是.17.如图,是由10个完全相同的小正方体堆成的几何体.若现在你还有若干个相同的小正方体,在保证该几何体的从上面、从正面、从左面看到的图形都不变的情况下,最多还能放个小正方体.18.由一些完全相同的小正方体搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是.三.解答题(共7小题)19.一个几何体的三视图如图所示,根据图示的数据计算该几何体的侧面积.20.如图是从上面看到一个由小正方体搭建的几何体的图形,其中方框内的数字为该处小立方块的个数.请你画出从正面和左面看到这个几何体的图形.21.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的体积和表面积.22.某个几何体由若干个相同的小立方体组成,从正面和左面看到的形状图如图1所示:(1)这个几何体可以是图2甲、乙、丙中的;(2)这个几何体最多由个小立方块堆成:(3)当堆成这个几何体的小立方块个数最少时,画出从上面看到的形状图.23.李明和同学们一起研究“从三个不同方向看问题的形状”.(1)图1是由几个大小相同的小立方体搭成的几何体,请画出从正面看到的这个几何体的形状图;(2)图2是由几个大小相同的小立方体搭成的几何体,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小立方体的个数.请画出从左面看到的这个几何体的形状图.24.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,一摞碟子的层数与累积高度的关系如下表:碟子层数累积高度(cm)1222+1.532+342+4.5……(1)当一摞碟子有x层时,请写出此时的累积高度(用含x的式子表示);(2)桌子上有一些碟子,如图分别是从正面、左面和上面看到的形状图,厨房师傅想把这些碟子全部叠成一摞,求叠成一摞后的累积高度.25.如图是一个大正方体切去一个小正方体组成的几何体.(1)下列三个图形中,从上面、左面、正面看到的平面图形分别是、、;(2)若大正方体的边长为20cm,小正方体的边长为10cm,求这个几何体的表面积.春人教版九年级数学下册第29章投影与视图单元测试题参考答案与试题解析一.选择题(共10小题)1.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③【分析】太阳光可以看做平行光线,从而可求出答案.【解答】解:太阳从东边升起,西边落下,所以先后顺序为:③④①②故选:C.【点评】本题考查平行投影,解题的关键是熟练知道太阳光是平行光线,本题属于基础题型.2.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.【分析】根据题意:水杯的杯口与投影面平行,即与光线垂直;则它的正投影图是应是D.【解答】解:依题意,光线是垂直照下的,故只有D符合.故选:D.【点评】本题考查正投影的定义及正投影形状的确定.3.小红和小花在路灯下的影子一样长,则她们的身高关系是()A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定【分析】根据中心投影的特点,小红和小花在同一路灯下的影长与他们到路灯的距离有关,虽然他们的身高一样,也不能判断谁的身高的高与矮.【解答】解:小红和小花在路灯下的影子一样长,在同一路灯下他们的影长与他们到路灯的距离有关,所以无法判断谁的身高的高与矮.故选:D.【点评】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.4.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m【分析】小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【解答】解:设小明在A处时影长为x,AO长为a,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴,,则,∴x=;,∴y=,∴x﹣y=3.5,故变短了3.5米.故选:C.【点评】此题考查相似三角形对应边成比例,应注意题中三角形的变化.5.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了.这是因为()A.汽车开的很快B.盲区减小C.盲区增大D.无法确定【分析】前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了,说明看到的范围减少,即盲区增大.【解答】解:根据题意我们很明显的可以看出“沉”下去的建筑物实际上是到了自己的盲区的范围内.故选:C.【点评】本题结合了实际问题考查了对视点,视角和盲区的认识和理解.6.如图所示的四棱柱的主视图为()A.B.C.D.【分析】依据从该几何体的正面看到的图形,即可得到主视图.【解答】解:由图可得,几何体的主视图是:故选:B.【点评】本题主要考查了三视图,解题时注意:视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.7.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.【分析】根据图中的主视图解答即可.【解答】解:A、图中的主视图是2,1;B、图中的主视图是2,1;C、图中的主视图是2,1;D、图中的主视图是2,2;故选:D.【点评】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置.8.如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是()A.B.C.D.【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可得到答案.【解答】解:如图,左视图如下:故选:D.【点评】本题考查了作图﹣﹣三视图、由三视图判断几何体,本题画几何体的三视图时应注意小正方形的数目及位置.9.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D【分析】主视图是从几何体的正面看所得到的视图,俯视图是从几何体的上面看所得到的图形.【解答】解:主视图是矩形且中间有两道竖杠,俯视图是两个同心圆,故选:D.【点评】此题主要考查了三视图,关键是掌握主视图和俯视图所看的位置.10.如图是从三个方向看某个几何体得出的平面图形,该几何体是()A.棱柱体B.圆柱体C.圆锥体D.球体【分析】由主视图和俯视图可得此几何体为柱体,根据左视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和俯视图都是长方形,∴此几何体为柱体,∵左视图是一个圆,∴此几何体为平放的圆柱体.故选:B.【点评】本题考查了由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.二.填空题(共8小题)11.已知操场上的篮球架上的篮板长1.8米,高1.2米,当太阳光与地面成45°角投射到篮板时,它留在地面上的阴影部分面积为 2.16m2.【分析】根据平行投影,篮板在地面上的阴影部分为矩形,此矩形的长等于篮板长,为1.8m,由于太阳光与地面成45°角,根据等腰直角三角形的性质得矩形的宽等于篮板宽,为1.2m,然后根据矩形得面积公式求解.【解答】解:因为太阳光线是平行光线,所以篮板在地面上的阴影部分为矩形,此矩形的长等于篮板长,为1.8m,由于太阳光与地面成45°角,则矩形的宽等于篮板宽,为1.2m,所以篮板长留在地面上的阴影部分面积=1.8×1.2=2.16(m2).故答案为2.16m2.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.太阳光线是平行光线.12.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为4m.【分析】利用中心投影的性质可判断△CDE∽△CBA,再根据相似三角形的性质求出BC的长,然后计算BC﹣CD即可.【解答】解:∵DE∥AB,∴△CDE∽△CBA,∴=,即=,∴CB=6,∴BD=BC﹣CD=6﹣2=4(m).故答案为4.【点评】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.13.从正面看、从上面看、从左面看都是正方形的几何体是正方体.【分析】正方体从三个方向看到的形状图都是正方形,即三视图都是正方形.【解答】解:一个几何体从三个方向看到的形状图都是正方形,即三视图均为正方形,这样的几何体是正方体.故答案为:正方体.【点评】本题考查由三视图确定几何体的形状,关键是根据对几何体的认识解答.14.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图①主视图、②左视图、③俯视图中,是中心对称图形的有③俯视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,“田”字是中心对称图形,主视图是1,2,1,不是中心对称图形,左视图是1,2,1,不是中心对称图形,故答案为:③俯视图【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.15.用硬纸壳做一个如图所示的几何体,其底面是圆心角为300°的扇形,则该几何体的表面积为(60+75π)cm2.【分析】求得该几何体的侧面积以及底面积,相加即可得到表面积.【解答】解:侧面积为10×(6+)=60+50π,底面积之和为:2×=15π,∴该几何体的表面积为60+50π+15π=60+65π,故答案为:60+65π.【点评】本题主要考查了几何体的表面积,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.16.如图是一个几何体的三个视图,若这个几何体的体积是24,则它的主视图的面积是12.【分析】由2个视图是长方形,那么这个几何体为棱柱,另一个视图是三角形,那么可得该几何体是三棱柱,由三视图知,三棱柱的正面的高是3,根据三棱柱的体积公式得到三角形的底,根据三角形公式列式计算即可.【解答】解:由三视图知,几何体是一个三棱柱,三棱柱的正面是高为3的三角形,∵这个几何体的体积是24,∴三角形的底为=8,∴它的主视图的面积=×8×3=12,故答案为:12.【点评】此题考查了由三视图判断几何体和几何体的表面积求法,正确判断出几何体的形状是解题的关键.17.如图,是由10个完全相同的小正方体堆成的几何体.若现在你还有若干个相同的小正方体,在保证该几何体的从上面、从正面、从左面看到的图形都不变的情况下,最多还能放1个小正方体.【分析】根据主视图是从正面看得到图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图,可得答案.【解答】解:主视图是第一层三个小正方形,第二层是左边一个小正方形,中间一个小正方形,第三层是左边一个小正方形,俯视图是第一层三个小正方形,第二层三个小正方形,左视图是第一层两个小正方形,第二层两个小正方形,第三层左边一个小正方形,不改变三视图,中间第二层加一个,故答案为:1.【点评】本题考查了简单几何体的三视图,主视图是从正面看得到图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图.18.由一些完全相同的小正方体搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是4或5.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,上层最多有2个,最少1个,下层一定有3个,∴组成这个几何体的小正方体的个数可能是4个或5个,故答案为:4或5.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.三.解答题(共7小题)19.一个几何体的三视图如图所示,根据图示的数据计算该几何体的侧面积.【分析】根据三视图判断出该几何体的形状,再求出侧面积即可得出答案.【解答】解:根据三视图可得该几何体是一个三棱柱,侧面积为4×3×6=72.【点评】此题考查了由三视图判断几何体,用到的知识点是长方形的面积,同时也体现了对空间想象能力方面的考查.20.如图是从上面看到一个由小正方体搭建的几何体的图形,其中方框内的数字为该处小立方块的个数.请你画出从正面和左面看到这个几何体的图形.【分析】分别利用小立方块的个数得出其形状,进而画出左视图与主视图.【解答】解:如图所示:.【点评】此题考查了作图﹣三视图,由三视图判断几何体,正确想象出立体图形的形状是解题关键.21.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的体积和表面积.【分析】首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面积即可.【解答】解:根据三视图可得:上面的长方体长4mm,高4mm,宽2mm,下面的长方体长6mm,宽8mm,高2mm,∴立体图形的体积是:4×4×2+6×8×2=128(mm3),∴立体图形的表面积是:4×4×2+4×2×2+4×2+6×2×2+8×2×2+6×8×2﹣4×2=200(mm2).【点评】此题主要考查了由三视图判断几何体以及求几何体的表面积,根据图形看出长方体的长,宽,高是解题的关键.22.某个几何体由若干个相同的小立方体组成,从正面和左面看到的形状图如图1所示:(1)这个几何体可以是图2甲、乙、丙中的甲和乙;(2)这个几何体最多由9个小立方块堆成:(3)当堆成这个几何体的小立方块个数最少时,画出从上面看到的形状图.【分析】(1)由主视图和左视图的定义求解可得;(2)构成几何体的正方体个数最少时,其正方体的构成是在乙的基础上左数第1列前面再添加1个正方形即可得;(3)正方体个数最少时如图甲,据此作出俯视图即可得.【解答】解:(1)由主视图和左视图知,这个几何体可以是图2甲、乙、丙中的甲和乙,故答案为:甲和乙;(2)这个几何体最多可以由9个小正方体组成,故答案为:9;(3)如图所示:【点评】本题考查作图﹣三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.23.李明和同学们一起研究“从三个不同方向看问题的形状”.(1)图1是由几个大小相同的小立方体搭成的几何体,请画出从正面看到的这个几何体的形状图;(2)图2是由几个大小相同的小立方体搭成的几何体,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小立方体的个数.请画出从左面看到的这个几何体的形状图.【分析】(1)观察几何体,作出三视图即可.(2)由已知条件可知,从正面看有2列,每列小正方数形数目分别为3,2;从左面看有2列,每列小正方形数目分别为2,3.据此可画出图形.【解答】解:(1)如图所示:(2)如图所示:【点评】此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.24.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,一摞碟子的层数与累积高度的关系如下表:碟子层数累积高度(cm)1222+1.532+342+4.5……(1)当一摞碟子有x层时,请写出此时的累积高度(用含x的式子表示);(2)桌子上有一些碟子,如图分别是从正面、左面和上面看到的形状图,厨房师傅想把这些碟子全部叠成一摞,求叠成一摞后的累积高度.【分析】(1)观察表格数据不难发现,每增加一个碟子高度增加1.5cm,然后写出即可;(2)根据三视图判断出碟子的个数为12个,然后代入(1)中算式计算即可得解.【解答】解:(1)由图可知,每增加一个碟子高度增加1.5cm,桌子上放有x个碟子时,高度为2+1.5(x﹣1)=1.5x+0.5;(2)由图可知,共有3摞,左前一摞有4个,左后一摞有5个,右边前面一摞有3个,共有:3+4+5=12个,叠成一摞后的高度=1.5×12+0.5=18.5cm.【点评】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状.25.如图是一个大正方体切去一个小正方体组成的几何体.(1)下列三个图形中,从上面、左面、正面看到的平面图形分别是③、②、①;(2)若大正方体的边长为20cm,小正方体的边长为10cm,求这个几何体的表面积.【分析】(1)根据从上面、左面、正面看到的三视图,可得答案.(2)依据三视图的面积,即可得到这个几何体的表面积.【解答】解:(1)由题可得,从上面、左面、正面看到的平面图形分别是③,②,①;故答案为:③,②,①;(2)∵大正方体的边长为20cm,小正方体的边长为10cm,∴这个几何体的表面积为:2(400+400+400)=2×1200=2400(cm2).【点评】本题考查了简单组合体的三视图以及几何体的表面积,画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.。
第29章投影与视图单元检测一、选择题1.如图,图中的几何体是将圆柱沿竖直方向切掉一半后,再在中心挖去一个圆柱得到的,则该几何体的左视图是()A. B. C. D.2.下列图形是正方体表面积展开图的是()A. B. C. D.3.由一些相同的立方体搭成某几何体,这个几何体的主视图和俯视图如图所示,请问搭这样一个几何体最多需要多少小立方体?()A. 4B. 5C. 6D. 74.如图所示几何体的左视图是()A.B.C.D.5.人往路灯下行走的影子变化情况是()A. 长⇒短⇒长B. 短⇒长⇒短C. 长⇒长⇒短D. 短⇒短⇒长6.下列水平放置的几何体中,俯视图是矩形的是()A. 圆柱B. 长方体C. 三棱柱D. 圆锥7.下列四个几何体中,左视图为圆的是()A. B. C. D.8.下列立体图形中,俯视图是正方形的是()A. B. C. D.9.如图四个几何体,其中,它们各自的主视图与俯视图不相同的几何体的个数是()A. 1B. 2C. 3D. 410.如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是()A. B. C. D.二、填空题11.直角坐标平面内,一点光源位于A(0,5)处,线段CD⊥x轴,D为垂足,C(3,1),则CD在x轴上的影长为________ ,点C的影子的坐标为________ .12.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图和左视图的面积之和是________13.已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为________14.一个上下底密封的纸盒的三视图如图所示,请你根据图中的数据,计算这个密封纸盒的表面积为________m2.(结果保留π)15.皮影戏中的皮影是由投影得到的________ .16.三棱柱的三视图如图所示,△EFG中,EF=10cm,EG=16cm,∠EGF=30°,则AB的长为________cm .17.某长方体包装盒的展开图如图所示,如果长方体盒子的长比宽多4cm,则这个包装盒的体积是________ cm3.18.如图是一个正方体的展开图,如果将它折成一个正方体,相对面上的数相等,则x+y的值为________.三、解答题19.如图是由6个相同的正方形拼成的图形,请你将其中一个正方形移动到合适的位置,使它与另5个正方形能拼成一个正方体的表面展开图.(请在图中将要移动的那个正方形涂黑,并画出移动后的正方形).20.有一个正方体,在它的各个面上分别标上数字1、2、3、4、5、6,甲、乙、丙三位同学从三个不同的角度去观察此正方体,观察结果如图所示:请画出正方体的一种表面展开图,(要求把数字标注在表面展开图中)21.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.22.观察:下图中的几何体是由若干个完全相同的小正方体搭成的.(1)画出几何体的主视图,左视图,俯视图;(2)能移走一个小正方体使它的三个视图都不变吗?23.如图,是一个由若干同样大小的正方体搭成的几何体俯视图,小正方形中的数字表示在该位置的立方体的个数.(1)请你画出它的从正面看和从左面看的形状图.(2)如果每个立方体的棱长为2cm,则该几何体的表面积是多少?24. 小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.参考答案一、选择题1.A2.D3.B4.B5.A6.B7. D8.B9.C 10.A二、填空题11.;(3.75,0)12.5 13.48π 14.600π 15.中心投影16.8 17.90 18. 11三、解答题19.解:答案如下:20.解:从3个小立方体上的数可知,与写有数字1的面相邻的面上数字是2,3,4,6,所以数字1面对数字5面,同理,立方体面上数字3对6.故立方体面上数字2对4.作图为:21.解:22.(1)(2)去掉粉红色的立方体,三视图不变23.解:(1)如图所示:(2)(2×2)×(6×2+6×2+5×2+4)=4×38=152(平方厘米).故该几何体的表面积是152平方厘米.24.解(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20cm,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.。
人教版九年级数学下册第二十九章-投影与视图专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,该几何体的主视图是()A.B.C.D.2、用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,则最少需要小立方块的个数为()A.6 B.7 C.10 D.13、如图所示的几何体的左视图是()A.B.C.D.4、某几何体从三个方向看到的平面图形都相同,这个几何体可以是()A.B.C.D.5、如图,一路灯距地面5.6米,身高1.6米的小方从距离灯的底部(点O)5米的A处,沿OA所在的直线行走到点C时,人影长度增长3米,小方行走的路程AC=()A.7.2 B.6.6 C.5.7 D.7.56、如图所示的几何体的俯视图是()A.B.C.D.7、图中几何体的左视图是()A.B.C.D.8、如图是由6个同样大小的正方体摆成,将标有“1”的这个正方体去掉,所得几何体()A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图改变,主视图改变D.主视图不变,左视图改变9、如图所示的几何体从左面看到的图形是( )A.B.C.D.10、如图的几何体是由一些小正方体组合而成的,则这个几何体的左视图是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个立体图形,从正面看到的形状是,从左面看到的形状图是.搭这样的立体图形,最少需要________个小正方体,最多可以有________个正方体.2、一空间几何体的三视图如图所示,则这个几何体的表面积是________2cm.3、如图,某工件的三视图(单位:cm),若俯视图为直角三角形,则此工件的体积为__.4、由一些大小相同的小正方体搭成的几何体从正面和从左面看到的图形如图所示,则搭成该几何体的小正方体的个数最少是____5、用若干个相同的小立方块搭建一个几何体,使从它的正面和上面看到的图形如图所示,动手搭一搭,最多和最少需要的小立方块相差______个.三、解答题(5小题,每小题10分,共计50分)1、我们从不同的方向观察同一物体时,可以看到不同的平面图形,如图是一个由7个相同的小正方体搭成的几何体,请从图的正面、左面和上面看这个几何体,并在所给的图中画出各自的图形.2、由7个相同的小立方块搭成的几何体如图所示,(1)请画出从它的正面、上面、左面看到的图形.(2)计算它表面积(棱长为1),3、如图是用10块完全相同的小正方体搭成的几何体.(1)请在空白的方格中分别画出从正面、从左面、从上面看到的所搭几何体的形状图;(2)若保持从正面和从上面看到的形状图不变,最多还可以再搭块小正方体.4、如图,是公园的一圆形桌面的主视图,表示该桌面在路灯下的影子.(1)请你在图中找出路灯的位置(要求保留画图痕迹,光线用虚线表示);(2)若桌面直径和桌面与地面的距离均为1.2m,测得影子的最大跨度为2m,求路灯O与地面的距离.5、(1)请在网格中画出如图所示的几何体的主视图、左视图、俯视图;(2)已知每个小正方体的棱长为1cm,求该几何体的表面积.---------参考答案-----------一、单选题1、B【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中,看不到的棱需要用虚线来表示.【详解】解:从正面看易得,该几何体的视图为B,故选:B【点睛】本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,掌握主视图的概念是解题的关键.2、C【分析】从主视图和左视图考虑几何体的形状,从俯视图看出几何体的小立方块最少与最多的数目,利用口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”求解即可.【详解】解:由主视图可知,它自下而上共有3列,第一列3块,第二列2块,第三列1块.由俯视图可知,它自左而右共有3列,第一列与第二列各3块,第三列1块,从空中俯视的块数只要最底层有一块即可.因此,综合两图可知这个几何体的形状不能确定;并且最少时为第一列中有一个三层,其余为一层,第二列中有一个二层,其余为一层,第三列一层,共10块.故选:C.【点睛】题目主要考查对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”是解题关键.3、D【分析】根据左视图的定义即可得.【详解】解:左视图是指从左面观察几何体所得到的视图,这个几何体的左视图是,故选:D.【点睛】本题考查了左视图,熟记定义是解题关键.4、C【分析】根据三视图判断即可;【详解】的左视图、主视图是三角形,俯视图是圆,故A不符合题意;的左视图、主视图是长方形,俯视图是三角形,故B不符合题意;的主视图、左视图、俯视图都是正方形,故C符合题意;的左视图、主视图是长方形,俯视图是圆,故D不符合题意;故选C.【点睛】本题主要考查了几何体三视图的判断,准确分析是解题的关键.5、D【分析】设出影长AB 的长,利用相似三角形可以求得AB 的长,然后在利用相似三角形求得AC 的长即可.【详解】解:∵AE ⊥OD ,OG ⊥OD ,∴AE//OG ,∴∠AEB =∠OGB ,∠EAB =∠GOB ,∴△AEB ∽△OGB , ∴AE AB OG BO =,即 1.65.65AB AB =+, 解得:AB =2m ;∵OA 所在的直线行走到点C 时,人影长度增长3米,∴DC =AB +3=5m ,OD =OA+AC+CD =AC+10,∵FC∥GO ,∴∠CFD =∠OGD ,∠FCD =∠GOD ,△DFC ∽△DGO , ∴FC CD GO DO=, 即1.655.610AC =+, 解得:AC =7.5m .所以小方行走的路程为7.5m .故选择:D .【点睛】本题主要考查的是相似三角形在实际中的中心投影的应用,掌握相似三角形判断与性质,利用对应边成比例是解答本题的关键.6、D【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:结合所给几何体,其俯视图应为一个正方形,然后在正方形内部的左下角还有一个小长方形,故选D.【点睛】本题主要考查了简单几何体的三视图,熟知三视图的定义是解题的关键.7、B【分析】根据左视图是从物体左面看,所得到的图形进行解答即可.【详解】解:图中几何体的左视图是:【点睛】本题主要考查了简单组合体的三视图,解题的关键是掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.8、A【分析】根据几何体的三视图判断即可;【详解】根据已知图形,去掉标有“1”的这个正方体,主视图改变,俯视图和左视图不变;故选A.【点睛】本题主要考查了几何体三视图的应用,准确分析判断是解题的关键.9、D【分析】左视图就是从几何体的左边看所得到的图形,实际上就是从左面“正投影”所得到的图形.【详解】解:观察几何体,从左面看到的图形是两个大小不一的圆,如图所示:故选:D.【点睛】本题考查了几何体的三视图,解题的关键是正确理解三视图的意义.10、B根据左视图是从左面看得到的图形,可得答案.【详解】解:从左边看,上面一层是一个正方形,下面一层是两个正方形,故选B【点睛】本题考查了简单组合体的三视图,从左面看得到的图形是左视图,掌握三视图的有关定义是解题的关键.二、填空题1、 6 10【解析】【分析】根据题中所给的正面的形状和左面的形状即可得.【详解】解:根据题中所给的正面的形状和左面的形状可知,最少需要6个,将小正方体横着摆5个,再在任意一个小正方体的后面放一个小正方体;最多需要10个,将小正方体横着摆5个,再在每一个小正方体的后面放一个小正方体;故答案为:6,10.【点睛】本题考查了三视图,解题的关键是根据三视图得出立体图形.2、48π【解析】【分析】由题意推知几何体是圆柱,高为5cm ,底面半径为3cm ,根据圆柱的表面积公式可求可求其表面积.【详解】解:由题意推知几何体是圆柱,从主视图,左视图可知高为5cm ,从俯视图可知底面半径为3cm , 圆柱的表面积是:2×32×π+2π×3×5=48π故答案为:48π.【点睛】本题考查三视图、圆柱的表面积,考查简单几何体的三视图的运用.培养同学们的空间想象能力和基本的运算能力.基础题.3、30cm3【解析】【分析】通过三视图还原原几何体,利用柱体的体积公式V =Sh 即可求解.【详解】解:由主视图与左视图都是长方形,说明该几何体是柱体,由俯视图知底面是直角三角形的直三棱柱,∴几何体的三视图转化成的几何体为:底面为直角三角形的直三棱柱,由主视图与左视图可知底边是直角边为4cm ,3cm 的直角三角形,高为5cm 的三棱柱,底面三角形面积S =2143=62cm ⨯⨯ ∴此工件的体积=Sh =6×5=30(cm 3),故答案为:30cm 3.【点睛】本题考查由三视图到立体图形,通过简单几何体的三视图逆向思维得出简单几何体,柱体的体积,关键是掌握由三视图通过平面图形到立体图形的想象得出几何体.4、4【解析】【分析】由主视图可知几何体有两列,两层;由左视图可知几何体有两排,两层,所以第一列最少1个正方体,第二列有最少有3个正方体,由此可解.【详解】解:由主视图,左视图画出几何体,如图:故答案为:4.【点睛】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.5、5【解析】【分析】根据正面看与上面看的图形,得到俯视图中最左的一列都为3层,第2列都为2层,第3列为1层,得到最多共3+3+3+2+2+1=14个小正方体,再根据正面看与上面看的图形,得到俯视图中的第1列只有一处为3层,其余为1层,分三种情况考虑:最底层为3层,中间为3层,上面为3层;第2列只有一处为2层,上面或下面;第3列为1层,最少需要1+1+3+1+2+1=9个小正方体.【详解】解:由题意可得:最多需要14个小正方体,最少需要9个正方体,相差14-9=5个,故答案为:5.【点睛】本题考查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.三、解答题1、见解析【分析】主视图有3列,每列小正方形数目分别为1,2,3;左视图有2列,每列小正方形数目分别为3,1;俯视图有3列,每行小正方形数目分别为1,1,2.【详解】解:如图所示:【点睛】此题主要考查了作三视图,根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题关键.2、(1)见详解;(2)28【分析】(1)根据三视图的定义及其分布情况作图可得;(2)将三个方向上的面积相加,再乘以2,然后加上凹进去的两个面可得其表面积.【详解】解:(1)该几何体的三视图如图所示:(2)其表面积为2×(5+5+3)+2=28.【点睛】本题主要考查作图−三视图,解题的关键是熟练掌握三视图的定义及表面积的求法.3、(1)见解析;(2)3【分析】(1)根据三视图的画法分别画出从正面、左面、上面看该组合体所看到的图形即可;(2)可在最左侧前端放两个后面再放一个即可得出答案.【详解】解:(1)该组合体的三视图如图所示:(2)在俯视图的相应位置最多添加相应数量的正方体,如图所示:∴最多还可以再搭3块小正方体.【点睛】本题考查简单组合体的三视图,理解视图的意义,掌握简单组合体三视图的画法是正确解答的关键.4、(1)见解析;(2)路灯O与地面的距离为3m【分析】MA NB并延长,两条线的交点就是灯光的位置;(1)由题意连接,,(2)作OF⊥MN交AB于E,证明△OAB∽△OMN,再利用相似三角形的对应高的比等于相似比建立方程求解即可.【详解】解:(1)如图,点即为为所求;(2)作OF⊥MN交AB于E,如图,AB=1.2m,EF=1.2m,MN=2m,∵AB MN∥,∴△OAB∽△OMN,∴AB:MN=OE:OF,即1.2 1.2=2OFOF,解得OF=3(m).经检验:符合题意答:路灯O与地面的距离为3m.【点睛】本题考查的是中心投影的性质,相似三角形的判定与性质,掌握“相似三角形的对应高的比等于相似比”是解题的关键.5、(1)见解析;(2)26cm2.【分析】(1)根据三视图的画法画出相应的图形即可;(2)根据三视图的面积求出几何体的表面积即可.【详解】解:(1)三视图如下(2)该几何体的表面积为242+42+52=26cm⨯⨯⨯【点睛】本题考查简单几何体的三视图,熟练掌握三简单几何体的三视图的特点是解答的关键.。
第二十九章投影与视图一、选择题(本大题共7小题,每小题5分,共35分)1.下列结论中正确的有()① 同一地点、同一时刻,不同物体在阳光照射下,影子的方向是相同的; ② 不同物体在任何光线照射下影子的方向都是相同的; ③ 同一物体在路灯照射下,影子的方向与路灯的位置有关; ④ 物体在光线照射下,影子的长短仅与物体的长短有关.如图29-Z-1是某零件的直观图,则它的主视图为()图 29-Z-1如图29-Z-3是水平放置的圆柱形物体,物体中间有一根细木棒,则此几何体的左视图是()图 29-Z-45. 一个正方体被截去四个角后得到一个几何体(如图29-Z-5),它的俯视图是A. 1个B. 2个C ・3个D. 4个2. 圆形物体在阳光下的投影不可能是() A. 圆形B.线段C.矩形D.椭圆3. B C 图 29-Z-24. 正面AD止面图 29-Z-3ABCD6. 由一些大小相同的小正方体组成的几何体的三视图如图29-Z-7所示,那么组成这个几何体的小正方体有(左视图图 29-Z-7A ・4个 B. 5个 C. 6个 D. 7个7. 一个几何体的三视图如图29-Z-8所示,则这个几何体的侧面积为()图 29-Z-8 A • 2兀 cnT B • 4兀 cnT C. 8兀 cm 2 D• I671 cm 2二、填空题(本大题共6小题,每小题5分,共30分)8. 写出一个在三视图中俯视图与主视图完全相同的儿何体: _________ ・ 9. 如图29-Z-9是由四个小正方体组成的几何体,若每个小正方体的棱长都是1,则该几何体的俯视图的面积是A 图 29-Z-5图 29-Z-6D主视图 俯视图图29-Z-910. 一个几何体的三视图如图29-Z-10所示(其中标注的a, b, C 为相应的边长),则这个几何体的体积是 ________ •图 29-Z-1011. 已知小明同学身高1.5 m,经太阳光照射,在地上的影长为2 m,若此时测得一座塔在地上的影长为60 m,则塔高为 _________ m.12. 已知某正六棱柱的主视图如图29-Z-11所示,则该正六棱柱的表面积为60 f―> 1010图 29-Z-1113. 在桌面上摆放着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图29-Z-12所示,设组成这个几何体的小正方体的个数为弘则n 的最小值为三、解答题(本大题共3小题,共35分)14. (9分)画出如图29—Z —13所示几何体的三视图.图 29-Z-1315. (12分)如图29-Z-14,已知线段AB=2cm,投影面为P,太阳光线与投影面垂直.(1)当AB 垂直于投影面P 时(如图①),请画出线段AB 的投影;b主视图图 29-Z-12(2)当AB平行于投影面P吋(如图②),请画出它的投影,并求出正投影的长;(3)在(2)的基础上,点A不动,线段AB绕点A在垂育于投影面P的平面内逆时针旋转30。
第二十九章投影与视图29.1 投影01基础题知识点1平行投影1.由下列光源产生的投影,是平行投影的是(A)A.太阳B.路灯C.手电筒D.台灯2.平行投影中的光线是(A)A.平行的B.聚成一点的C.不平行的D.向四面发散的3.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是(D)4.在同一时刻,两根长度不等的竿子置于阳光之下,但它们的影长相等,那么这两根竿子的相对位置是(C) A.两根都垂直于地面B.两根平行斜插在地上C.两根竿子不平行D.一根倒在地上5.将一个三角形放在太阳光下,它所形成的投影是三角形或线段.知识点2中心投影6.如图,晚上小亮在路灯下散步,他从A处向着路灯灯柱方向径直走到B处,这一过程中他在该路灯灯光下的影子(A)A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短7.小飞晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说,广场上的大灯泡一定位于两人中间的上方.8.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD.(1)请你在图中画出路灯灯泡所在的位置;(用点P表示)(2)画出小华此时在路灯下的影子.(用线段EF表示)解:如图所示.知识点3正投影9.一根笔直的小木棒(记为线段AB),它的正投影为线段CD,则下列各式中一定成立的是(D) A.AB=CD B.AB≤CDC.AB>CD D.AB≥CD10.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是(D)11.如图是一个三棱柱,它的正投影是下图中的②.(填序号)02中档题12.皮皮拿着一块正方形纸板在阳光下做投影实验,正方形纸板在投影面上形成的投影不可能是(D) A.正方形B.长方形C.线段D.梯形13.如图,某小区内有一条笔直的小路,路的正中间有一路灯,晚上小华由A处走到B处,她在灯光照射下的影长l与行走的路程s之间的变化关系,用图象刻画出来,大致图象是(C)14.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序进行排列,正确的是(C)A .③①④②B .③②①④C .③④①②D .②④①③15.如图,在水平地面上竖立着一面墙AB ,墙外有一盏路灯D.光线DC 恰好通过墙的最高点B ,且与地面形成37°角.墙在灯光下的影子为线段AC ,并测得AC =5.5 m .(1)求墙AB 的高度;(结果精确到0.1 m .参考数据:tan 37°≈0.75,sin 37°≈0.60,cos 37°≈0.80) (2)如果要缩短影子AC 的长度,同时不能改变墙的高度和位置,请你写出两种不同的方法.解:(1)在Rt △ABC 中,AC =5.5 m , ∠C=37°,tan C =AB AC,∴AB=AC·tan C≈5.5×0.75≈4.1(m ).(2)要缩短影子AC 的长度,增大∠C 的度数即可.因此第一种方法:增加路灯D 的高度;第二种方法:使路灯D 向墙靠近.03 综合题16.如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1 m 长的影子,已知窗框的影子DE 到窗下墙脚的距离CE =3.9 m ,窗口底边离地面的距离BC =1.2 m ,试求窗口(即AB)的高度.解:由于阳光是平行光线,即AE∥BD, ∴∠AEC=∠BDC.又∵∠BCD 是公共角, ∴△AEC∽△BDC. ∴AC BC =EC DC. 又∵AC=AB +BC ,DC =EC -ED ,EC =3.9 m ,ED =2.1 m ,BC =1.2 m ,∴AB+1.21.2=3.93.9-2.1.解得AB=1.4.答:窗口的高度为1.4 m.29.2 三视图第1课时几何体的三视图01基础题知识点1三视图的有关概念1.(2018·安徽)一个由圆柱和圆锥组成的几何体如图水平放置,其主视图为(A)2.(2018·菏泽)如图是两个等直径圆柱构成的“T”形管道,其左视图是(B)3.(2018·黄石)如图,该几何体的俯视图是(A)4.下列四个立体图形中,左视图为矩形的是(B)A.①③B.①④ C.②③ D.③④5.(2018·十堰)今年“父亲节”佳佳给父亲送了一个礼盒,该礼盒的主视图是(C)6.(2018·咸宁)用4个完全相同的小正方体搭成如图所示的几何体,该几何体的(A)A.主视图和左视图相同B.主视图和俯视图相同C.左视图和俯视图相同D.三种视图都相同7.如图的立体图形的左视图可能是(A)知识点2三视图的画法8.画出如图所示物体的三视图.解:如图所示.02中档题9.如图所示的几何体,其主视图是(A)A B C D 10.(2018·成都)如图所示的正六棱柱的主视图是(A)11.桌面上放着1个长方体和1个圆柱体,按下图所示的方式摆放在一起,其左视图是(C)12.如图所示的几何体的俯视图是(B)13.(2018·泰州)下列几何体中,主视图与俯视图不相同的是(B)面正中间放置)摆在讲桌上,请你画出这个几何体的三视图.解:如图.03综合题15.某娱乐节目要求选手按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为下列几何体中的哪一个?选择并说明理由.解:比较各几何体的三视图,考虑是否有矩形,圆及三角形即可.对于A,三视图分别为矩形、三角形、圆(含直径),符合题意;对于B,三视图分别为三角形、三角形、圆(含圆心),不符合题意;对于C,三视图分别为正方形、正方形、正方形,不符合题意;对于D,三视图分别为三角形、三角形、矩形(含对角线),不符合题意,故选A.第2课时由三视图确定几何体01基础题知识点由三视图确定几何体1.(2017·新疆)某几何体的三视图如图所示,则该几何体是(D)A.球B.圆柱C.三棱锥D.圆锥2.(2017·宜昌)一个几何体的三视图如图所示,则这个几何体是(A)A.圆柱B.圆锥C.长方体D.球3.如图是某个几何体的三视图,则该几何体的形状是(D)A.长方体B.圆锥C.圆柱D.三棱柱4.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是(C) A.圆柱B.圆锥C.球D.正方体5.(2018·襄阳)一个几何体的三视图如图所示,则这个几何体是(C)6.图中的三视图所对应的几何体是(B)7.如图是一个几何体的三视图,则这个几何体是(B)A.正方体B.长方体C.三棱柱D.三棱锥8.一个几何体的三视图如图所示,那么这个几何体是(D)9.如图是一个几何体的俯视图,则该几何体可能是(B)10.(2018·河北)图中三视图对应的几何体是(C)11.某几何体的主视图和左视图完全一样,均如图所示,则该几何体的俯视图不可能是(C)方体的个数,则该几何体的左视图是(D)A B C D13.(2018·武汉)一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是(C)14.根据如图所示的几何体的三视图描述物体的形状.解:几何体的形状为:03综合题15.某个长方体的主视图是边长为1 cm的正方形.沿这个正方形的对角线向垂直于正方形的方向将长方体切开,截面是一个正方形.那么这个长方体的俯视图是(D)第3课时由三视图确定几何体的表面积或体积01基础题知识点1几何体的展开图1.如下左图是一个长方体包装盒,则它的平面展开图是(A)2.(2018·河南)某正方体的每个面都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是(D)A.厉B.害C.了D.我3.(2018·无锡)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是(C)4.如图是一个几何体的三视图,则这个几何体的展开图可以是(A)知识点2由三视图确定几何体的表面积或体积5.(2018·孝感)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积为16πcm2.6.如图,这是一个长方体的主视图和俯视图,由图示数据(单位:cm)可以得出该长方体的体积是18cm3.7.如图是某几何体的展开图.(1)这个几何体的名称是圆柱;(2)画出这个几何体的三视图;(3)求这个几何体的体积.(π取3.14)解:(2)三视图为:(3)体积为:πr2h=3.14×52×20=1 570.02中档题8.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为(B)A.60πB.70πC.90πD.160πA.90° B.120°C.135° D.150°的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭的几何体拼成一个大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要19个小正方体,王亮所搭几何体表面积为48.11.(教材P 99例5变式)(2018·白银)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为108.12.(2017·滨州)如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为12+15π.13.(教材P 101练习T 2变式)如图是某几何体的三视图,根据图中数据,14.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.解:该几何体的形状是直四棱柱,由三视图知,棱柱底面菱形的对角线长分别为4 cm ,3 cm , ∴菱形的边长为(32)2+(42)2=52(cm ), 棱柱的侧面积为52×8×4=80(cm 2).03 综合题15.如图是一个几何体的三视图(单位:cm ).(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求出这个线路的最短路程.解:(1)圆锥.(2)S表=S扇形+S圆=πrl+πr2=12π+4π=16π(cm2).(3)如图,将圆锥侧面展开,线段BD为所求的最短路程.由条件,得∠BAB′=120°,∵C为BB′的中点,AB=6 cm,∴BD=3 3 cm.即蚂蚁爬行路线的最短距离为3 3 cm.小专题(十一) 三视图的几种常见考查方式方式1 由几何体识别视图1.(2018·嘉兴)下列几何体中,俯视图为三角形的是(C )2.如图所示的几何体的俯视图为(D )A B C D 3.如图,该几何体主视图是(B )A B C D4.如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是(B )A .俯视图与主视图相同B .左视图与主视图相同C .左视图与俯视图相同D .三个视图都相同5.如图是一个空心圆柱体,它的左视图是(B )A B C D6.如图,由四个正方体组成的几何体的左视图是(B )A B C D7.如图,两个等直径圆柱构成如图所示的T 型管道,则其俯视图正确的是(B )A B C D8.如图所示的几何体的主视图正确的是(D )A B C D方式2 由视图还原几何体9.(2017·武汉)某物体的主视图如图所示,则该物体可能为(A )A B C D10.一个几何体的三视图如图所示,则这个几何体是(B )A .三棱锥B .三棱柱C .圆柱D .长方体 11.(2017·河南)某几何体的左视图如图所示,则该几何体不可能是(D )A B C D12.如图是一个几何体的三视图,则这个几何体是(B )A B C D方式3由视图确定小正方体的个数13.由若干边长相等的小正方体构成的几何体的主视图、左视图、俯视图如图所示,则构成这个几何体的小正方体有(B)A.5 B.6 C.7 D.814.(2017·威海)一个几何体由n个大小相同的小正方体搭成,其左视图、俯视图如图所示,则n的最小值是(B)A.5 B.7 C.9 D.1015.由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则搭成该几何体的小正方体最多是7个.方式4由视图确定几何体的表面积或体积16.(2017·湖州)如图是按1∶10的比例画出的一个几何体的三视图,则该几何体的侧面积是(D)A.200 cm2B.600 cm2C.100πcm2D.200πcm217.(2017·荆州)如图是某几何体的三视图,根据图中的数据,求得该几何体的体积为(D)A.800π+1 200B.160π+1 700C.3 200π+1 200D.800π+3 00018.(2018·威海)下图是某圆锥的主视图和左视图,该圆锥的侧面积是(C)A.25πB.24πC.20πD.15π章末复习(四) 投影与视图01分点突破知识点1投影1.如图所示,夜晚路灯下同样高的旗杆,离路灯越近,它的影子(B)A.越长B.越短C.一样长D.无法确定2.如图所示,分别是两棵树及其影子的情形.(1)哪个图反映了阳光下的情形?哪个图反映了路灯下的情形?你是用什么方法判断的?试画图说明;(2)在两幅图中画出人的影子.AB解:(1)A图是路灯下的情形;B图是阳光下的情形.如图所示作出光线,光线互相平行,说明是阳光下的投影;光线交于一点,说明是路灯下的投影.(2)人的影子如图所示.知识点2三视图3.如图是由六个相同的小正方体搭成的几何体,这个几何体的主视图是(B)4.(2017·泰安)下面四个几何体:其中,俯视图是四边形的几何体个数是(B)A.1 B.2 C.3 D.45.如图所示,该几何体的左视图是(D)A B C D 6.(2017·广安)如图所示的几何体,上下部分均为圆柱体,其左视图是(C)A B C D7.一个几何体的三视图如图所示,则该几何体的表面积为(D)A.4πB.3πC.2π+4D.3π+402中考题型演练8.(2018·广州)如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是(B)9.(2018·聊城)如图所示的几何体,它的左视图是(D)10.(2018·泰安)如图是下列哪个几何体的主视图与俯视图(C)11.(2018·临沂)如图是一个几何体的三视图(图中尺寸单位:cm).根据图中所示数据求得这个几何体的侧面积是(C)A.12 cm2B.(12+π)cm2C.6πcm2D.8πcm2A.认B.真C.复D.习13.如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是(C)A.5或6或7 B.6或7C.6或7 或8 D.7或8或914.如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为(B)A.236πB.136πC.132πD.120π15.一根电线杆的接线柱部分AB 在阳光下的投影CD 的长为1.2米,太阳光线与地面的夹角∠ACD=60°,则AB 的长为(C )A .1.2米B .0.6米C .653米 D .253米16.晚饭后,小聪和小军在社区广场散步.小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ 移动,如图,当小聪正好站在广场的A 点(距N 点5块地砖长)时,其影长AD 恰好为1块地砖长;当小军正好站在广场的B 点(距N 点9块地砖长)时,其影长BF 恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC 为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE 的长.(结果精确到0.01米)解:由题意,得∠CAD =∠MND=90°,∠CDA=∠MDN.∴△CAD∽△MND. ∴CA MN =AD ND. ∴1.6MN =1×0.8(5+1)×0.8. ∴MN=9.6.又∵∠EBF=∠MNF=90°,∠EFB=∠MFN, ∴△EBF∽△MNF. ∴EB MN =BF NF. ∴EB 9.6=2×0.8(2+9)×0.8. ∴EB≈1.75.∴小军的身高约为1.75米.。
第二十九章投影与视图一、选择题1.下列四个几何体的俯视图中与众不同的是()A.B.C.D.2.下面几何体的主视图是()A.B.C.D.3.如图是一只茶壶,从不同方向看这只茶壶,你认为是俯视效果图的是()A.B.C.D.4.小亮在上午8时、9时、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午12时B.上午10时C.上午9时D.上午8时5.有一圆柱形的水池,已知水池的底面直径为4米,水面离池口2米,水池内有一小青蛙,它每天晚上都会浮在水面上赏月,则它能观察到的最大视角为()A. 45°B. 60°C. 90°D. 135°6.如图,该几何体主视图是()A.B.C.D.7.如图,下列四幅图中一定有两种不同的光源同时照射下的图案是()A.B.C.D.8.在下面的四个几何体中,它们各自的主视图与左视图可能相同的是() A.B.C.D.9.下列四个立体图形中,主视图、左视图、俯视图都相同的是()A.B.C.D.10.如图是一个几何体的三视图,则这个几何体的表面积是()A. 18 cm2B. 20 cm2C. (18+2) cm2D. (18+4) cm2二、填空题11.如图是一个由若干个正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是________(多填或错填得0分,少填酌情给分).12.现有m,n两堵墙,两个同学分别站在A处和B处,请问小明在哪个区域内活动才不被这两个同学发现(用阴影部分的序号表示)________.13.一块直角三角形板ABC,∠ACB=90°,BC=12 cm,AC=8 cm,测得BC边的中心投影B1C1长为24 cm,则A1B1长为________ cm.14.主视图与俯视图的________一致;主视图与左视图的________一致;俯视图与左视图的________一致.15.直角坐标系内,身高为1.5米的小强面向y轴站在x轴上的点A(-10,0)处,他的前方5米处有一堵墙,已知墙高2米,则站立的小强观察y(y>0)轴时,盲区(视力达不到的地方)范围是________.16.如图是某几何体的三视图,则该几何体的体积是_________.17.长方体、球体、三棱柱、圆柱体,这四个几何体中有三个的某一种视图都是同一种几何图形,则这一个几何体是________.18.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是________.19.如图是某个几何体的三视图,该几何体是_________.20.在直角坐标平面内,一点光源位于A(0,5)处,线段CD垂直于x轴,D为垂足,C(3,1),则CD在x轴上的影子长________,点C的影子E的坐标为________.三、解答题21.如图,李平和张亮分别骑自行车从两条小胡同驶向马路,当他们分别行驶到图中的A,B位置时,哪个看到的范围更大一些?为什么?你还能举出生活中类似的例子吗?22.如图假设一座大楼高30米,观众坐在距大楼500米处,魔术师只需做一个屏障,屏障上的图画和没有大楼以后的景物一样,将屏障立在大楼前100米处,这样观众看上去好像大楼突然消失了.若要完全挡住大楼,请你找到一个方法计算出屏障至少要多高?(人身高忽略不计)23.(1)夜晚,小明在路灯下散步.已知小明身高1.5米,路灯的灯柱高4.5米.①如图1,若小明在相距10米的两路灯AB、CD之间行走(不含两端),他前后的两个影子长分别为FM=x米,FN=y米,试求y与x之间的函数关系式,并指出自变量x的取值范围?②有言道:形影不离.其原意为:人的影子与自己紧密相伴,无法分离.但在灯光下,人的速度与影子的速度却不是一样的!如图2,若小明在灯柱PQ前,朝着影子的方向(如图箭头),以0.8米/秒的速度匀速行走,试求他影子的顶端R在地面上移动的速度.(2)我们知道,函数图象能直观地刻画因变量与自变量之间的变化关系.相信,大家都听说过龟兔赛跑的故事吧.现有一新版龟兔赛跑的故事:由于兔子上次比赛过后不服气,于是单挑乌龟再来另一场比赛,不过这次路线由乌龟确定……比赛开始,在同一起点出发,按照规定路线,兔子飞驰而出,极速奔跑,直至跑到一条小河边,遥望着河对岸的终点,兔子呆坐在那里,一时不知怎么办.过了许久,乌龟一路跚跚而来,跳入河中,以比在陆地上更快的速度游到对岸,抵达终点,再次获胜.根据新版龟兔赛跑的故事情节,请在同一坐标系内(如图3),画出乌龟、兔子离开终点的距离s与出发时间t的函数图象示意图.(实线表示乌龟,虚线表示兔子)24.从这个图形的表面上你观察到哪些平面图形?25.王芹家住在A楼5层,杨雨家住在A楼正前方的B楼里,B楼没有A楼高.一天,站在自己家窗口的王芹,看见杨雨正从B楼的正前方往自己住的楼走去,一会儿就看不见杨雨了,请你在如图所示中找出从哪点开始,王芹看不见杨雨.26.已知一个模型的三视图如图,其边长如图所示(单位:cm).制作这个模型的木料密度为150 kg/m3,则这个模型的质量是多少kg?如果油漆这个模型,每千克油漆可以漆4 m2,需要油漆多少kg?(质量=密度×体27.一个几何体的三视图如图所示,分别求出这个几何体的体积和表面积.28.试确定图中路灯的位置,并画出此时小明在路灯下的影子.答案解析1.【答案】B【解析】A的俯视图是第一列两个小正方形,第二列一个小正方形,B的俯视图是第一列是两个小正方形,第二列是两个小正方形,C的俯视图是第一列两个小正方形,第二列一个小正方形,D的俯视图是第一列两个小正方形,第二列一个小正方形,故选B.2.【答案】D【解析】主视图有3列,从左往右小正方形的个数为2,1,1故选D.3.【答案】A【解析】由立体图形可得其俯视图为.故选A.4.【答案】D【解析】在上午,时间越早,太阳光线与地平面的夹角越小,则物体的影长越长,所以这四个时刻中,上午8时,向日葵的影子最长.故选D.5.【答案】C【解析】利用已知条件可以推出△OBC,△OAD均为等腰直角三角形,此时再利用已知条件就很容易求得所求的角的度数.∵AB=4,O为圆心,∴AO=BO=2,∵BC=2,BC⊥AB,∴△OBC为等腰直角三角形,∴∠COB=45°,同理∠AOD=45°,∴∠COD=90°.故选C.6.【答案】B【解析】三棱柱的主视图为矩形,∵正对着的有一条棱,∴矩形的中间应该有一条实线,故选B.7.【答案】C【解析】由于只有C选项有两个投影,其余三个选项都只有一个,所以C选项中的物体一定有两种光源同时照射,故选C.8.【答案】B【解析】A.此几何体主视图与左视图不相同,故此选项错误;B.立方体的主视图与左视图都是矩形,故此选项正确;B.三棱柱主视图是矩形,左视图也是矩形,矩形宽不相同,故此选项错误;D.四棱柱的主视图是矩形,左视图也是矩形,矩形宽不相同,故此选项错误;故选B.9.【答案】B【解析】∵球的主视图、左视图、俯视图都是圆,∴主视图、左视图、俯视图都相同的是B,故选B.10.【答案】C【解析】根据三视图可知,几何体是一个直三棱柱,由侧视图知,底面是边长为2 cm的等边三角形,边上的高是cm,且侧棱与底面垂直,侧棱长是3 cm,∴该几何体的表面积S=2××2×+3×2×3=18+2(cm2),故选C.11.【答案】①②③【解析】综合左视图跟主视图,从正面看,第一行第1列有3个正方体,第一行第2列有1个或第二行第2列有一个或都有一个.第二行第1列有2个正方体.故答案为①②③.12.【答案】①②③【解析】由图可知,①②③都在AB两个视点的盲区内,因此在这三处,不会被两个同学发现,因此选①②③.13.【答案】8【解析】∵∠ACB=90°,BC=12 cm,AC=8 cm,∴AB=4,∵△ABC∽△A1B1C1,∴A1B1∶AB=B1C1∶BC=2∶1,即A1B1=8cm.14.【答案】长高宽【解析】根据三视图的特征,主视图与俯视图长对正;主视图与左视图高平齐;俯视图与左视图的宽相等进行填空即可.故答案为长、高、宽.15.【答案】0<y≤2.5【解析】过D作DF⊥OC于F,交BE于H,OF=1.5,BH=0.5,三角形DBH中,tan∠BDH=BH∶DH=0.5∶5,因此三角形CDF中,CF=DF·tan∠BDH=1,因此,OC=OF+CF=1+1.5=2.5.因此盲区的范围在0<y≤2.5.16.【答案】108【解析】由三视图可知该几何体是底面边长为6,高为2的正六棱柱,由俯视图可知,梯形的高为=3,它的体积是×(6+12)×3×2×2=108.故答案为108.17.【答案】球体【解析】视图是同一种几何图形的几何体是正方体或者球体,所给选项中有球体,故答案为球体.18.【答案】5【解析】综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个,所以这个几何体的体积是5.故答案为5.19.【答案】三棱柱【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.20.【答案】(,0)【解析】如图:∵CD⊥x轴,∴CD∥OA,∴△ECD∽△EAO,∴DE∶OE=CD∶OA,∵A(0,5),C点坐标为(3,1),∴DE∶(DE+3)=1∶5,∴DE=,∴CD在x轴上的影长E的坐标为(,0).故答案是,(,0).21.【答案】解B位置看到的范围大一些.实际生活中:人离窗子越远,向外眺望时此人的盲区是就变大,相反就变小.【解析】根据视角和盲区的定义直接判断得出即可,进而举出实际生活中的实例.22.【答案】解连接OA,交CD于E,由题意知,AB⊥OB,CD⊥OB,∠EDO=∠ABO=90°.则tan∠EOD=tan∠AOB==,故=,解得ED=24(m).答:屏障至少是24 m.【解析】根据已知,得出tan∠EOD=tan∠AOB==,进而求出即可.23.【答案】解(1)∵EF∥AB,∴∠MEF=∠A,∠MFE=∠B.∴△MEF∽△MAB.①如图1,∴===.∴=,MB=3x,BF=3x-x=2x.同理,DF=2y.∵BD=10,∴2x+2y=10,∴y=-x+5,∵当EF接近AB时,影长FM接近0;当EF接近CD时,影长FM接近5,∴0<x<5;②如图2,设运动时间为t秒,则EE′=FF′=0.8t,∵EF∥PQ,∴∠REF=∠RPQ,∠RFE=∠RQP,∴△REF∽△RPQ,∴===,∴=,∵EE′∥RR′,∴∠PEE′=∠PRR′,∠PE′E=∠PR′R,∴△PEE′∽△PRR′,∴=,∴=,∴RR′=1.2t,∴V影子==1.2米/秒.(2)如图3,【解析】(1)易证△MEF∽△MAB,根据相似三角形的对应边的比相等.可以把BF用x表示出来,同理,DF也可以用y表示出来.根据BD=10,就可以得到x,y的一个关系式,从而求出函数的解析式.根据△REF∽△RPQ就可以求出PE与RP的比值,同理.根据△PEE′∽△PRR′,求得EE′与RR′的比值.则影子的速度就可以得到.(2)根据故事的叙述,就可以作出图象.24.【答案】解如图所示:【解析】从正面看可得到一个长方形;从左面看得到一个正方形;从上面看得到一个长方形.25.【答案】解从点P开始进入盲区,即开始看不见杨雨.【解析】根据题意画出盲区即可判断出答案.26.【答案】解模型的体积=300×200×100+50×80×80=6 320 000 cm3=6.32 m3,模型的质量=6.32×150=948 kg;模型的表面积=2(100×200+100×300+200×300)+2(50×80+80×80+50×80)-2×80×80=236 000cm2=23.6 m2,需要油漆:23.6÷4=5.9 kg.答:这个模型的质量是948 kg;需要油漆5.9 kg.【解析】先计算模型的体积,再根据质量=体积×密度,求质量,再根据需要先求模型的表面积,再求所需油漆的重量.27.【答案】解3×1×3+3×3×1=9+9=18,(3×3+1×3)×2+(3×3+3×1+3×1)×2=(9+3)×2+(9+3+3)×2=12×2+15×2=24+30=54.答:这个几何体的体积是18,表面积是54.【解析】观察三视图可知,这个几何体的体积=长3宽1高3的长方体的体积+长3宽3高1的长方体的体积;这个几何体的表面积=长3宽1高3的长方体的侧面积+长3宽3高1的长方体的表面积;依此列出算式计算即可求解.28.【答案】解如图所示:【解析】分别过物体的顶点及其影子的顶点作射线,两条射线的交点即为光源的位置,进而画出小明的影子即可.。
第二十九章投影与视图达标测试卷(本试卷满分120分)一、选择题(每小题3分,共30分)1.下列几何体的左视图为长方形的是()A B C D2.下列图形能表示两根立柱所形成的投影是平行投影的是()A B C D3.如图是一个正三棱柱的三视图,则这个三棱柱摆放方式正确的是()A B C D第3题图第5题图第6题图4.下列结论:①同一地点、同一时刻,不同物体在阳光照射下影子的方向是相同的;②不同物体在任何光线照射下影子的方向都是相同的;③同一物体在路灯照射下影子的方向与路灯的位置有关;④物体在光线照射下影子的长短仅与物体的长短有关.其中正确的有()A.1个B.2个C.3个D.4个5.如图,两个等直径圆柱构成如图所示的T形管道,则其俯视图是()A B C D6.如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是()A.主视图B.俯视图C.左视图D.主视图和俯视图7.与图中所示的三种视图相对应的几何体是()A B C D 第7题图8.在同一天的四个不同时刻,某学校旗杆的影子如图所示,下列选项中按时间先后顺序排列正确的是()A.②④③①B. ②③④①C. ③④①②D. ④③①②第8题图9.应县木塔是中国现存最高最古的一座木构塔式建筑,主要借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼.如图,甲构件带有榫头,乙构件带有卯眼,两个构件恰好可以完全咬合,根据图中标示的方向,乙构件的主视图是()A B C D第9题图第10题图10.如图是一个几何体的三视图,其中主视图与左视图完全一样,则这个几何体的表面积是()A.80﹣2πB.80+4πC.80 D.80+6π二、填空题(每小题3分,共18分)11.如果一个几何体的主视图、左视图都是等腰三角形,俯视图为圆,那么我门可以确定这个几何体是.12.如图是一个球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球的影子会_________.(填“逐渐变大”或“逐渐变小”)第12题图第13题图第14题图13.一圆柱按如图所示方式放置,若其左视图的面积为48,则该圆柱的侧面积为_______.14.如图,晚上小红由路灯A走向路灯B,当她走到点P时,发现她的影子顶部正好接触到路灯B的底部,此时她与路灯A的距离为20 m,与路灯B的距离为5 m.如果小红的身高为1.2 m,那么路灯A的高度是___________m.15.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.第15题图第16题图16.如图,甲楼AB高18米,乙楼CD坐落在甲楼的正北面,已知当地冬至中午12时,物高与影长的比是1:2,已知两楼相距20米,那么甲楼的影子落在乙楼上的高DE为米.(结果保留根号)三、解答题(本大题共8小题,共72分)17.(6分)画出如图所示几何体的三视图.第17题图第18题图18.(6分)如图是小明与爸爸(线段AB)、爷爷(线段CD)在同一路灯下的情景(粗线分别表示三人的影子).请根据要求,进行作图.(不写画法,但要保留作图痕迹).(1)在图中画出灯泡所在的位置;(2)在图中画出小明的身高.19.(8分)(1)由大小相同的小立方块搭成的几何体如图,请在如图的方格中画出该几何体的俯视图和左视图;第19题图(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在方格中所画的图一致,则这样的几何体最多要个小立方块.20. (8分)如图所示为一几何体的三视图.(1)这个几何体的名称为__________;(2)画出它的任意一种表面展开图;(3)若主视图是长方形,其长为10 cm,俯视图是等边三角形,其边长为4 cm,求这个几何体的侧面积.第20题图第21题图21.(8分)如图,在Rt△ABC中,∠ACB=90°,投影线方向如图所示,点C在斜边AB上的正投影为点D. (1)试写出边AC,BC在AB上的投影;(2)试探究线段AC,AB和AD之间的关系;(3)线段BC,AB和BD之间也有类似的关系吗?请直接写出结论.22.(10分)某几何体的主视图和俯视图如图所示(单位:mm),求该几何体的体积.第22题图第23题图23.(12分)在一个阳光明媚的上午,数学陈老师组织学生测量小山坡上一棵大树CD的高度,山坡OM与地面ON的夹角为30°(∠MON=30°),同一时刻站在水平地面上身高1.7米的小明AB在地面的影长BP为1.2米,此刻大树CD在斜坡上的影长DQ为5米,求大树的高度.24.(14分)如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他(EF)在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).第24题图(1)请在图中画出灯光光源O的位置及小明位于点F时在这一灯光下的影长FM(不写画法);(2)求小明原来的速度.投影与视图达标测试卷一、1.C 2.B 3.B 4.B 5.B 6.C 7.D 8.B 9.C 10.B二、11.圆锥 12.逐渐变大 13.48π 14.6 15.108 16.18-102三、17.解:如图所示:第17题图18.解:(1)如图所示,点O即为灯泡所在的位置.(2)如图所示,EF即为小明的身高.第18题图19. 解:(1)如图所示:第19题图(2)7 提示:由俯视图可知最底层有4个小立方块,第二层最多有3个小立方块,所以最多要4+3=7(个)小立方块.20. 解:(1)该几何体是三棱柱.(2)展开图如图所示(答案不唯一):第20题图(3)三棱柱的侧面展开图是长方形,长方形的长是等边三角形的周长即4×3=12(cm).由题意,知主视图的长是三棱柱的高,所以三棱柱侧面展开图的面积为12×10=120(cm2). 所以这个几何体的侧面积是120 cm2.21. 解:(1)边AC,BC在AB上的投影分别为AD,BD.(2)因为点C在斜边AB上的正投影为点D,所以CD⊥AB.所以∠ADC=90°.因为∠A=∠A,∠ADC=∠ACB,所以△ADC∽△ACB.所以AC ADAB AC=,即AC2=AD•AB.(3)BC2=BD•AB.提示:同(2)可证△BCD∽△BAC,所以BC BDBA BC=,即BC2=BD•AB.22.解:由主视图和俯视图可知,该几何体是上下两个圆柱的组合图形.所以该几何体的体积为16×π×2162⎛⎫⎪⎝⎭+4×π×282⎛⎫⎪⎝⎭=1088π(mm3).23. 解:过点Q作QE⊥DC于点E.由题意,得△ABP∽△CEQ,所以AB BPCE EQ=.所以AB CEBP EQ=,即1.71.2CEEQ=.因为EQ∥NO,所以∠1=∠2=30°.因为QD=5,所以DE=52,EQ=532.所以1.71.2532CE=,解得CE=85324.所以CD=CE+DE=52+85324=6085324+(米).答:大树的高度为6085324+米.第23题图24.解:(1)灯光光源O,影长FM如图所示:第24题图(2)设小明原来的速度为x 米/秒,则AD=DF=CE=2x,AM=AF-MF=2x+2x-1.2=4x-1.2,EG=FH=2×1.5x=3x,MB=AB-AM=12-(4x-1.2)=13.2-4x.因为点C,E,G在一条直线上,CG∥AB,所以∠OCE=∠A,∠OEC=∠OMA,∠OEG=∠OMB,∠OCE=∠B.所以△OCE∽△OAM,△OEG∽△OMB.所以CE OEAM OM=,EG OEMB OM=.所以CE EGAM MB=,即234 1.213.24x xx x=--,解得x=1.5.经检验,x=1.5为原分式方程的根. 答:小明原来的速度为1.5米/秒.。
人教版九年级数学下册 第29章 投影与视图 单元测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________ 一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , ) 1. 在阳光下摆弄一个矩形,它的影子不可能是( ) A.线段 B.矩形 C.等腰梯形 D.平行四边形2. 如图,晚上小亮在路灯下散步,他从A 处向着路灯灯柱方向径直走到B 处,这一过程中他在该路灯灯光下的影子( )A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短3. 在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( ) A.小明的影子比小强的影子长B.小明的影子比小强的影子短 C.小明的影子和小强的影子一样长D.无法判断谁的影子长4. 电影院座位号呈阶梯状或下坡状的原因是( ) A.减小盲区 B.增大盲区 C.盲区不变 D.为了美观5. 由几个相同的小立方块组成一个立体图形,如图是从不同方向看到它的图形,小立方块的个数是( )A.3个B.4个C.5个D.6个6. 如图是某几何体的三视图及相关数据,则判断正确的是( )A.a 2+b 2=c 2B.a 2+b 2=4c 2C.a 2+c 2=b 2D.a 2+4c 2=b 2 7. 下面四个立体图形中,三视图完全相同的是( ) A.B.C.D.8. 电影院呈阶梯或下坡形状的主要原因是( ) A.为了美观 B.减小盲区 C.增大盲区 D.盲区不变9. 如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )A.B.C.D.10. 桌面上放置的几何体中,主视图与左视图可能不同的是( ) A.圆柱 B.正方体 C.球 D.直立圆锥 二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分) 11. 如图,一几何体的三视图如右:那么这个几何体是________.12. 由6个大小相同的正方体搭成的几何体如图所示,则它的三种视图中,面积最大的是________(A 、主视图 B 、左视图 C 、俯视图)13. 在①长方体、②球、③圆锥、④圆柱、⑤正方体、⑥三棱柱这六种几何体中,其主视图、左视图、俯视图都完全相同的是________(填上序号即可). 14. ________是画三视图必须遵循的法则.15. 如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是________.16. 请将六棱柱的三视图名称依次填在横线上________.17. 如图,一位同学身高1.6米,晚上站在路灯下,他在地面上的影长是2米,若他沿着影长的方向移动2米站立时,影长增加了0.5米,则路灯的高度是________米.18. 学校的阶梯教室做成阶梯形的原因是________.19. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”把此诗句用在视图上,说明的现象是________.20. 由视点发出的线称为________,看不到的地方称为________.三、解答题(本题共计 6 小题,每题 10 分,共计60分,)21. 请你画出如图几何体的三视图.22. 画出此实物图的三种视图.三种视图.23. 5个棱长为1的正方体组成如图所示的几何体,画出该几何体的主视图和左视图.24. 从三个方向看某一几何体,得到图形如图所示,请描述这个几何体是由几个正方体怎样摆放而成的.25. 由一些大小相同的小正方形搭成的几何体的俯视图,如图所示,其中正方形中的数字表示该位置上的小正方形的个数,请画出该几何体的主视图和左视图.26. 如图所示,观察左图,并在右边的三视图中标出几何体中的相应字母的位置.答案1. C2. A3. D4. A5. B6. C7. B8. B9. B10. A11. 空心圆柱12. C13. ②⑤14. 长对正,高平齐,宽相等15. 5或6或7或8或9或1016. 主视图,俯视图,左视图 17. 818. 减少学生的盲区(看不见的地方),使得每人都能看到黑板 19. 从不同的角度看得到的视图不同 20. 视线盲区21. 解:如图所示:22. 解:23. 解:所画图形如下所示:24. 解:由三个方向看到的图形可以描述这个几何体:下层是由四个小正方体按正方形摆放,上层由一个小正方体摆放在正中央. 25. 解:如图所示:26. 解:根据题意如图:。
人教版九年级数学下册第二十九章-投影与视图综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示的领奖台是由三个长方体组合而成的几何体,则这个几何体的左视图是()A.B.C.D.2、如图是由6个大小相同的小正方体组成的几何体,它的左视图是()A.B.C.D.3、如图是由几个大小相同的小正方体搭成的几何体,若去掉1号小正方体,则下列说法正确的是()A.左视图和俯视图不变B.主视图和左视图不变C.主视图和俯视图不变D.都不变4、下列立体图形的主视图是()A.B.C.D.5、一个几何体从不同方向看到的图形如图所示,这个几何体是( )A.球B.圆柱C.圆锥D.立方体6、如图,图形从三个方向看形状一样的是()A.B.C.D.7、下列几何体中,俯视图为三角形的是()A.B.C.D.8、如图,几何体的左视图是()A.B.C.D.9、如图为某几何体的三视图,则该几何体是()A.圆锥B.圆柱C.三棱柱D.四棱柱10、四个相同的小正方体组成的立体图形如图所示,它的主视图为()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个圆柱形橡皮泥,底面积是212cm.高是5cm.如果用这个橡皮泥的一半,把它捏成高为5cm的圆锥,则这个圆锥的底面积是______2cm2、如图所示是从不同的方向观察一个圆柱体得到的形状图,由图中数据计算此圆柱体的侧面积为________(结果保留 ).从正面看从左面看从上面看3、阳光下,同学们整齐地站在操场上做课间操,小勇和小宁站在同一列,小勇的影子正好落到后面一个同学身上,而小宁的影子却没有落到后面一个同学身上,据此判断他们的队列方向是______(填“背向太阳”或“面向太阳”),小宁比小勇_______(填“高”、“矮”、或“一样高”).4、一个立体图形,从正面看到的形状是,从左面看到的形状图是.搭这样的立体图形,最少需要________个小正方体,最多可以有________个正方体.5、如图,是一个由若干个小正方体搭成的几何体的主视图与视图,设搭这样的几何体最多需要m块小立方块,最少需要n块小立方块,则m+n=_____.三、解答题(5小题,每小题10分,共计50分)1、画出几何体的三种视图.2、如图,是由若干个完全相同的棱长为1的小正方体组成的一个几何体.(1)请画出这个几何体的三视图;(2)该几何体的表面积(含下底面)为;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和左视图不变,那么最多可以再添加个小正方体.3、下列几何体是用相同的正方体搭成的,画出从三个不同方向看到的图形4、(1)如图1所示,快下降到地面的某伞兵在灯光下的影子为AB.试确定灯源P的位置,并画出竖立在地面上木桩的影子EF.(保留作图痕迹,不要求写作法)(2)画出图2实物的三视图.5、如图是由大小相同的小正方体组合成的简单几何体.(1)在下面的网格中画出该几何体从正面看和从左面看的形状图.(2)每个正方体棱长为1cm,那么搭成这个几何体的表面积是cm2.---------参考答案-----------一、单选题1、C【分析】左视图是从左边看得到的视图,结合选项即可得出答案.【详解】解:A是俯视图,B、D不是该几何体的三视图,C是左视图.故选:C.【点睛】本题考查了简单组合体的三视图,属于基础题,从正面看到的图是主视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.2、D【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【详解】解:从物体左面看,是左边2个正方形,右边1个正方形.故选:D..【点睛】本题考查了三视图的知识,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.3、A【分析】根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图,再从看到的小正方形的个数与排列方式两个方面逐一分析可得答案.【详解】解:若去掉1号小正方体,主视图一定变化,主视图中最右边的一列由两个小正方形变为一个,从上面看过去,看到的小正方形的个数与排列方式不变,所以俯视图不变,从左边看过去,看到的小正方形的个数与排列方式不变;所以左视图不变,所以A符合题意,B,C,D不符合题意;故选:A.【点睛】本题考查的是由小正方体堆砌而成的图形的三视图,掌握“三视图的含义”是解本题的关键.4、A【分析】主视图是从正面所看到的图形,根据定义和立体图形即可得出选项.【详解】解:主视图是从正面所看到的图形,是:故选:A【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5、B【分析】根据各个几何体的三视图,依次判别即可;【详解】解:A、球的三视图均为圆形;B、圆柱的三视图与题图相符;C、圆锥的主视图和左视图为等腰三角形;D、立方体的三视图均为四边形.故选:B.【点睛】本题考查了由三视图判断几何体,熟悉相关性质是解题的关键.6、C【分析】根据从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【详解】解:A.从上面看是一个圆,从正面和从左边看是一个矩形,故本选项不合题意;B.从上面看是一个有圆心的圆,从正面和从左边看是一个等腰三角形,故本选项不合题意;C.从三个方向看形状一样,都是圆形,故本选项符合题意;D.从上面看是一个正方形,从正面和从左边看是一个长方形形,故本选项不合题意.故选:C.【点睛】本题考查了简单几何体的三视图,从上面看到的图形是俯视图,从正面看到的图形是主视图,从左面看到的图形是左视图.7、(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b=错误,应该是a=6,b =11,a+b=17.故选:B.【点睛】此题主要考查了正方体的展开图的性质,截正方体以及简单组合体的三视图等知识,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.19.D【分析】从正面、上面和左面三个不同的方向看一个物体,并描绘出所看到的三个图形,即几何体的三视图.【详解】从上方朝下看只有D选项为三角形.故选:D.【点睛】本题考查了简单几何体的三视图,三视图是从正面、左面、上面以平行视线观察物体所得的图形.从视图反过来考虑几何体时,它有多种可能性.例如,正方体的主视图是一个正方形,但主视图是正方形的几何体有很多,如三棱柱、长方体、圆柱等.因此在学习时应结合实物,亲自变换角度去观察,才能提高空间想象能力.8、C【分析】找到从左面看所得到的图形,比较即可.【详解】解:观察可知,从物体的左边看是一个竖长横短的长方形,由于右边有一条横向棱被遮挡看不见,画为虚线,如图所示的几何体的左视图是:.故选C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.9、C【分析】根据三视图判断该几何体即可.【详解】解:根据该几何体的主视图与左视图均是矩形,主视图中还有一条棱,俯视图是三角形可以判断该几何体为三棱柱.故选:C.【点睛】本题考查三视图,解题的关键是理解三视图的定义,属于中考常考题型.10、A【分析】根据几何体的三视图解答即可.【详解】根据立体图形得到:主视图为:,左视图为:,俯视图为:,故选:A【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.二、填空题1、18【解析】【分析】首先求出圆柱体积,根据题意得出圆柱体积的一半即为圆锥的体积,根据圆锥体积计算公式列出方程,即可求出圆锥的底面积.【详解】V圆柱=Sh =212560cm , 这个橡皮泥的一半体积为:2160302V cm ,把它捏成高为5cm的圆锥,则圆锥的高为5cm,故1303Sh,即15=303S,解得=18S(cm2),故填:18.【点睛】本题考查了圆柱的体积和圆锥的体积计算公式,解题关键是理解题意,熟练掌握圆柱体积和圆锥体积计算公式.2、6π【解析】【分析】根据主视图确定出圆柱体的底面直径与高,然后根据圆柱体的侧面积公式列式计算即可得解.【详解】解:由图可知,圆柱体的底面直径为2,高为3,所以,侧面积236ππ=⋅⨯=.故答案为:6π.【点睛】本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,解题的关键是根据主视图判断出圆柱体的底面直径与高.3、面向太阳矮【解析】【分析】根据小勇的影子正好落到后面一个同学身上可得他们的队列方向是面向太阳,根据同时同地,身高与影长成正比可得答案.【详解】∵小勇的影子正好落到后面一个同学身上,∴他们的队列方向是面向太阳,∵小宁的影子却没有落到后面一个同学身上,∴小勇的影子比小宁的影子长,∴小宁比小勇矮.故答案为:面向太阳,矮【点睛】本题考查平行投影,熟练掌握同时同地,身高与影长成正比是解题关键.4、 6 10【解析】【分析】根据题中所给的正面的形状和左面的形状即可得.【详解】解:根据题中所给的正面的形状和左面的形状可知,最少需要6个,将小正方体横着摆5个,再在任意一个小正方体的后面放一个小正方体;最多需要10个,将小正方体横着摆5个,再在每一个小正方体的后面放一个小正方体;故答案为:6,10.【点睛】本题考查了三视图,解题的关键是根据三视图得出立体图形.5、15【解析】【分析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数为4,由主视图可得第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,相加即可.【详解】解:有两种可能;有主视图可得:这个几何体共有3层,由俯视图可得:第一层正方体的个数为4,由主视图可得第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,故:最多m为3+4+1=8个小立方块,最少n为个2+4+1=7小立方块.m+n=15,故答案为:15【点睛】此题主要考查了由三视图判断几何体,关键是掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就很容易得到答案.三、解答题1、见详解【分析】从正面看从左往右3列正方形的个数依次为1,3,2;从左面看从左往右3列正方形的个数依次为3,1;从上面看从左往右3列正方形的个数依次为1,2,1.依此画出图形.【详解】解:如图所示:【点睛】本题考查了三视图的画法;得到从各个方向看得到的每列正方形的个数是解决本题的关键.2、(1)见解析;(2)28;(3)2【分析】(1)从正面看得到从左往右3列正方形的个数依次为1,3,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;(2)有顺序的计算上下面,左右面,前后面的表面积之和即可;(3)根据保持这个几何体的主视图和左视图不变,可知添加小正方体是1列和3列各加1个,依此即可求解.【详解】(1)如图所示:(2)(4×2+6×2+4×2)×(1×1)=(8+12+8)×1=28故答案为:28(3)由分析可知,最多可以再添加2个小正方体,如图,故答案为:2【点睛】此题考查了作图−三视图,用到的知识点为:计算几何体的表面积应有顺序的分为相对的面进行计算不易出差错;三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.3、见解析【分析】从正面看:共有3列,从左往右分别有3,2,1个小正方形;从左面看:共有2列,从左往右分别有3,1个小正方形;从上面看:共分3列,从左往右分别有2,1,1个小正方形.据此可画出图形.【详解】解:如图所示:【点睛】本题考查画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.4、(1)见解析;(2)见解析【分析】BD AC,两射线交于点P即可求得P的位置,过P和木桩的顶(1)如图,分别以,A B为端点作射线,端,以P为端点做射线,与底面交于点F,木桩底部为E点,连接EF,则EF即为竖立在地面上木桩的影子;(2)根据三视图的作法要求画三视图即可,主视图为等边三角形,左视图为矩形,俯视图为矩形,中间有一条实线【详解】(1)如图所示,P为灯源,EF为竖立在地面上木桩的影子,(2)如图所示,【点睛】本题考查了中心投影,三视图,掌握中心投影与三视图的作图方法是解题的关键.5、(1)图见解析;(2)38.【分析】(1)由已知条件可知,从正面看的视图有3列,每列小正方数形数目分别为3,1,2,据此可画出图形;从左面看的视图有3列,每列小正方形数目分别为3,2,1;(2)根据三视图的面积和被挡住的面积即可计算总面积;【详解】解:(1)如图所示:(2)搭成这个几何体的表面积是:6×2+6×2+6×2+2=38 cm2.【点睛】本题考查从不同方向看几何体,几何体的表面积等知识.解题的关键是熟练掌握基本知识,属于中考常考题型.。
人教版九年级数学下册第29章投影与视图综合测试卷一、选择题(共10小题,3*10=30)1.下列光源所形成的投影不是中心投影的是( )A.平面镜反射出的太阳光线B.台灯的光线C.手电筒的光线D.路灯的光线2.在一间黑屋子里用一只白炽灯照一个球(如图),若球沿铅垂方向下落,则它的影子( ) A.始终是一个不变的圆B.是一个由大变小的圆C.是一个由小变大的圆D.由圆变成一个点3. 下列立体图形中,俯视图是三角形的是( )4. 如图是由4个相同的小立方体搭成的几何体,则它的主视图是()5. 一个物体如图所示,它的俯视图是()6. 一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是( )7. 某几何体的左视图如图所示,则该几何体不可能是( )8. 如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()9.如图的几何体是由五个小正方体组合而成的,它的主视图是( )10.在同一时刻,身高1.6 m的小强的影长是1.2 m,旗杆的影长是15 m,则旗杆的高为( ) A.16 m B.18 mC.20 m D.22 m二.填空题(共8小题,3*8=24)11.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是_________.12.一个几何体的表面展开图如图所示,则这个几何体是_________.13.如图,甲、乙、丙都是由大小相同的正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,其中主视图相同的是_________.14.如图是一个几何体的三视图,其中主视图与左视图完全一样,则这个几何体的表面积是_________.15. 如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是_________.16如图是由5个完全相同的小正方体搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的_________. 会发生改变17.如图是正方体的表面展开图,则原正方体相对两个面上的数字之和的最小值是.18.如图,水平放置的长方体的底面是长和宽分别为4和2的矩形,它的左视图的面积为6,则长方体的主视图的面积等于.三.解答题(共7小题,46分)19.(6分)分别画出图中几何体的主视图、左视图、俯视图.20. (6分) 如图是一个食品包装盒的侧面展开图.(1)请写出这个包装盒的多面体形状的名称;(2)请根据图中所标的尺寸,计算这个多面体的侧面积和全面积.21. (6分)长方体的主视图与左视图(单位:cm)如图.根据图中的数据画出它的俯视图并求这个长方体的体积.22.(6分)如图是一个几何体的主视图与俯视图,根据图中的数据(单位:mm),求该物体的体积(π取3.14).23.(6分)某工厂要对一机器零件表面进行喷漆,设计者给出了该零件的三视图(如图所示),请你根据三视图确定其喷漆的面积(精确到1 cm2,π取3.14).24.(8分)如图是一个大正方体切去一个小正方体组成的几何体.(1)上面三个图形,从上面、左面、正面看到的平面图形依次是,,.(2)若大正方体的棱长为20 cm,小正方体的棱长为10 cm,求这个几何体的表面积.25.(8分)如图是一个立体图形的三视图,主视图和左视图都是矩形,俯视图是等边三角形.(1)写出这个几何体的名称;(2)若主视图的高为10 cm,俯视图中三角形的边长为4 cm,求这个几何体的侧面积.参考答案1-5ABABD 6-10 CDAAC 11. 2412.四棱锥13.甲、乙、丙14.80+4π15.516.主视图17. 618. 1219. 解:如答图.20. 解:(1)六棱柱(2)侧面积6ab,全面积6ab+33b221. 解:如答图.长方体的体积V=4×3×2=24(cm3).22. 解:该几何体的体积为3.14×(20÷2)2×20+25×30×40=36 280(mm3).答:该物体的体积为36 280 mm3.23. 解:长方体的表面积为:(30×40+40×25+25×30)×2=5900(cm2),圆柱体的侧面积为:π×20×32≈2010(cm2),其喷漆的面积约为:5900+2010=7910(cm2)24. 解:(1)③,②,①,(2)∵大正方体的棱长为20 cm,小正方体的棱长为10 cm,∴这个几何体的表面积为2×(400+400+400)=2 400(cm2).25. 解:(1)这个几何体是三棱柱.解:根据题意可知,主视图的矩形的长是三棱柱的高,三棱柱的侧面展开图是矩形,矩形的长是等边三角形的周长,即为4×3=12(cm),∴这个几何体的侧面积为12×10=120(cm2).。
人教版九年级下册数学第二十九章投影与视图含答案一、单选题(共15题,共计45分)1、如图所示,该几何体的俯视图是()A. B. C. D.2、如图是某几何体的三视图,其侧面积()A.6B.4πC.6πD.12π3、用若干大小相同的小立方块搭成一个几何体,使得从正面和从上面看到这个几何体的形状如图所示,该几何体至多是用()个小立方块搭成的.A.5B.6C.7D.84、如图是某个几何体的三视图,该几何体是()A.长方体B.圆锥C.圆柱D.三棱柱5、如图是由7个相同的小正方体搭成的几何体,在标号为①的小正方体上方添加一个小正方体后,所得几何体的三视图与原几何体的三视图相比没有发生变化的是()A.主视图和俯视图B.主视图和左视图C.左视图和俯视图D.主视图、左视图和俯视图6、下列平面图形经过折叠不能围成一个正方体的是()A. B. C. D.7、如图是一个几何体的三视图,则该几何体的侧面积是()A. B. C. D.8、在下面的四个几何体中,它们各自的主视图与左视图可能相同的是()A. B. C. D.9、如图,能近似反映上午10时北京天安门广场上的旗杆与影子的位置关系的是()A. B. C. D.10、一个长方体的三视图如图所示,则这个长方体的体积为()A.30B.15C.45D.2011、一物体及其主视图如图,则它的左视图与俯视图分别是右侧图形中的()A.①②B.③②C.①④D.③④12、如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.13、下列各图经过折叠能围成一个正方体的是()A. B. C. D.14、如图竖直放置的圆柱体的俯视图是()A.长方体B.正方体C.圆D.等腰梯形15、用6个完全相同的小正方体组成如图所示的立体图形,它的俯视图是()A. B. C. D.二、填空题(共10题,共计30分)16、一个几何体的主视图、俯视图和左视图都是大小相同的圆,则这个几何体是________.17、四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图,则在字母“L”、“K”、“C”的投影中,与字母“N”属同一种投影的有________ .18、如图是由几个相同的小立方体组成的左视图和俯视图,小立方块的个数最少是________ .19、如图,是由一些相同的小正方体搭成的几何体从三个方向看到的图形,搭成这个几何体的小正方体的个数是________.20、一三棱锥的三视图如下,这个三棱锥最长棱的长度为________.21、如图是一个正方体的展开图,把展开图折叠成正方体后,与数字3所在的面相对的面上的数字是________.22、皮影戏中的皮影是由投影得到的________23、如图是某几何体的三视图,根据图中数据,求得该几何体的体积为________.24、将若干个正方体小方块堆放在一起,形成一个几何体,分别从正面看和从上面看,得到的图形如图所示,则这堆小方块共有________块.25、将正方体的表面沿某些棱剪开,展开如图所示的平面图形,则原正方体中与“高”字所在的面相对的面上标的字是________三、解答题(共5题,共计25分)26、一个几何体的三视图如图,求这个几何体的侧面积?27、如图是一个正方体的表面展开图,请回答下列问题:(1)与面B、C相对的面分别是?(2)若A=a3+a2b+3,B=a2b﹣3,C=a3﹣1,D=﹣(a2b﹣6),且相对两个面所表示的代数式的和都相等,求E、F分别代表的代数式.28、画出该几何体的三视图:29、如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注式子的值相等,求x的值.30、一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25 m,已知李明直立时的身高为1.75 m,求路灯的高CD的长.(结果精确到0.1 m)参考答案一、单选题(共15题,共计45分)1、C2、C3、D4、D5、A6、C7、A8、B9、D10、A11、B12、D13、D14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
第二十九章投影与视图自主检测(满分:120分时间:100分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.如图29-1,一个斜插吸管的盒装饮料的正投影是图中的()图29-12.同一灯光下两个物体的影子可以是()A.同一方向B.不同方向C.相反方向D.以上都有可能3.下列四个几何体中,主视图是三角形的是()4.一个几何体的三视图如图29-2,则这个几何体是()A B C D图29-2 图29-35.图29-3是一个水管的三岔接头,它的左视图是()6.下列几何体中,有一个几何体的俯视图的形状与其他三个不一样,这个几何体是()A.正方体B.圆柱C.圆锥D.球7.在同一时刻的阳光下,小华的影子比小东的影子长,那么在同一路灯下,他们的影子为() A.小华比小东长B.小华比小东短C.小华与小东一样长D.无法判断谁的影子长8.由若干个同样大小的正方体堆积成一个实物,从不同侧面观察到如图29-4所示的投影图,则构成该实物的小正方体个数为()图29-4A.6个B.7个C.8个D.9个9.如图29-5,下面关于正六棱柱的视图(主视图、左视图、俯视图)中,画法错误的是()图29-5A B C D10.某超市货架上摆放着某品牌红烧牛肉方便面,图29-6是它们的三视图,则货架上的红烧牛肉方便面至少有()图29-6A.8B.9C.10D.11二、填空题(本大题共6小题,每小题4分,共24分)11.像皮影戏与手影戏这样由同一点的投影线所形成的投影叫做________.12.早上练习跑步时,如果你的影子总是在你的正前方,那么你是在向________方跑步.13.小明的身高是1.6 m,他的影长是2 m,同一时刻旗杆的影长是20 m,则旗杆的高是________ m.14.长方体的主视图与俯视图如图29-7,则这个长方体的体积是________.图29-715.如图29-8,地面A处有一支燃烧的蜡烛(长度不计),一个人在A与墙BC之间运动,则他在墙上投影长度随着他离墙的距离变小而________(填“变大”“变小”或“不变”).图29-816.一张桌子摆放若干碟子,从三个方向上看,其三视图如图29-9,则这张桌子上共有________个碟子.图29-9三、解答题(一)(本大题共3小题,每小题6分,共18分)17.两根木杆如图29-10,请在图中画出形成杆影的太阳光线,并画出此时木杆B的影子.图29-1018.图29-11是一个几何体,请你画出它的三视图.图29-1119.图29-12是由一些完全相同的小立方块搭成的几何体的三视图,那么搭成这个几何体需用多少个小立方块?图29-12四、解答题(二)(本大题共3小题,每小题7分,共21分)20.图29-13是由一些小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,画出这个几何体的主视图和左视图.图29-1321.如图29-14所示的是某个几何体的三视图.(1)说出这个立体图形的名称;(2)画出立体图形;(3)根据图中的有关数据,求这个几何体的表面积.图29-1422.如图29-15,有一辆客车在平坦的大路上行驶,前方有两座建筑物,且A,B两处的建筑物的高度分别为12 m和24 m,当汽车行驶到C处,CF=30 m时,求司机可以看到的B处楼房的高度?图29-15五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图29-16,阳光通过窗口照到室内,在地面上留下2.7 m宽的亮区DE,已知亮区一边到窗下的墙脚距离EC为8.7 m,窗口高AB=1.8 m,求窗口底边离地面的高BC的长.图29-1624.图29-17(单位:cm)是某校升旗台的三视图.(1)画出台阶的立体模型;(2)计算出台阶的体积.图29-1725.如图29-18,王华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他再向前步行12 m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知王华同学的身高是1.6 m,两个路灯的高度都是9.6 m.(1)求两个路灯之间的距离;(2)当王华同学走到路灯BD处时,他在路灯AC下的影子长是多少?图29-18第二十九章自主检测参考答案:1.A 2.D 3.B 4.D 5.A 6.A 7.D 8.B 9.A 10.B 11.中心投影 12.西 13.16 14.24 15.变小 16.12 17.解:如图D104.图D104 图D10518.解:如图D105,是该几何体的三视图.19.解:由俯视图知底层有6个小立方块,由主视图和左视图知上面的一层有2个小正方形,所以共有8个小正方块.20.解:如图D106.图D10621.解:(1)直三棱柱. (2)如图D107.图D107(3)表面积为:12×3×4×2+15×3+15×4+15×5=192.22.解:∵△CEF ∽△CDG ,∴EF DG =CFCG ,DG =EF ·CG CF =12×30+5+1030=18(m).∴C 处汽车司机可看到的B 处楼房的高度为 24-18=6 (m).答:C 处汽车司机可看到的B 处楼房的高度为6 m. 23.解:由题意,得DE =2.7 m ,AB =1.8 m ,EC =8.7 m. 因为△BDC ∽△AEC .所以BC AC =CD CE ,即BCAB +BC =CE -DE CE .故BC1.8+BC=8.7-2.78.7,解得BC =4.答:BC 的长为4 m.24.解:(1)立体模型如图D108(单位:cm).图D108(2)台阶的体积可以用三个长方体的体积来求得V =V 1+V 2+V 3=150×(800+1600+2400)=150×4800=720 000(cm 3). 25.解:(1)∵AC =BD ,MP =NQ , 由MP AP =BD AB ,NQ QB =CAAB ,知:AP =QB . 而MP =NQ =1.6,AC =BD =9.6,PQ =12, 故AB =AP +QB +12=2AP +12. 由MP AP =BD AB ,得1.6AP =9.62AP +12, 解得AP =3,从而AB =2×3+12=18(m). 即两个路灯之间的距离为18 m.(2)如图D109.当王华走到路灯BD 处时,他在路灯AC 下的影子长为BF .图D109则BE BF =AC AF ,即1.6BF =9.618+BF . 解得BF =3.6 m.故他在路灯下的影子长为 3.6 m.。
人教版数学九年级下学期第29章《投影与视图》测试卷(测试时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列四个几何体中,主视图是三角形的是()A.B.C.D.2.如图,当投影线由物体的前方射到后方时,下列一组几何体的正投影是圆的是( )A.B.C.D.3.如图,空心卷筒纸的高度为12cm,外径(直径)为10cm,内径为4cm,在比例尺为1:4的三视图中,其主视图的面积是()A.cm2B.cm2C.30cm2D.7.5cm24.个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.5.同一时刻,两根长度不等的竿子置于阳光之下,如果影长相等,那么这两根竿子的相对位置是( ) A.两根都垂直于地面B.两根平行斜插在地面上C.两根竿子不平行D.两根都倒在地上6.如左图是由4个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.7.如图所示的几何体的俯视图是().A.B.C.D.8.当棱长为20cm正方体的某个面平行于投影面时,这个面的正投影的面积为( )A.20cm2B.300cm2C.400cm2D.600cm29.如图,从小区的某栋楼的A,B,C,D四个位置向对面楼方向看,所看到的范围的大小顺序是()A.A>B>C>D B.D>C>B>A C.C>D>B>A D.B>A>D>C10.由一些相同的立方体搭成某几何体,这个几何体的主视图和俯视图如图所示,请问搭这样一个几何体最多需要多少小立方体?()A. 4 B. 5 C. 6 D.7二、填空题(每小题3分,共30分)11.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多是.12.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为 cm.13.下列四个立体图形中,左视图为矩形的是.14.如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是个15.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的左视图的面积是.16.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为.17.下图是某天内,电线杆在不同时刻的影长,按先后顺序应当排列为.18.如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么它的左视图的高是.19.如图,某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为_________ 米.20.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为cm2.三、解答题(共60分)21.(6分)画出该几何体的三视图:22.(6分)确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.23.(6分)一个几何体由大小相同的小立方体搭成,从上面看到的几何体的形状如图所示.小正方形中的数字表示该位置的小立方块的个数.请你画出从正面和从左面看到的这个几何体的形状图.24.(6分)一个几何体由大小相同的小立方块搭成,从上面看到几何体的形状如图所示,其中小正方形中的数字表示该位置的小立方块的个数,请画出从正面和从左面看到这个几何体的形状.25.(9分)晚饭后,小林和小京在社区广场散步,两人在灯下沿直线NQ移动,如图,当小林正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小京正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小林的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小京身高BE的长.(结果精确到0.01米)26.(9分)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.27.(9分)如图,小华在晚上由路灯A 走向路灯B .当他走到点P 时,发现他身后影子的顶部刚好接触到路灯A 的底部;当他向前再步行12m 到达点Q 时,发现他身前影子的顶部刚好接触到路灯B 的底部.已知小华的身高是1.6m ,两个路灯的高度都是9.6m ,且AP=QB .(1)求两个路灯之间的距离.(2)当小华走到路灯B 的底部时,他在路灯A 下的影长是多少?28.(9分)如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6 m 的小明落在地面上的影长为BC =2.4m .(1)、请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG ;(2)、若小明测得此刻旗杆落在地面的影长EG =16 m ,请求出旗杆DE 的高度. C AB DE答案(测试时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列四个几何体中,主视图是三角形的是()A.B.C.D.【答案】D【解析】主视图是三角形的一定是一个锥体,只有D是锥体.故选D.2.如图,当投影线由物体的前方射到后方时,下列一组几何体的正投影是圆的是( )A.B.C.D.【答案】D3.如图,空心卷筒纸的高度为12cm,外径(直径)为10cm,内径为4cm,在比例尺为1:4的三视图中,其主视图的面积是()A.cm2B.cm2C.30cm2D.7.5cm2【答案】D【解析】试题分析:12×=3(cm),10×=2.5(cm),3×2.5=7.5(cm2).故其主视图的面积是7.5cm2.故选D.4.个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【答案】C【解析】根据三视图的画法可得:A为主视图,D为俯视图,C为左视图,故本题选C.5.同一时刻,两根长度不等的竿子置于阳光之下,如果影长相等,那么这两根竿子的相对位置是( ) A.两根都垂直于地面B.两根平行斜插在地面上C.两根竿子不平行D.两根都倒在地上【答案】C6.如左图是由4个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.【答案】C【解析】这个组合体左视图是两个竖着的正方形,主视图是上面一个正方形,下面三个正方形,俯视图是三个横着的正方形,所以选C.7.如图所示的几何体的俯视图是().A.B.C.D.【答案】C8.当棱长为20cm正方体的某个面平行于投影面时,这个面的正投影的面积为( )A.20cm2B.300cm2C.400c m2D.600cm2【答案】C【解析】由题意可得该正方体的投影是边长为20cm的正方形,面积为:20×20=400cm2.故选C.9.如图,从小区的某栋楼的A,B,C,D四个位置向对面楼方向看,所看到的范围的大小顺序是()A.A>B>C>D B.D>C>B>A C.C>D>B>A D.B>A>D>C【答案】A【解析】由图可知: 从小区的某栋楼的A,B,C,D四个位置向对面楼方向看,所看到的范围的大小顺序是: A>B>C>D.10.由一些相同的立方体搭成某几何体,这个几何体的主视图和俯视图如图所示,请问搭这样一个几何体最多需要多少小立方体?()A. 4 B. 5 C. 6D.7【答案】B二、填空题(每小题3分,共30分)11.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多是.【答案】5【解析】结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.12.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为 cm.【答案】18.【解析】∵DE∥BC,∴△AED∽△ABC,∴AE DEAC BC=,设屏幕上的小树高是x,则2062040x=+,解得x=18cm.故答案为:18.13.下列四个立体图形中,左视图为矩形的是.【答案】④14.如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是个【答案】6.【解析】综合三视图可知,这个几何体的底层有3个小正方体,第2层有1个小正方体,第3层有1个小正方体,第4层有1个小正方体,因此搭成这个几何体所用小正方体的个数是3+1+1+1=6个.故选A.15.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的左视图的面积是.【答案】18cm216.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为.【答案】5.【解析】主视图如图所示,∵由6个棱长均为1的正方体组成的几何体,∴主视图的面积为5×12=5,故答案为:5.17.下图是某天内,电线杆在不同时刻的影长,按先后顺序应当排列为.【答案】DABC【解析】根据北半球上太阳光下的影子变化的规律,从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.可得顺序为DABC.18.如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么它的左视图的高是.【答案】23.19.如图,某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为_________ 米.【答案】9【解析】∵DE∥AB,DF∥AC,∴△DEF∽△ABC,∴DF EFAC BC=,即1.516AC=,∴AC=6×1.5=9米.20.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为cm2.【答案】4π三、解答题(共60分)21.(6分)画出该几何体的三视图:【答案】作图见解析【解析】如图所示:.22.(6分)确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.【答案】作图见解析【解析】如图所示23.(6分)一个几何体由大小相同的小立方体搭成,从上面看到的几何体的形状如图所示.小正方形中的数字表示该位置的小立方块的个数.请你画出从正面和从左面看到的这个几何体的形状图.【答案】答案见解析【解析】从正面看和从左面看得到的图形如图所示.24.(6分)一个几何体由大小相同的小立方块搭成,从上面看到几何体的形状如图所示,其中小正方形中的数字表示该位置的小立方块的个数,请画出从正面和从左面看到这个几何体的形状.【答案】作图见解析【解析】如图所示:25.(9分)晚饭后,小林和小京在社区广场散步,两人在灯下沿直线NQ移动,如图,当小林正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小京正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小林的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小京身高BE的长.(结果精确到0.01米)【答案】小京身高约为1.75米.又∵∠EBF=∠MNF=90°,∠EFB=∠MFN,∴△EFB~△MFN,∴EB BF MN NF,∴20.8 9.6110.8 EB⨯=⨯∴EB≈1.75米.答:小京身高约为1.75米.26.(9分)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.【答案】(1)平行;(2)7米.过程见解析.27.(9分)如图,小华在晚上由路灯A走向路灯B.当他走到点P时,发现他身后影子的顶部刚好接触到路灯A的底部;当他向前再步行12m到达点Q时,发现他身前影子的顶部刚好接触到路灯B的底部.已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB.(1)求两个路灯之间的距离.(2)当小华走到路灯B的底部时,他在路灯A下的影长是多少?【答案】(1)18m;(2)3.6m∵NQ∥AC,∴△BNQ∽△BCA,∴BQ QNAB AC=,即1.69.6BQAB=,∴BQ=16 AB,而AP+PQ+BQ=AB,∴16AB+12+16AB=AB,∴AB=18.答:两路灯的距离为18m;(2)如图2,他在路灯A下的影子为BN,∵BM∥AC,∴△NBM∽△NAC,∴BN BMAN AC=,即1.6189.6BNBN=+,解得BN=3.6.答:当他走到路灯B时,他在路灯A下的影长是3.6m.28.(9分)如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6 m的小明落在地面上的影长为BC=2.4m.(1)、请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG;(2)、若小明测得此刻旗杆落在地面的影长EG=16 m,请求出旗杆DE的高度.【答案】(1)、作图见解析;(2)、DE=323m.【解析】(1)、影子EG如图所示(2)、由题意可知:△ABC∽△DGE ,∴AB DEBC GE=又∵AB=1.6 BC=2.4 GE=16CABD EC A BDE G∴1.62.416DE=∴323DE=∴旗杆的高度为323m.21。