高一下期末数学试卷含答案解析
- 格式:doc
- 大小:562.50 KB
- 文档页数:16
山东省青岛市莱西市2021-2022学年高一下学期期末考试数学试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数13z i =-+,i 为虚数单位,则z 的共轭复数为( ) A .13i + B .13i - C .13i -- D .3i -〖解 析〗13z i =-+,∴13z i =--.〖答 案〗C2.一支野外科学考察队有男队员56人,女队员42人,按性别进行分层,用分层随机抽样的方法从全体队员中抽出一个容量为28的样本,如果样本按比例分配,那么下面说法正确的为( )A .男队员应抽取12人B .男队员应抽取16人C .女队员应抽取6人D .女队员应抽取14人〖解 析〗由分层抽样的定义可知,男队员应抽取5628165642⨯=+人,女队员应抽取281612-=人.〖答 案〗B3.若||2a =,(1,1)b =-,a 与b 共线,则向量a 的坐标可能为( )A .(1,1)a =-B .(1,1)a =C .2(,2a = D .2(,2a =-〖解 析〗设(,)a x y =,||2a =,(1,1)b =-,且a 与b 共线,则2220x y x y ⎧+=⎨+=⎩,解得11x y =⎧⎨=-⎩或11x y =-⎧⎨=⎩,即(1,1)a =-或(1,1)a =-(舍去). 〖答 案〗A4.下列命题正确的为( ) A .两条直线确定一个平面 B .一条直线和一个点确定一个平面C .若直线在平面外,则这条直线与这个平面没有公共点D .若两条直线没有公共点,则这两条直线为平行直线或异面直线〖解 析〗在A 中,由平面基本性质的推论2,3得到:两条相交直线能确定一个平面,两条平行直线能确定一个平面,故A 错误;在B 中,一条直线和这条直线外一个点可以确定一个平面,故B 错误;在C 中,若直线在平面外,包括直线和平面平行和直线和平面相交,若直线和平面相交,则这条直线与这个平面有一个公共点,故C 错误;在D 中,若两条直线没有公共点,则这两条直线为平行直线或异面直线,故D 正确. 〖答 案〗D5.下列说法正确的为( )A .互斥事件一定是对立事件,对立事件不一定是互斥事件B .事件A 与事件B 中至少有一个发生的概率一定比A 与B 中恰有一个发生的概率大C .事件A 与事件B 中同时发生的概率一定比A 与B 中恰有一个发生的概率小D .设A ,B 是一个随机试验中的两个事件,则()P AB P =(A )P +(B )()P AB -〖解 析〗对A ,互斥事件不一定是对立事件,对立事件一定是互斥事件,故A 错误; 对B ,当事件A 与事件B 为对立事件时,事件A 与事件B 中至少有一个发生的概率和A 与B 中恰有一个发生的概率相等,故B 错误;对C ,当A B =时,事件A 与事件B 中同时发生的概率等于A 与B 中恰有一个发生的概率,故C 错误;对D ,设A ,B 是一个随机试验中的两个事件, 则()P AB P =(A )P +(B )()P AB -正确,故D 正确.〖答 案〗D6.要得到()sin(4)3g x x π=+的图象,只需要将22()cos 2sin 2f x x x =-的图象( )A .向左平移3π个单位长度 B .向右平移24π个单位长度C .向左平移12π个单位长度D .向右平移6π个单位长度 〖解 析〗22()cos 2sin 2cos4sin(4)sin 4()sin 4[()]282412f x x x x x x x ππππ=-==+=+=++,又()sin(4)sin 4()312g x x x ππ=+=+,故要得到函数()sin(4)3g x x π=+的图象,只需将函数()sin 4[()]2412f x x ππ=++的图象向右平移24π个单位长度即可. 〖答 案〗B7.为了普及环保知识,某学校随机抽取了30名学生参加环保知识测试,得分(十分制,单位:分)的统计数据如表:设这30名学生得分的中位数为m ,众数为n ,平均数为x ,则下列选项正确的为( ) A .m n x ==B .m n x =<C .m n x <<D .n m x <<〖解 析〗这30名学生得分的中位数为565.52m +==,众数为5n =, 平均数1(324351066738292102) 5.9630x =⨯⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=, 故n m x <<. 〖答 案〗D8.已知球O 是正三棱锥A BCD -(底面是正三角形,顶点在底面的射影为底面中心)的外接球,3BC =,AB =E 在线段BD 上,且3BD BE =.过点E 作球O 的截面,则所得截面面积的最小值是( ) A .2πB .3πC .4πD .5π〖解 析〗如图,1O 是A 在底面的射影,由正弦定理得,BCD ∆的外接圆半径131sin602r =⨯=︒;由勾股定理得棱锥的高13AO ==;设球O 的半径为R ,则22(3)R R =-,解得2R =,所以11OO =;在△1BO E 中,由余弦定理得2113211O E =+-⨯=,所以11O E =;所以在1OEO ∆中,OE ;当截面垂直于OE =2π. 〖答 案〗A二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.连续抛掷一枚质地均匀的硬币两次,下面说法正确的为( ) A .两次均正面朝上的概率为12 B .两次均反面朝上的概率为14C .两次中,一次正面朝上,另一次反面朝上的概率为14D .两次中,至少一次正面朝上的概率为34〖解答〗对A ,两次均正面朝上的概率为111224⨯=,故A 错误;对B ,两次均反面朝上的概率为111224⨯=,故B 正确;对C ,两次中,一次正面朝上,另一次反面朝上的概率为1111122222⨯+⨯=,故C 错误;对D ,两次均正面朝上的概率为111224⨯=,故两次中,至少一次正面朝上的概率为13144-=,故D 正确. 〖答 案〗BD10.已知三个不同的平面α,β,γ和三条不同的直线m ,n ,l ,下列命题中为真命题的是( )A .若//m n ,m α⊥,则n α⊥B .若//m n ,//m α,则//n αC .若m αβ=,n α⊂,l β⊂,//n l ,则////m n lD .若αγ⊥,//αβ,则βγ⊥〖解 析〗选项A ,由线面垂直的性质定理知,若//m n ,m α⊥,则n α⊥,即A 正确; 选项B ,若//m n ,//m α,则//n α或n α⊂,即B 错误; 选项C ,因为l β⊂,//n l ,n β⊂/,所以//n β,又m αβ=,n α⊂,所以//n m ,由平行线的传递性知,////m n l ,即C 正确;选项D ,由面面垂直的性质定理知,若αγ⊥,//αβ,则βγ⊥,即D 正确. 〖答 案〗ACD11.给出以下24个数据:148.0 149.0 154.0 154.0 155.0 155.0 155.2 157.0 158.0 158.0 159.0 159.5 161.5 162.0 162.5 162.5 163.0 163.0 164.0 164.1 165.0 170.0 171.0 172.0 对于以上给出的数据,下列选项正确的为( ) A .极差为24.0B .第75百分位数为164.0C .第25百分位数为155.2D .80%分位数为164.1〖解 析〗对于A ,由题意可得,极差为17214824-=,故A 正确, 对BCD ,25%246⨯=,75%2418⨯=,80%2419.2⨯=,∴样本数据的第25,75,80百分位数为第6,7为的平均数,第18,19的平均数,第20项数据,即分别为155155.2155.12+=,163164163.52+=,164.1,故BC 错误,D 正确. 〖答 案〗AD12.在ABC ∆中,135BAC ∠=︒,6AB =,AC =D 为BC 边上的一点,且D 到A ,B 距离相等,则下列结论正确的为( )A.sin ABC ∠=B.BD =C .ABC ∆外接圆的面积为45πD .18ABC S ∆=〖解 析〗在ABC ∆中,135BAC ∠=︒,6AB =,AC =由余弦定理可得2222cos 90BC AB AC AB AC BAC =+-⋅∠=,BC ∴=由正弦定理可得sin sin AC BCABC BAC=∠∠,sin ACin BAC ABC BC ∠∴∠===,由角B为锐角知cos B A 错误; 过点D 作AB 的垂线DE , 如图,由AD BD =得cos cos DAE B ∠=,132AE AB ==, Rt ADE ∆,3cos cos AE AD DAE B ====∠BD AD ∴==B 正确;由正弦定理可知,ABC ∆外接圆的直径2sin BC R A ==,R = ABC ∴∆外接圆的面积为245S R ππ==,故C 正确;由三角形面积公式可得11sin 6922ABC S AB AC A ∆=⋅⋅=⨯⨯=,故D 错误. 〖答 案〗BC三、填空题:本题共4小题,每小题5分,共20分.13.已知复数z 满足46z i zi +=+,其中i 为虚数单位,则复数z = . 〖解 析〗设z a bi =+,a ,b R ∈,46z i zi +=+,46()6a bi i a bi i b ai ∴++=++=-+,即64a bb a =-⎧⎨+=⎩,解得5a =,1b =, 故5z i =+. 〖答 案〗5i +14.已知1sin cos 5αα+=,0απ,则cos 2α= .〖解 析〗由1sin cos 5αα+=,两边平方得:112sin cos 25αα+=,可得242sin cos 25αα=-,0απ,∴2παπ<,则sin 0α>,cos 0α<,7sin cos 5αα∴-. 解得4sin 5α=,3cos 5α=-,∴cos2α.〖答 15.已知(12,1)a k =-,(3,)b k =-,若a 与b 的夹角为钝角,则实数k 的取值范围为 . 〖解 析〗由已知条件可得,0a b ⋅<且,a b 不共线, 则3(12)0(12)3a b k k k k ⎧⋅=--<⎪⎨-≠-⎪⎩,解得37k <且1k ≠-,故实数k 的取值范围为(-∞,31)(1,)7--.〖答 案〗(-∞,31)(1,)7--16.(3分)某传媒机构举办闯关答题比赛,比赛分两轮,每轮共有4道题,参赛者必须从前往后逐道题回答.在第一轮中,若中途回答错误,立马淘汰,若四道题全部回答正确,就能获得一枚复活币并进入下一轮答题,这枚复活币在下一轮答题中最多只能使用一次;在第二轮中,若首次遇到某一道题回答错误时,系统会自动使用第一轮获得的一枚复活币复活一次,即视为答对该道题,其后若回答错误,和第一轮一样,立马淘汰;两轮都通过就可以获得优胜者纪念奖章.对于每轮的4道题,若某参赛者从前往后每道题回答正确的概率均依次为910,89,34,13,且每道题回答正确与否不受其它题的影响,则该参赛者能进入第二轮答题的概率为 ;该参赛者能获得优胜者纪念奖章的概率为 . 〖解 析〗该参赛者能进入第二轮答题的概率为98311109435⨯⨯⨯=; 该参赛者能获得优胜者纪念奖章的概率:198311831913198119832257()510943109431094310943109431800⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=. 〖答 案〗15,2571800四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)已知复数22(710)(56)z m m m m i =-++-+,i 为虚数单位,m R ∈. (Ⅰ)若z 为纯虚数,求m 的值;(Ⅱ)若在复平面上表示复数z 的点位于第二象限,求m 的取值范围; (Ⅲ)若在复平面上表示复数z 的点位于直线2140x y --=上,求m 的值. 解:(I)z 为纯虚数,∴225607100m m m m ⎧-+≠⎨-+=⎩,解得5m =. (II)在复平面上表示复数z 的点位于第二象限,则225607100m m m m ⎧-+>⎨-+<⎩,解得35m <<,故m 的取值范围为(3,5).(III)在复平面上表示复数z 的点位于直线2140x y --=上,则222(710)(56)140m m m m -+--+-=,解得0m =或9. 18.(12分)试分别解答下列两个小题:(Ⅰ)已知||6a =,||4b =,(2)(3)480a b a b +⋅-+=,求向量a 与b 的夹角θ; (Ⅱ)已知3sin()cos cos()sin 5βαβαββ---=,α是第三象限角,求3tan(2)4πα+的值. 解:(Ⅰ)由已知,||6a =,||4b =,(2)(3)480a b a b +⋅-+=, 所以22648a b a b --⋅=-,将||6a =,||4b =,代入上式得12a b ⋅=-, 故1cos 2||||a b a b θ⋅==-,[0θ∈,]π,故23πθ=;(Ⅱ)由3sin()cos cos()sin 5βαβαββ---=, 得3sin[()]sin()5βαβα--=-=,故3sin 5α=-,因为α为第三象限角,故4cos 5α=-,所以3tan 4α=,所以22tan 24tan 217tan ααα==-, 所以2413177tan(2)244311(1)7πα-+==-⨯-. 19.(12分)试分别解答下列两个小题:(Ⅰ)一个袋子中有标号分别为1,2,3,4的4个球,除标号外没有其它差异.采用不放回方式从中任意摸球两次,每次摸出一个球.设事件A = “第一次摸出球的标号小于3”,事件B = “第二次摸出球的标号小于3”,试判断事件A 与事件B 是否相互独立?请写出判断过程;(Ⅱ)如图,在平行六面体1111ABCD A B C D -中,M 为1DD 的中点,N 为1CC 的中点,求证:平1//NBD 平面MAC .(I)解:因为样本空间{(,)|m n m Ω=,{1n ∈,2,3,4},且}m n ≠, {(1,2)A =,(1.3),(1,4),(2,1),(2,3),(2,4)}, {(1,2)B =,(2.1),(3,1),(3,2),(4,1),(4,2)},由题意可知,P (A )P =(B )61122==,21()126P AB ==, 此时()P AB P ≠(A )P (B ),因此事件A 与事件B 不相互独立; (II)证明:连接BD 交AC 于O ,连接OM ,在平行六面体1111ABCD A B C D -中,可知ABCD 是平行四边形, 所以O 是BD 的中点,因为M 为1DD 的中点,所以1//MO D B , 又MO ⊂平面MAC ,1BD ⊂/平面MAC ,所以1//BD 平面MAC , 又因为M 为1DD 的中点,N 为1CC 的中点, 所以四边形1MCND 为平行四边形,所以1//ND CM ,又CM ⊂平面MAC ,1ND ⊂/平面MAC ,所以1//ND 平面MAC , 又111BD ND D =,1BD ,1ND ⊂平面1BND所以平面1//NBD 平面MAC .20.(12分)为调查禽类某种病菌感染情况,某养殖场每周都定期抽样检测禽类血液中A 指标的值.养殖场将某周的5000只家禽血液样本中A 指标值的检测数据进行整理,发现这些数据均在区间[1,15]内,现将这些数据分成7组:第1组,第2组,第3组,⋯,第7组对应的区间分别为[1,3),[3,5),[5,7),⋯,[13,15],绘成如图所示的频率分布直方图.(Ⅰ)求直方图中a 的值;(Ⅱ)根据频率分布直方图,估计这5000只家禽血液样本中A 指标值的中位数和85%分位数(结果保留两位小数);(Ⅲ)现从第2组A 指标值对应的家禽中抽取4只,分别记为1R ,2R ,3R ,4R ,从第5组A 指标值对应的家禽中抽取3只,分别记为1E ,2E ,3E ,然后将这7只家禽混在一起作为一个新的样本Ω,从Ω中任取2只家禽进行δ指标值的检测,求从Ω中取到的两只家禽的A 指标值的差的绝对值小于2的概率.解:(Ⅰ)由题意可得:2(0.020.060.180.050.030.02)1a ⨯++++++=,则0.14a =; (Ⅱ)由题意,每组的频率依次为:0.04,0.12,0.28,0.36,0.10,0.06,0.04, 0.040.120.280.440.50++=<,0.040.120.280.360.700.50+++=>,∴中位数位于[7,9)内,设为m ,则0.440.18(7)0.50m +⨯-=,7.33m ∴≈,0.040.120.280.360.800.85+++=<,0.040.120280.360.100.900.85++++=>, 85%∴分位数为[9,11)的中点10.00;(Ⅲ)从Ω中任取2只,共2721C =个基本事件,记“从Ω中取到的两只家禽的a 指标值的差的绝对值小于2”为事件B ,则事件B 共9个基本事件,∴从Ω中取到的两只家禽的A 指标值的差的绝对值小于2的概率P (B )93217==. 21.(12分)如图①,在平行四边形11ABB A 中,160ABB ∠=︒,4AB =,12AA =,C ,1C 分别为AB ,11A B 的中点,现把平行四边形11AA C C 沿1CC 折起如图②所示.在图②中,连接1AB ,11A B ,若1AB =(Ⅰ)求证:平面11AAC C ⊥平面11BB C C ;(Ⅱ)求平面11AA B 与平面11BB C C 所成的锐二面角的大小. (1)证明:取1CC 的中点O ,连接OA ,1OB ,1AC ,在平行四边形11ABB A 中,160ABB ∠=︒,4AB =,12AA =,C 、1C 分别为AB 、11A B 的中点,1ACC ∴∆,△11B CC 为正三角形,则1AO CC ⊥,160ABB ∠=︒,4AB =,12AA =,C 、1C 分别为AB 、11A B 的中点,2AC ∴=,1OA OB ==1AB =22211OA OB AB +=,则三角形1AOB 为直角三角形,则1AO OB ⊥, 又1OB ⊂平面11BB C C ,1CC ⊂平面11BB C C ,11OB CC O =,AO ∴⊥平面11BB C C ,又AO ⊂平面11AA C C ,∴平面11AAC C ⊥平面11BB C C ;(II)解:以O 为原点,以OC ,1OB ,OA 为x ,y ,z 轴建立空间直角坐标系,则(1C ,0,0),1(0B0),1(1C -,0,0),(0A ,0, 则1(2CC =-,0,0),则11(2AA CC ==-,0,0),1(0AB =,(1AC =,0,, 设平面11AB A 的一个法向量为(n x =,y ,)z ,则113020n AB y n AA x ⎧⋅==⎪⎨⋅=-=⎪⎩,令1z =,则1y =,0x =,∴平面11AB A 的一个法向量为(0n =,1,1),(0OA ∴=,0为平面11BB C C的一个法向量,则cos OA <,3||||3OA n n OA n ⋅>===⋅⨯OA <,45n >=︒,∴平面11AA B 与平面11BB C C 所成的锐二面角的大小45︒.22.(12分)如图所示,某住宅小区一侧有一块三角形空地ABO ,其中3OA km =,OB =,90AOB ∠=︒.物业管理拟在中间开挖一个三角形人工湖OMN ,其中M ,N 都在边AB 上(M ,N 不与A ,B 重合,M 在A ,N 之间),且30MON ∠=︒.(Ⅰ)若M 在距离A 点2km 处,求点M ,N 之间的距离;(Ⅱ)为节省投入资金,三角形人工湖OMN 的面积要尽可能小.试确定M 的位置,使OMN ∆的面积最小,并求出最小面积.解:(Ⅰ)在ABO ∆中,因为3,90OA OB AOB ==∠=︒,所以60OAB ∠=︒,在OAM ∆中,由余弦定理得:2222cos 7OM AO AM AO AM A =+-⋅=,所以OM所以222cos 2OA OM AM AOM AO AM +-∠==⋅, 在OAN ∆中,sin sin()sin(90)cos ONA A AON AOM AOM ∠=∠+∠=∠+︒=∠= 在OMN ∆中,由sin30sin MN OMONA =︒∠,得1724MN ==; (Ⅱ)解法1:设AOM θ∠=,060θ︒<<︒, 在OAM ∆中,由sin sin OM OAOAB OMA=∠∠,得OM =, 在OAN ∆中,由sin sin ON OAOAB ONA=∠∠,得ON =,所以111sin 222OMN S OM ON MON ∆=⋅∠=2716sin(60)cos θθ==+︒=60θ=<<︒.当26090θ+︒=︒,即15θ=︒时,OMNS∆所以应设计15AOM∠=︒,可使OMN∆2.解法2:设AM x=,03x<<.在OAM∆中,由余弦定理得22222cos39OM AO AM AO AM A x x=+-⋅⋅=-+,所以OM222cos2OA OM AMAOMOA OM+-∠==⋅,在OAN∆中,sin sin()ONA A AON∠=∠+∠sin(90)cosAOM AOM=∠+︒=∠=由sin sinON OAOAB ONA=∠∠,得36ONx==-,所以1sin2OMNS OM ON MON∆=⋅⋅∠1122==03x<<,令6x t-=,则6x t=-,36t<<,则:27339)9)4OMNS tt∆=-+⋅=当且仅当27tt=,即t=,6x=-OMNS∆所以M的位置为距离A点6-处,可使OMN∆的面积最小,最小面积是2.。
武汉2023-2024学年度下学期期末考试高一数学试卷(答案在最后)命题教师:考试时间:2024年7月1日考试时长:120分钟试卷满分:150分一、选择题:本题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足(2i)3i z +=-,则z =()A.1i +B.1i- C.1i-+ D.1i--【答案】A 【解析】【分析】先利用复数的除法运算法则化简得到复数z ,再根据共轭复数的概念即可求解.【详解】因为(2i)3i z +=-,所以3i (3i)(2i)1i 2i 41z ---===-++,所以1i z =+.故选:A2.△ABC 中,60A =︒,BC =AC =C 的大小为()A.75︒B.45︒C.135︒D.45︒或135︒【答案】A 【解析】【分析】利用正弦定理可得sin B =45B = ,由三角形内角和即可求解.【详解】由正弦定理可得sin sin BC AC A B=,故32sin 2B ==,由于60A =︒,故0120B ︒︒<<,故45B = ,18075C A B =--= ,故选:A3.已知数据1x ,2x ,L ,9x 的方差为25,则数据131x +,231x +,L ,931x +的标准差为()A.25B.75C.15D.【答案】C 【解析】【分析】根据方差的性质求出新数据的方差,进而计算标准差即可.【详解】因为数据1x ,2x ,L ,9x 的方差为25,所以另一组数据131x +,231x +,L ,931x +的方差为2325225⨯=,15=.故选:C4.在正方形ABCD 中,M 是BC 的中点.若AC AM BD λμ=+,则λμ+的值为()A.43B.53C.158D.2【答案】B 【解析】【分析】建立平面直角坐标系,利用向量的坐标运算求解作答.【详解】在正方形ABCD 中,以点A 为原点,直线AB ,AD 分别为x ,y 轴建立平面直角坐标系,如图,令||2AB =,则(2,0),(2,2),(0,2),(2,1)B C D M ,(2,2),(2,1),(2,2)AC AM BD ===-,(22,2)AM BD λμλμλμ+=-+ ,因AC AM BD λμ=+ ,于是得22222λμλμ-=⎧⎨+=⎩,解得41,33λμ==,53λμ+=所以λμ+的值为53.故选:B5.正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.32【答案】C 【解析】【详解】试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B ⋂=,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以11111133133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积.6.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C b c C ⎛⎫++= ⎪⎝⎭,3B π=,则a c +的取值范围是()A.332⎛⎝ B.332⎛⎝ C.332⎣ D.332⎡⎢⎣【答案】A 【解析】【分析】利用三角恒等变换及正弦定理将cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭进行化简,可求出b 的值,再利用边化角将a c +化成角,然后利用辅助角公式及角的范围即可得到答案.【详解】由题知cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=∴cos cos sin sin sin B C AB bc C ⎛⎫+=⎪⎝⎭即cos cos 3sin B C Ab c C+=由正弦定理化简得∴sin cos cos 3sin 3A cB bC C ⋅+⋅==∴23sin sin cos cos sin 3AC B C B +=∴23sin sin()sin 3AB C A +==∴2b =3B π=∴1sin sin sin a b cA B C===∴23sin sin sin sin()sin cos )3226a c A C A A A A A ππ+=+=+-=+=+ 203A π<<∴5666A πππ<+<∴)26A π<+≤即2a c <+≤故选:A .【点睛】方法点睛:边角互化的方法(1)边化角:利用正弦定理2sin sin sin a b cr A B C===(r 为ABC 外接圆半径)得2sin a r A =,2sin b r B =,2sin c r C =;(2)角化边:①利用正弦定理:sin 2aA r=,sin 2b B r =,sin 2c C r=②利用余弦定理:222cos 2b c a A bc+-=7.设O 为△ABC 的外心,若2AO AB AC =+,则sin BAC ∠的值为()A.4B.4C.4-D.4【答案】D 【解析】【分析】设ABC 的外接圆半径为R ,由已知条件可得,2AC BO = ,所以12AC R =,且//AC BO ,取AC的中点M ,连接OM 可得π2BOM ∠=,计算cos sin BOC MOC ∠=-∠的值,再由余弦定理求出BC ,在ABC 中,由正弦定理即可求解.【详解】设ABC 的外接圆半径为R ,因为2AO AB AC =+ ,2AC AO AB BO =-=,所以1122AC BO R ==,且//AC BO ,取AC 的中点M ,连接OM ,则OM AC ⊥,因为//AC BO ,所以OM BO ⊥,即π2BOM ∠=,所以11π124cos cos sin 24AC RMC BOC MOC MOC OC OB R ⎛⎫∠=+∠=-∠=-=-=-=- ⎪⎝⎭,在BOC中由余弦定理可得:2BC R ===,在ABC中,由正弦定理得:2sin 224RBCBAC RR ∠===.故选:D8.高为8的圆台内有一个半径为2的球1O ,球心1O 在圆台的轴上,球1O 与圆台的上底面、侧面都相切.圆台内可再放入一个半径为3的球2O ,使得球2O 与球1O 、圆台的下底面及侧面都只有一个公共点.除球2O ,圆台内最多还能放入半径为3的球的个数是()A.1 B.2C.3D.4【答案】B 【解析】【详解】作过2O 的圆台的轴截面,如图1.再作过2O 与圆台的轴垂直的截面,过截面与圆台的轴交于圆O .由图1.易求得24OO =.图1这个问题等价于:在以O 为圆心、4为半径的圆上,除2O 外最多还可放几个点,使以这些点及2O 为圆心、3为半径的圆彼此至多有一个公共点.由图2,3sin45sin sin604θ︒<=︒,有4560θ︒<<︒.图2所以,最多还可以放入36013122θ︒⎡⎤-=-=⎢⎣⎦个点,满足上述要求.因此,圆台内最多还可以放入半径为3的球2个.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知某地区有小学生120000人,初中生75000人,高中生55000人,当地教育部门为了了解本地区中小学生的近视率,按小学生、初中生、高中生进行分层抽样,抽取一个容量为2000的样本,得到小学生,初中生,高中生的近视率分别为30%,70%,80%.下列说法中正确的有()A.从高中生中抽取了460人B.每名学生被抽到的概率为1125C.估计该地区中小学生总体的平均近视率为60%D.估计高中学生的近视人数约为44000【答案】BD 【解析】【分析】根据分层抽样、古典概型、频率公式等知识对选项进行分析,从而确定正确选项.【详解】高中生抽取5500020004401200007500055000⨯=++人,A 选项错误.每名学生被抽到的概率为200011200007500055000125=++,B 选项正确.学生总人数为1200007500055000250000++=,估计该地区中小学生总体的平均近视率为1200007500055000132.50.30.70.80.53250000250000250000250⨯+⨯+⨯==,C 选项错误.高中学生近视人数约为550000.844000⨯=人,D 选项正确.故选:BD10.G 是ABC 的重心,2,4,120,AB AC CAB P ∠=== 是ABC 所在平面内的一点,则下列结论正确的是()A.0GA GB GC ++= B.AB 在AC上的投影向量等于12- AC .C.3AG =D.()AP BP CP ⋅+ 的最小值为32-【答案】ACD 【解析】【分析】根据向量的线性运算,并结合重心的性质,即可判断A ,根据投影向量的定义,判断B ;根据向量数量积公式,以及重心的性质,判断C ;根据向量数量积的运算率,结合图形转化,即可判断D.【详解】A.以,GB GC 为邻边作平行四边形GBDC ,,GD BC 交于点O ,O 是BC 的中点,因为G 是ABC 的重心,所以,,A G O 三点共线,且2AG GO =,所以2GB GC GD GO +== ,2GA AG GO =-=- ,所以0GA GB GC ++=,故A 正确;B.AB 在AC 上的投影向量等于1cos1204AC AB AC AC ⨯=-,故B 错误;C.如图,因为()12AO AB AC =+ ,所以()222124AO AB AC AB AC =++⋅,即211416224342AO ⎛⎫=+-⨯⨯⨯= ⎪⎝⎭,即3AO = 因为点G 是ABC 的重心,22333AG AO ==,故C 正确;D.取BC 的中点O ,连结,PO PA ,取AO 中点M ,则2PA PO PM += ,()12AO AB AC =+,()()2221124816344AO AB AB AC AC =+⋅+=⨯-+= ,则()()()()221224AP BP CP PA PB PC PA PO PA PO PA PO ⎡⎤⋅+=⋅+=⋅=⨯+--⎢⎥⎣⎦,222132222PM OA PM =-=- ,显然当,P M 重合时,20PM = ,()AP BP CP ⋅+ 取最小值32-,故D 正确.故选:ACD【点睛】关键点点睛:本题的关键是对于重心性质的应用,以及向量的转化.11.如图,在棱长为2的正方体1111ABCD A B C D -中,O 为正方体的中心,M 为1DD 的中点,F 为侧面正方形11AA D D 内一动点,且满足1B F ∥平面1BC M ,则()A.三棱锥1D DCB -的外接球表面积为12πB.动点F 的轨迹的线段为22C.三棱锥1F BC M -的体积为43D.若过A ,M ,1C 三点作正方体的截面Ω,Q 为截面Ω上一点,则线段1AQ 长度的取值范围为45,225⎡⎢⎣⎦【答案】AC 【解析】【分析】选项A :三棱锥1D DCB -的外接球即为正方体的外接球,结合正方体的外接球分析;选项B :分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD ;证明平面1B GH ∥平面1BC M ,从而得到点F 的轨迹为线段GH ;选项C :根据选项B 可得出GH ∥平面1BC M ,从而得到点F 到平面1BC M 的距离为H 到平面1BC M 的距离,再结合线面垂直及等体积法,利用四棱锥的体积求解所求三棱锥的体积;选项D :设N 为1BB 的中点,从而根据面面平行的性质定理可得到截面Ω即为面1AMC N ,从而线段1AQ 长度的最大值为线段11A C 的长,最小值为四棱锥11A AMC N -以1A 为顶点的高.【详解】对于A :由题意可知:三棱锥1D DCB -的外接球即为正方体的外接球,可知正方体的外接球的半径3R =所以三棱锥1D DCB -的外接球表面积为24π12πR =,故A 正确;对于B :如图分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD .由正方体的性质可得11B H C M ∥,且1B H ⊂平面1B GH ,1C M ⊄平面1B GH ,所以1C M //平面1B GH ,同理可得:1BC //平面1B GH ,且111BC C M C ⋂=,11,BC C M ⊂平面1BC M ,所以平面1B GH ∥平面1BC M ,而1B F ∥平面1BC M ,所以1B F ⊂平面1B GH ,所以点F 的轨迹为线段GH ,其长度为12222⨯=,故B 错误;对于C :由选项B 可知,点F 的轨迹为线段GH ,因为GH ∥平面1BC M ,则点F 到平面1BC M 的距离为H 到平面1BC M 的距离,过点B 作1BP B H ⊥,因为11B C ⊥平面11ABB A ,BP ⊂平面11ABB A ,所以11B C BP ⊥,又1111⋂=B C B H B ,111,B C B H ⊂平面11B C MH ,所以BP ⊥平面11B C MH ,所以1111111111114252232335F BC M H BC M B C MH B B C MH B C MHV V V V S BP ----====⨯=⨯⨯⨯⨯,故C 正确;对于D :如图,设平面Ω与平面11AA B B 交于AN ,N 在1BB 上,因为截面Ω⋂平面11AA D D AM =,平面11AA D D ∥平面11BB C C ,所以1AM C N ∥,同理可证1AN C M ∥,所以截面1AMC N 为平行四边形,所以点N 为1BB 的中点,在四棱锥11A AMC N -中,侧棱11A C 最长,且11A C =设棱锥11A AMC N -的高为h ,因为1AM C M ==1AMC N 为菱形,所以1AMC 的边1AC ,又1AC =则112AMC S =⨯=△1111111142223323C AA M AA M V SD C -=⋅=⨯⨯⨯⨯=△,所以1111114333A AMC AMC C AA M V S h V --=⋅===△,解得3h =.综上,可知1AQ 长度的取值范围是,3⎡⎢⎣,故D 错误.故选:AC【点睛】关键点睛:由面面平行的性质得到动点的轨迹,再由锥体的体积公式即可判断C ,D 选项关键是找到临界点,求出临界值.三、填空题:本小题共3小题,每小题5分,共15分.12.已知复数()221i i()z m m m =-++⋅∈R 表示纯虚数,则m =________.【答案】1-【解析】【分析】根据2i 1=-和复数的分类要求得出参数值;【详解】因为复数()()2221ii=11i()z m m mm m =-++⋅-+-⋅∈R 表示纯虚数,所以210,10,m m ⎧-=⎨-≠⎩解得1m =-,故答案为:1-.13.定义集合(){},02024,03,,Z |A x y x y x y =≤≤≤≤∈,则从A 中任选一个元素()00,x y ,它满足00124x y -+-<的概率是________.【答案】42025【解析】【分析】利用列举法求解符合条件的()00,x y ,即可利用古典概型的概率公式求解.【详解】当0y =时,02024,Z x x ≤≤∈,有2025种选择,当1,2,3y =时,02024,Z x x ≤≤∈,分别有2025种选择,因此从A 中任选一个元素()00,x y ,共有202548100⨯=种选择,若00y =,则022y -=,此时由00124x y -+-<得012x -<,此时0x 可取0,1,2,若01y =或3,则021y -=,此时由00124x y -+-<得013x -<,此时0x 可取0,1,2,3,若02y =,则020y -=,此时由00124x y -+-<得014x -<,此时0x 可取0,1,2,3,4,综上可得满足00124x y -+-<的共有342516+⨯+=种情况,故概率为16481002025=故答案为:4202514.在ABC 和AEF △中,B 是EF的中点,1,6,AB EF BC CA ====,若2AB AE AC AF ⋅+⋅= ,则EF 与BC的夹角的余弦值等于__________.【答案】23【解析】【分析】【详解】由题意有:()()2AB AE AC AF AB AB BE AC AB BF ⋅+⋅=⋅++⋅+=,即22AB AB BE AC AB AC BF +⋅+⋅+⋅= ,而21AB =,据此可得:11,AC AB BE BF ⋅=⨯-=- ,即()112,2BF AC AB BF BC +⋅--=∴⋅= ,设EF 与BC 的夹角为θ,则2cos 2,cos 3BF BC θθ⨯⨯=∴= .四、解答题:本小题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某学校为了解本校历史、物理方向学生的学业水平模拟测试数学成绩情况,分别从物理方向的学生中随机抽取60人的成绩得到样本甲,从历史方向的学生中随机抽取n 人的成绩得到样本乙,根据两个样本数据分别得到如下直方图:已知乙样本中数据在[70,80)的有10个.(1)求n 和乙样本直方图中a 的值;(2)试估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数(同一组中的数据用该组区间中点值为代表);(3)采用分层抽样的方法从甲样本数据中分数在[60,70)和[70,80)的学生中抽取6人,并从这6人中任取2人,求这两人分数都在[70,80)中的概率.【答案】(1)50n =,0.018a =;(2)物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;(3)25【解析】【分析】(1)由频率分布直方图得乙样本中数据在[70,80)的频率为0.2,这个组学生有10人,由此能求出n ,由乙样本数据直方图能求出a ;(2)利用甲、乙样本数据频率分布直方图能估计估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数;(3)由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,利用列举法能求出这两人分数都在[70,80)中的概率.【小问1详解】解:由直方图可知,乙样本中数据在[70,80)的频率为0.020100.20⨯=,则100.20n=,解得50n =;由乙样本数据直方图可知,(0.0060.0160.0200.040)101a ++++⨯=,解得0.018a =;【小问2详解】解:甲样本数据的平均值估计值为(550.005650.010750.020850.045950.020)1081.5⨯+⨯+⨯+⨯+⨯⨯=,乙样本数据直方图中前3组的频率之和为(0.0060.0160.02)100.420.75++⨯=<,前4组的频率之和为(0.0060.0160.020.04)100.820.75+++⨯=>,所以乙样本数据的第75百位数在第4组,设第75百位数为x ,(80)0.040.420.75x -⨯+=,解得88.25x =,所以乙样本数据的第75百位数为88.25,即物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;【小问3详解】解:由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,则从这6人中随机抽取2人的基本事件有:12(,)A A ,11(,)A b ,12(,)A b ,13(,)A b ,14(,)A b ,21(,)A b ,22(,)A b ,23(,)A b ,24(,)A b ,12()b b ,,13(,)b b ,14(,)b b ,23(,)b b ,24(,)b b ,34(,)b b 共15个,所抽取的两人分数都在[70,80)中的基本事件有6个,即这两人分数都在[70,80)中的概率为62155=.16.(建立空间直角坐标系答题不得分)如图,在四棱锥11A BCC B -中,平面ABC ⊥平面11BCC B ,△ABC 是正三角形,四边形11BCC B 是正方形,D 是AC 的中点.(1)求证:1//AB 平面1BDC ;(2)求直线BC 和平面1BDC 所成角的正弦值的大小.【答案】(1)证明见解析(2)55【解析】【分析】(1)连接1B C ,交1BC 于点O ,连接OD ,由中位线的性质,可知1//OD AB ,再由线面平行的判定定理,得证;(2)过点C 作1CE C D ⊥于点E ,连接BE ,可证CE ⊥平面1BDC ,从而知CBE ∠即为所求,再结合等面积法与三角函数的定义,得解.【小问1详解】连接1B C ,交1BC 于点O ,连接OD ,则O 为1B C 的中点,因为D 是AC 的中点,所以1//OD AB ,又OD ⊂平面1BDC ,1AB ⊄平面1BDC ,所以1AB ∥平面1BDC .【小问2详解】过点C 作1CE C D ⊥于点E ,连接BE ,因为四边形11BCC B 是正方形,所以1BC CC ⊥,又平面ABC⊥平面11BCC B ,1CC ⊂平面11BCC B ,平面ABC ⋂平面11BCC B BC =,所以1CC ⊥平面ABC ,因为BD ⊂平面ABC ,所以1CC BD ⊥,因为ABC 是正三角形,且D 是AC 的中点,所以BD AC ⊥,又1CC AC C =I ,1,⊂CC AC 平面1ACC ,所以BD ⊥平面1ACC ,因为CE ⊂平面1ACC ,所以BD CE ⊥,又1C D BD D =I ,1,C D BD ⊂平面1BDC ,所以CE ⊥平面1BDC ,所以CBE ∠就是直线BC 和平面1BDC 所成角,设2BC =,在1Rt DCC 中,11CE DC CD CC ⋅=⋅,所以5CE ==,在Rt BCE 中,5sin 25CE CBE BC ∠===.17.甲、乙两人进行乒乓球对抗赛,每局依次轮流发球,连续赢2个球者获胜,且比赛结束,通过分析甲、乙过去比赛的数据知,甲发球甲赢的概率为23,乙发球甲赢的概率为25,不同球的结果互不影响,已知某局甲先发球.(1)求该局打4个球甲赢的概率;(2)求该局打5个球结束的概率.【答案】(1)875(2)44675【解析】【分析】(1)先设甲发球甲赢为事件A ,乙发球甲赢为事件B ,然后分析这4个球的发球者及输赢者,即可得到所求事件的构成,利用相互独立事件的概率计算公式即可求解;(2)先将所求事件分成甲赢与乙赢这两个互斥事件,再分析各事件的构成,利用互斥事件和相互独立事件的概率计算公式即可求得概率.【小问1详解】设甲发球甲赢为事件A ,乙发球甲赢为事件B ,该局打4个球甲赢为事件C ,由题知,2()3P A =,2()5P B =,则C ABAB =,所以23228()()()(()()353575P C P ABAB P A P B P A P B ===⨯⨯⨯=,所以该局打4个球甲赢的概率为875.【小问2详解】设该局打5个球结束时甲赢为事件D ,乙赢为事件E ,打5个球结束为事件F ,易知D ,E 为互斥事件,D ABABA =,E ABABA =,F D E =⋃,所以()()()()()()()P D P ABABA P A P B P A P B P A ==2222281135353675⎛⎫⎛⎫=-⨯⨯-⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()()()()()()()P E P ABABA P A P B P A P B P A ==2222241113535375⎛⎫⎛⎫⎛⎫=⨯-⨯⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以8444()()()()67575675P F P D E P D P E =⋃=+=+=,所以该局打5个球结束的概率为44675.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22cos a c b C -=.(1)求B ;(2)若点D 为边BC 的中点,点E ,F 分别在边AB ,AC (包括顶点)上,π6EDF ∠=,2b c ==.设BDE α∠=,将DEF 的面积S 表示为α的函数,并求S 的取值范围.【答案】(1)π3(2)3ππ,π328sin 23S αα=≤≤⎛⎫- ⎪⎝⎭,3,84S ⎡∈⎢⎣⎦【解析】【分析】(1)由题干及余弦定理可得222a c b ac +-=,再根据余弦定理即可求解;(2)由题可得ABC 为等边三角形,ππ32α≤≤,在BDE 与CDF 中,分别由正弦定理求出DE ,DF ,根据三角形面积公式可得3ππ,2ππ3216sin sin 36S ααα=≤≤⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,由三角恒等变换及正弦函数的图象与性质即可求解.【小问1详解】因为22cos a c b C -=,所以222222222a b c a b c a c b ab a +-+--=⋅=,即222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===.因为()0,πB ∈,所以π3B =.【小问2详解】由π3B=及2b c==可知ABC为等边三角形.又因为π6EDF∠=,BDEα∠=,所以ππ32α≤≤.在BDE中,2π3BEDα∠=-,由正弦定理可得sin sinDE BDB BED∠=,即32π2sin3DEα=⎛⎫-⎪⎝⎭.在CDF中,π6CFDα∠=-,由正弦定理可得sin sinDF CDC CFD∠=,即π2sin6DFα=⎛⎫-⎪⎝⎭.所以31π3ππsin,2ππ2ππ8632 sin sin16sin sin3636Sααααα=⨯⨯=≤≤⎛⎫⎛⎫⎛⎫⎛⎫----⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.因为2ππ11sin sin cos sin sin cos362222αααααα⎛⎫⎛⎫⎛⎫⎛⎫--=+-⎪⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭2213313sin cos cos sin sin2cos224444αααααα=-+=-1πsin223α⎛⎫=-⎪⎝⎭,因为ππ32α≤≤,所以ππ2π2,333α⎡⎤-∈⎢⎥⎣⎦,所以π3sin2,132α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦,所以1π1sin2,2342α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦.所以2ππ16sin sin36αα⎛⎫⎛⎫⎡⎤--∈⎪ ⎪⎣⎦⎝⎭⎝⎭,所以33,2ππ8416sin sin36αα⎡∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭,所以333,2ππ8416sin sin36Sαα⎡=∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭.所以S 的取值范围为3,84⎡⎢⎣⎦.19.(建立空间直角坐标系答题不得分)如图,在三棱柱ADP BCQ -中,侧面ABCD 为矩形.(1)若PD⊥面ABCD ,22PD AD CD ==,2NC PN =,求证:DN BN ⊥;(2)若二面角Q BC D --的大小为θ,π2π,43θ⎡⎤∈⎢⎥⎣⎦,且2cos 2AD AB θ=⋅,设直线BD 和平面QCB 所成角为α,求sin α的最大值.【答案】(1)证明见解析(2)12-【解析】【分析】(1)问题转化为证明DN⊥平面BCP ,即证明ND BC ⊥和DN PC ⊥,ND BC ⊥转化为证明BC ⊥平面PQCD ,而ND BC ⊥则只需证明PDN PCD△△(2)作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,列出sin α的表达式,最后把问题转化为函数最值问题.【小问1详解】因为PD⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥,又CD BC ⊥,PD CD D ⋂=,,PD CD ⊂平面PCD ,所以BC ⊥平面PQCD ,又ND ⊂平面PQCD ,所以ND BC ⊥,在Rt PCD 中,2PD ==,则CD =3PC =,所以2NC =,1PN =,由PN PDND PC=,DPN CPD ∠=∠,所以PDN PCD △△,所以DN PC ⊥,又因为ND BC ⊥,PC BC C ⋂=,,PC BC ⊂平面BCP ,所以DN⊥平面BCP ,又因为BN ⊂平面BCP ,所以DN BN ⊥.【小问2详解】在平面QBC 中,过点C 作CF BC ⊥,因为ABCD 为矩形,所以BC CD ⊥,所以DCF ∠为二面角Q BC D --的平面角,且DCF θ∠=,又⋂=CF CD C ,,CD CF ⊂平面CDF ,所以BC ⊥平面CDF ,在平面CDF 中,过点D 作DG FC ⊥,垂足为G ,连接BG ,因为BC ⊥平面CDF ,DG ⊂平面CDF ,所以DG BC ⊥,又BC FC C ⋂=,,BC FC ⊂平面BCQ ,所以DG ⊥平面BCQ ,所以DBG ∠为直线BD 与平面QCB 所成的角,即DBG α∠=,sin DG DC θ=,又因为2cos 2AD AB θ=⋅,所以222sin 32cos 14cos 2DGBDAB AD αθθ===+++π2π,43θ⎡⎤∈⎢⎥⎣⎦可得12cos ,22θ⎡∈-⎢⎣⎦,21cos 0,2θ⎡⎤∈⎢⎥⎣⎦,设32cos t θ=+,2,32t ⎤∈+⎥⎦,则23cos 2t θ-=,()2223sin 1cos 14t θθ-=-=-,所以()2222563125651sin 14222t t t t α⎛⎫-++ ⎪--+⎝⎭=-=≤=,当且仅当25t =时等号,所以sin α51-.【点睛】关键点点睛:本题的关键是作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,然后写出sin α的表达式,最后求函数最值问题利用了换元法和基本不等式.。
重庆市2021-2022学年高一下学期期末考试数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数11i +的虚部是( ) A .12- B .12 C .12i D .1〖解 析〗111122i i =-+,∴复数11i +的虚部是12-. 〖答 案〗A2.设向量(2,1)a =,(3,)b m =,a b ⊥,则(m = ) A .6-B .32-C .16-D .32〖解 析〗(2,1)a =,(3,)b m =,a b ⊥,2310m ∴⨯+⨯=,解得6m =-.〖答 案〗A3.设空间中的平面α及两条直线a ,b 满足a α⊂/且b α⊂,则“a b =∅”是“//a α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件〖解 析〗当ab =∅时,两条直线a ,b 满足a α⊂/且b α⊂,a ∴与α可能相交,故充分性不成立,当//a α时,a α⊂/且b α⊂,ab ∴=∅,故“a b =∅”是“//a α”的必要不充分条件.〖答 案〗B4.某地区对居民用电实行阶梯电价以提高能源效率,统计该地区每户居民月均用电量,得到相关数据如表:如果将该地区居民用户的月均用电量划分为三档,第一档电量按照覆盖70%的居民用户的月均用电量确定,第二档电量按照覆盖90%的居民用户的月均用电量确定,则第二档电量区间为( ) A .(162,173]B .(173,195]C .(173,220]D .(220,)+∞〖解 析〗由题意知,第一档用电量区间为(0,173],第二档用电量区间为(173,220]. 〖答 案〗C5.已知ABC ∆AB AC ⋅,则(BAC ∠= ) A .6π B .4π C .3π D .23π〖解 析〗由题设,3||||cos 2ABC S AB AC AB AC BAC ∆⋅=∠,又1||||sin 2ABC S AB AC BAC ∆=∠sin BAC BAC ∠=∠,即tan BAC ∠=0BAC π<∠<,故3BAC π∠=.〖答 案〗C6.在正方体1111ABCD A B C D -中,与直线1AB 不垂直的直线是( ) A .1A BB .BCC .1A DD .1BD〖解 析〗如图所示,在正方形11ABB A 中,11AB A B ⊥;因为BC ⊥平面11ABB A ,故1BC AB ⊥; 连接1B C 、AC ,因为11//B C A D ,所以1AB 与1A D 所成的角为60︒,不垂直; 易得1BD ⊥平面1AB C ,所以11BD AB ⊥;所以C 正确. 〖答 案〗C7.已知某圆台上下底面的面积之比为1:9,侧面积为163π,母线长为2,则该圆台的高为( )A .2B C .43D .1〖解 析〗设圆台的上底面半径为r ,母线长为l ,高为h , 圆台上下底面的面积之比为1:9,∴下底面的半径为3r ,又母线长为2,圆台的侧面积为163π,则16(3)83r r l r πππ+⋅==,解得23r =,则圆台的高h ==.〖答 案〗B8.从三对夫妇中随机抽选2人参加采访活动,则恰好抽到一对夫妇的概率为( ) A .16B .15C .14D .13〖解 析〗从三对夫妇中随机抽选2人参加采访活动,基本事件总数2615n C ==,恰好抽到一对夫妇包含的基本事件个数133m C ==, 则恰好抽到一对夫妇的概率为31155m P n ===. 〖答 案〗B二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.关于复数z 及其共轭复数z ,下列说法正确的是( ) A .z z R +∈B .||||z z =C .2||z z z ⋅=D .||||z z z z ⋅=⋅〖解 析〗设(,)z a bi a b R =+∈,则(,)z a bi a b R =-∈,则2z z a R +=∈,故A 正确;||||z z ==B 正确;2||||z z z ⋅=,故C 错误,D 正确. 〖答 案〗ABD10.设平面向量||1a =,||2b =,b 在a 方向上的投影向量为c ,则( ) A .a c c b ⋅=⋅B .a b a c ⋅=⋅C .||2a c ⋅D .||||a c a c ⋅=⋅〖解 析〗设b 与a 的夹角为θ,对于A ,当θ为锐角时,2||||||,||||cos ||a c a c c c b c b c θ⋅=⋅=⋅=⋅=,不一定相等, 故A 错误,对于B .当θ为锐角时,||||cos ||cos ||||||a b a b b a c a c c θθ⋅=⋅==⋅=⋅=,成立, 当θ为钝角时,||||cos ||cos ||||||a b a b b a c a c c θθ⋅=⋅==⋅=-⋅=-,成立,当θ为直角时,0a b a c ⋅=⋅= 成立,故正确; 对于C ,||||||||||2a c a c c b ⋅=⋅==,故C 正确,对于D ,||||cos a c a c θ⋅=⋅,故D 错误. 〖答 案〗BC11.已知100个零件中恰有2个次品,现从中不放回地依次随机抽取两个零件,记事件1A = “第一次抽到的零件为次品”,事件2A = “第二次抽到的零件为次品”,事件A = “抽到的两个零件中有次品”,事件B = “抽到的两个零件都是正品”,则( ) A .12()()P A P A =B .P (A )12()()P A P A =+C .()P AB P =(A )P +(B )D .P (B )12(1())(1())P A P A =-⋅-〖解 析〗12111001()50C P A C ==,2492111()509950P A ⨯+⨯==⨯,所以A 正确. 因为12A A ≠∅,12A A A =,故P (A )1212()()()P A P A P A A =+-,所以B 错误.因为AB ≠∅,AB =Ω,即A 、B 为对立事件,故()P A B P =(A )P +(B ),所以C 正确.P (B )2982100989710099A A ⨯==⨯,124949[1()][1()]5050P A P A P --=⨯≠(B ),所以D 错误. 〖答 案〗AC12.某学校规定,若五个工作日内学校某天有超过3个人的体温测量值高于37.5C ︒,则需全员进行核酸检测.该校统计了五个工作日内每天体温超过37.5C ︒的人数,则根据这组数据的下列信息,能断定该校不需全员进行核酸检测的是( ) A .中位数是1,平均数是1 B .中位数是1,众数是0 C .中位数是2,众数是2D .平均数是2,方差是0.8〖解 析〗A .因为中位数是1,设五个工作日内每天体温超过37.5C ︒的人数为从小到大的顺序为a ,b ,1,c ,d ,因为平均数是1,所以15a b c d ++++=,若4d =,则0a b c ===,不合题意,故正确; B .设五个工作日内每天体温超过37.5C ︒的人数为从小到大的顺序为0,0,1,2,4, 满足中位数是1,众数是0,但有一天超过3,故错误;C .设五个工作日内每天体温超过37.5C ︒的人数为从小到大的顺序为0,2,2,3,4, 满足中位数是2,众数是2,但有一天超过3,故错误;D .设五个工作日内每天体温超过37.5C ︒的人数为a ,b ,c ,d ,e , 因为平均数是2,方差是0.8,则10a b c d e ++++=,222221[(2)(2)(2)(2)(2)]0.85a b c d e -+-+-+-+-=, 即22222(2)(2)(2)(2)(2)4a b c d e -+-+-+-+-=,则4e ,若4e =,从方差角度来说2a b c d ====,不满足10a b c d e ++++=, 所以4e <,故正确. 〖答 案〗AD三、填空题:本题共4小题,每小题5分,共20分.13.在ABC ∆中,BC =,2AC =,34BCA π∠=,则AB = . 〖解 析〗在ABC ∆中,由余弦定理得:2222cos AB AC BC AC BC BAC =+-⋅∠334222cos4222cos 622244ππ=+-⨯=+-⨯=-⨯=,所以AB〖答 14.如图,边长为2的正方形A B C D ''''是用斜二测画法得到的四边形ABCD 的直观图,则四边形ABCD 的面积为 .〖解 析〗根据题意,正方形A B C D ''''的边长为2,其面积224S '=⨯=,则四边形ABCD 的面积S ='=〖答 案〗15.将一枚质地均匀的骰子连续抛掷两次,则点数之和为8的概率是 .〖解 析〗连续投掷2次,骰子点数的样本空间为6636⨯=,2次点数之和为8的有:(2,6),(3,5),(4,4),(6,2),(5,3),故有5种,其概率为536. 〖答 案〗53616.如图,ABCD 是棱长为6的正四面体,E ,F 为线段AB 的三等分点,G ,H 为线段CD 的三等分点,过点E ,F ,G ,H 分别作平行于平面BCD ,平面ACD ,平面ABD ,平面ABC 的截面,则正四面体ABCD 被这四个截面截去四个角后所得几何体的体积为 .〖解 析〗如图,取BCD ∆中心O ,连接OA ,因为ABCD 是棱长为6的正四面体, 所以OA ⊥平面BCD ,根据几何关系:6,BO AB AO ===所以正四面体ABCD 的体积为:11166332A BCD BCD V S OA -∆=⋅=⨯⨯⨯=因为平面//EMN 平面BCD ,E 为线段AB 的三等分点,所以19EMN BCD S S ∆∆=,三棱锥A EMN -的高13h OA =,所以11327A EMN EMN A BCD V S h V -∆-=⋅===, 所以正四面体ABCD 被这四个截面截去四个角后所得几何体的体积为4A BCD A EMN V V ---=.〖答 案〗3四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在ABC ∆中,3AB =,2AC =,3A π=,点D ,E 分别在边AB ,BC 上,且AD DB =,2BE EC =,设DE xAB y AC =+.(1)求x ,y 的值; (2)求||DE . 解:(1)AD DB =,2BE EC =,∴12DB AB =,22()33BE BC AC AB ==-, ∴1212()2363DE BE BD AB AC AB AB AC =-=--=-+,DE xAB y AC =+,16x ∴=-,23y =.(2)ABC ∆中,3AB =,2AC =,3A π=,∴22121412149()942326336963236DE AB AC =-+=⨯+⨯-⨯⨯⨯⨯⨯=, ∴7||6DE =. 18.(12分)某学校派出甲、乙、丙三名同学参加英语演讲比赛,已知甲、乙、丙三人晋级的概率分别为13,34,23,且三人是否晋级彼此独立.(1)求甲、乙、丙三人中至少有一人晋级的概率; (2)求甲、乙、丙三人中恰有两人晋级的概率. 解:(1)设甲乙丙三人至少一人晋级的事件为A .依题意P (A )132171(1)(1)(1)34318=----=.(2)设甲乙丙三人至少一人晋级的事件为B .依题意P (B )132********(1)(1)(1)34343333436=-⨯⨯+-⨯⨯+-⨯⨯=.19.(12分)如图,在正三棱柱111ABC A B C -中,M ,N 分别为棱1AA ,BC 的中点.(1)证明://AN 平面1BMC ;(2)证明:平面1BMC ⊥平面11BB C C . 证明:(1)取1BC 的中点D ,连接ND ,MD ,则11////ND CC AA ,1122ND CC AM ===,得四边形AMDN 为平行四边形,//AN MD ∴,又MD ⊂平面1BMC ,AN ⊂/平面1BMC ,//AN ∴平面1BMC ; (2)在正三棱柱111ABC A B C -中,可得1BB ⊥平面ABC ,AN ⊂平面ABC ,1BB AN ∴⊥,又ABC ∆为正三角形,N 为棱BC 的中点. AN BC ∴⊥,又1BCBB B =,BC ,1BB ⊂平面11BB C C ,AN ∴⊥平面11BB C C ,由(1)可知//AN MD ,MD ∴⊥平面11BB C C ,MD ⊂平面1BMC ,∴平面1BMC ⊥平面11BB C C .20.(12分)学校统计了高三年级1000名学生的某次数学考试成绩,已知所有学生的成绩均在区间[100,150]内,且粮据统计结果绘制出如下频率分布表和频率分布直方图.(1)求图中a 的值;(2)试估计这1000名学生此次数学考试成绩的中位数.解:(1)由题设频率直方表如下:100.15a ∴=,解得0.015a =.(2)由(1)知:0.05100.20.50.05100.40.6a a +=<<++=,∴中位数位于[120,130)内,令中位数为x ,则0.0510(120)0.040.2(120)0.040.5a x x ++-⨯=+-⨯=, 解得127.5x =.21.(12分)如图1,在梯形ABCD 中,//AB CD ,AD DC ⊥,224AB AD CD ===,将ADB ∆沿DB 折成如图2所示的三棱锥P DBC -,且平面PDB ⊥平面DBC .(1)证明:PD BC ⊥;(2)设N 为线段PC 的中点,求直线DN 与平面PBC 所成角的正切值.(1)证明:在梯形ABCD 中,BD =,BC =4CD =,所以222BD BC CD +=,即BD BC ⊥, 取BD 的中点M ,连接PM ,CM , 因为PD PB =,所以PM BD ⊥,又平面PDB ⊥平面DBC ,平面PDB ⋂平面DBC BD =,所以PM ⊥平面DBC , 因为BC ⊂平面DBC ,所以PM BC ⊥, 因为BDPM M =,BD ,PM ⊂平面PBD ,所以BC ⊥平面PBD ,因为PD ⊂平面PBD ,所以PD BC ⊥.(2)解:由(1)知,PD BC ⊥,PD PB ⊥, 因为BCPB B =,BC ,PB ⊂平面PBC ,所以PD ⊥平面PBC ,所以PND ∠即为直线DN 与平面PBC 所成角,在PBD ∆中,12PM BD == 在BCM ∆中,2228210CM BC BM =+=+=, 由(1)知,PM ⊥平面DBC ,因为CM ⊂平面DBC ,所以PM CM ⊥,所以PC ==因为N 为线段PC 的中点,所以12PN PC ==tan PD PND PN ∠===,故直线DN 与平面PBC 22.(12分)如图,边长为2的等边ABC ∆所在平面内一点D 满足(0)CD t AB t =>,点P 在边BC 上,||PB m =.PDB ∆a AB =,b AC =.(1)用a ,b 及m 表示PC ; (2)求CB PD ⋅的最小值.解:(1)因为ABC ∆是边长为2的等边三角形,||PB m =,所以,||2PC m =-,所以2222222222m m m m mPC BC AC AB b a -----==-=-; (2)因为2222()2222m m m mPD PC CD b a ta b t a ----=+=-+=--,CB AB AC a b =-=-,1222,||||22a b a b ⋅=⨯⨯===,所以,22222()[()]24()4()2()22222m m m m mCB PD a b b t a m t t -----⋅=-⋅--=----+-224t m =+-,设三角形PBD 在PB 边上的高为h ,则12mh =h因为(0)CD t AB t =>,所以//,60CD AB BCD ∠=︒,所以11222sin 6022BCD S t ∆=⨯=⨯⨯︒,即2t m=,所以,44224242244CB PD t m m m m m ⋅=+-=+-⋅=,当且仅当42m m=,即m所以CB PD ⋅的最小值为4.重庆市2021-2022学年高一下学期期末考试数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数11i +的虚部是( ) A .12- B .12 C .12i D .1〖解 析〗111122i i =-+,∴复数11i +的虚部是12-. 〖答 案〗A2.设向量(2,1)a =,(3,)b m =,a b ⊥,则(m = ) A .6-B .32-C .16-D .32〖解 析〗(2,1)a =,(3,)b m =,a b ⊥,2310m ∴⨯+⨯=,解得6m =-.〖答 案〗A3.设空间中的平面α及两条直线a ,b 满足a α⊂/且b α⊂,则“a b =∅”是“//a α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件〖解 析〗当ab =∅时,两条直线a ,b 满足a α⊂/且b α⊂,a ∴与α可能相交,故充分性不成立,当//a α时,a α⊂/且b α⊂,ab ∴=∅,故“a b =∅”是“//a α”的必要不充分条件.〖答 案〗B4.某地区对居民用电实行阶梯电价以提高能源效率,统计该地区每户居民月均用电量,得到相关数据如表:如果将该地区居民用户的月均用电量划分为三档,第一档电量按照覆盖70%的居民用户的月均用电量确定,第二档电量按照覆盖90%的居民用户的月均用电量确定,则第二档电量区间为( ) A .(162,173]B .(173,195]C .(173,220]D .(220,)+∞〖解 析〗由题意知,第一档用电量区间为(0,173],第二档用电量区间为(173,220]. 〖答 案〗C5.已知ABC ∆AB AC ⋅,则(BAC ∠= ) A .6π B .4π C .3π D .23π 〖解 析〗由题设,3||||cos 2ABC S AB AC AB AC BAC ∆⋅=∠,又1||||sin 2ABC S AB AC BAC ∆=∠sin BAC BAC ∠=∠,即tan BAC ∠=0BAC π<∠<,故3BAC π∠=.〖答 案〗C6.在正方体1111ABCD A B C D -中,与直线1AB 不垂直的直线是( ) A .1A BB .BCC .1A DD .1BD〖解 析〗如图所示,在正方形11ABB A 中,11AB A B ⊥;因为BC ⊥平面11ABB A ,故1BC AB ⊥; 连接1B C 、AC ,因为11//B C A D ,所以1AB 与1A D 所成的角为60︒,不垂直; 易得1BD ⊥平面1AB C ,所以11BD AB ⊥;所以C 正确. 〖答 案〗C7.已知某圆台上下底面的面积之比为1:9,侧面积为163π,母线长为2,则该圆台的高为( )A .2B C .43D .1〖解 析〗设圆台的上底面半径为r ,母线长为l ,高为h , 圆台上下底面的面积之比为1:9,∴下底面的半径为3r , 又母线长为2,圆台的侧面积为163π,则16(3)83r r l r πππ+⋅==,解得23r =,则圆台的高h ==.〖答 案〗B8.从三对夫妇中随机抽选2人参加采访活动,则恰好抽到一对夫妇的概率为( ) A .16B .15C .14D .13〖解 析〗从三对夫妇中随机抽选2人参加采访活动,基本事件总数2615n C ==,恰好抽到一对夫妇包含的基本事件个数133m C ==, 则恰好抽到一对夫妇的概率为31155m P n ===. 〖答 案〗B二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.关于复数z 及其共轭复数z ,下列说法正确的是( ) A .z z R +∈B .||||z z =C .2||z z z ⋅=D .||||z z z z ⋅=⋅〖解 析〗设(,)z a bi a b R =+∈,则(,)z a bi a b R =-∈,则2z z a R +=∈,故A 正确;||||z z ==B 正确;2||||z z z ⋅=,故C 错误,D 正确. 〖答 案〗ABD10.设平面向量||1a =,||2b =,b 在a 方向上的投影向量为c ,则( ) A .a c c b ⋅=⋅B .a b a c ⋅=⋅C .||2a c ⋅D .||||a c a c ⋅=⋅〖解 析〗设b 与a 的夹角为θ,对于A ,当θ为锐角时,2||||||,||||cos ||a c a c c c b c b c θ⋅=⋅=⋅=⋅=,不一定相等, 故A 错误,对于B .当θ为锐角时,||||cos ||cos ||||||a b a b b a c a c c θθ⋅=⋅==⋅=⋅=,成立, 当θ为钝角时,||||cos ||cos ||||||a b a b b a c a c c θθ⋅=⋅==⋅=-⋅=-,成立, 当θ为直角时,0a b a c ⋅=⋅= 成立,故正确; 对于C ,||||||||||2a c a c c b ⋅=⋅==,故C 正确,对于D ,||||cos a c a c θ⋅=⋅,故D 错误. 〖答 案〗BC11.已知100个零件中恰有2个次品,现从中不放回地依次随机抽取两个零件,记事件1A = “第一次抽到的零件为次品”,事件2A = “第二次抽到的零件为次品”,事件A = “抽到的两个零件中有次品”,事件B = “抽到的两个零件都是正品”,则( )A .12()()P A P A =B .P (A )12()()P A P A =+C .()P AB P =(A )P +(B )D .P (B )12(1())(1())P A P A =-⋅-〖解 析〗12111001()50C P A C ==,2492111()509950P A ⨯+⨯==⨯,所以A 正确. 因为12A A ≠∅,12A A A =,故P (A )1212()()()P A P A P A A =+-,所以B 错误.因为AB ≠∅,AB =Ω,即A 、B 为对立事件,故()P A B P =(A )P +(B ),所以C 正确.P (B )2982100989710099A A ⨯==⨯,124949[1()][1()]5050P A P A P --=⨯≠(B ),所以D 错误. 〖答 案〗AC12.某学校规定,若五个工作日内学校某天有超过3个人的体温测量值高于37.5C ︒,则需全员进行核酸检测.该校统计了五个工作日内每天体温超过37.5C ︒的人数,则根据这组数据的下列信息,能断定该校不需全员进行核酸检测的是( ) A .中位数是1,平均数是1 B .中位数是1,众数是0 C .中位数是2,众数是2D .平均数是2,方差是0.8〖解 析〗A .因为中位数是1,设五个工作日内每天体温超过37.5C ︒的人数为从小到大的顺序为a ,b ,1,c ,d ,因为平均数是1,所以15a b c d ++++=,若4d =,则0a b c ===,不合题意,故正确; B .设五个工作日内每天体温超过37.5C ︒的人数为从小到大的顺序为0,0,1,2,4, 满足中位数是1,众数是0,但有一天超过3,故错误;C .设五个工作日内每天体温超过37.5C ︒的人数为从小到大的顺序为0,2,2,3,4, 满足中位数是2,众数是2,但有一天超过3,故错误;D .设五个工作日内每天体温超过37.5C ︒的人数为a ,b ,c ,d ,e , 因为平均数是2,方差是0.8,则10a b c d e ++++=,222221[(2)(2)(2)(2)(2)]0.85a b c d e -+-+-+-+-=, 即22222(2)(2)(2)(2)(2)4a b c d e -+-+-+-+-=,则4e ,若4e =,从方差角度来说2a b c d ====,不满足10a b c d e ++++=, 所以4e <,故正确.〖答 案〗AD三、填空题:本题共4小题,每小题5分,共20分.13.在ABC ∆中,BC =,2AC =,34BCA π∠=,则AB = . 〖解 析〗在ABC ∆中,由余弦定理得:2222cos AB AC BC AC BC BAC =+-⋅∠334222cos4222cos 622244ππ=+-⨯=+-⨯=-⨯=,所以AB〖答 14.如图,边长为2的正方形A B C D ''''是用斜二测画法得到的四边形ABCD 的直观图,则四边形ABCD 的面积为 .〖解 析〗根据题意,正方形A B C D ''''的边长为2,其面积224S '=⨯=,则四边形ABCD 的面积S ='=〖答 案〗15.将一枚质地均匀的骰子连续抛掷两次,则点数之和为8的概率是 .〖解 析〗连续投掷2次,骰子点数的样本空间为6636⨯=,2次点数之和为8的有:(2,6),(3,5),(4,4),(6,2),(5,3),故有5种,其概率为536. 〖答 案〗53616.如图,ABCD 是棱长为6的正四面体,E ,F 为线段AB 的三等分点,G ,H 为线段CD 的三等分点,过点E ,F ,G ,H 分别作平行于平面BCD ,平面ACD ,平面ABD ,平面ABC 的截面,则正四面体ABCD 被这四个截面截去四个角后所得几何体的体积为 .〖解 析〗如图,取BCD ∆中心O ,连接OA ,因为ABCD 是棱长为6的正四面体, 所以OA ⊥平面BCD ,根据几何关系:6,BO AB AO ===所以正四面体ABCD 的体积为:11166332A BCD BCD V S OA -∆=⋅=⨯⨯⨯=因为平面//EMN 平面BCD ,E 为线段AB 的三等分点,所以19EMN BCD S S ∆∆=,三棱锥A EMN -的高13h OA =,所以11327A EMN EMN A BCD V S h V -∆-=⋅===, 所以正四面体ABCD 被这四个截面截去四个角后所得几何体的体积为4A BCD A EMN V V ---=.〖答 案〗3四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)在ABC ∆中,3AB =,2AC =,3A π=,点D ,E 分别在边AB ,BC 上,且AD DB =,2BE EC =,设DE xAB y AC =+.(1)求x ,y 的值; (2)求||DE . 解:(1)AD DB =,2BE EC =,∴12DB AB =,22()33BE BC AC AB ==-, ∴1212()2363DE BE BD AB AC AB AB AC =-=--=-+,DE xAB y AC =+,16x ∴=-,23y =.(2)ABC ∆中,3AB =,2AC =,3A π=,∴22121412149()942326336963236DE AB AC =-+=⨯+⨯-⨯⨯⨯⨯⨯=, ∴7||6DE =. 18.(12分)某学校派出甲、乙、丙三名同学参加英语演讲比赛,已知甲、乙、丙三人晋级的概率分别为13,34,23,且三人是否晋级彼此独立.(1)求甲、乙、丙三人中至少有一人晋级的概率; (2)求甲、乙、丙三人中恰有两人晋级的概率. 解:(1)设甲乙丙三人至少一人晋级的事件为A .依题意P (A )132171(1)(1)(1)34318=----=.(2)设甲乙丙三人至少一人晋级的事件为B .依题意P (B )132********(1)(1)(1)34343333436=-⨯⨯+-⨯⨯+-⨯⨯=.19.(12分)如图,在正三棱柱111ABC A B C -中,M ,N 分别为棱1AA ,BC 的中点.(1)证明://AN 平面1BMC ; (2)证明:平面1BMC ⊥平面11BB C C . 证明:(1)取1BC 的中点D ,连接ND ,MD ,则11////ND CC AA ,1122ND CC AM ===,得四边形AMDN 为平行四边形,//AN MD ∴,又MD ⊂平面1BMC ,AN ⊂/平面1BMC ,//AN ∴平面1BMC ; (2)在正三棱柱111ABC A B C -中,可得1BB ⊥平面ABC ,AN ⊂平面ABC ,1BB AN ∴⊥,又ABC ∆为正三角形,N 为棱BC 的中点.AN BC ∴⊥,又1BCBB B =,BC ,1BB ⊂平面11BB C C ,AN ∴⊥平面11BB C C ,由(1)可知//AN MD ,MD ∴⊥平面11BB C C ,MD ⊂平面1BMC ,∴平面1BMC ⊥平面11BB C C .20.(12分)学校统计了高三年级1000名学生的某次数学考试成绩,已知所有学生的成绩均在区间[100,150]内,且粮据统计结果绘制出如下频率分布表和频率分布直方图.(1)求图中a 的值;(2)试估计这1000名学生此次数学考试成绩的中位数.解:(1)由题设频率直方表如下:100.15a ∴=,解得0.015a =.(2)由(1)知:0.05100.20.50.05100.40.6a a +=<<++=,∴中位数位于[120,130)内,令中位数为x ,则0.0510(120)0.040.2(120)0.040.5a x x ++-⨯=+-⨯=, 解得127.5x =.21.(12分)如图1,在梯形ABCD 中,//AB CD ,AD DC ⊥,224AB AD CD ===,将ADB ∆沿DB 折成如图2所示的三棱锥P DBC -,且平面PDB ⊥平面DBC .(1)证明:PD BC ⊥;(2)设N 为线段PC 的中点,求直线DN 与平面PBC 所成角的正切值.(1)证明:在梯形ABCD 中,BD =,BC =4CD =, 所以222BD BC CD +=,即BD BC ⊥, 取BD 的中点M ,连接PM ,CM , 因为PD PB =,所以PM BD ⊥,又平面PDB ⊥平面DBC ,平面PDB ⋂平面DBC BD =,所以PM ⊥平面DBC , 因为BC ⊂平面DBC ,所以PM BC ⊥, 因为BDPM M =,BD ,PM ⊂平面PBD ,所以BC ⊥平面PBD ,因为PD ⊂平面PBD ,所以PD BC ⊥.(2)解:由(1)知,PD BC ⊥,PD PB ⊥,因为BC PB B =,BC ,PB ⊂平面PBC ,所以PD ⊥平面PBC ,所以PND ∠即为直线DN 与平面PBC 所成角,在PBD ∆中,12PM BD == 在BCM ∆中,2228210CM BC BM =+=+=,由(1)知,PM ⊥平面DBC ,因为CM ⊂平面DBC ,所以PM CM ⊥,所以PC ==因为N 为线段PC 的中点,所以12PN PC ==tan PD PND PN ∠===,故直线DN 与平面PBC 22.(12分)如图,边长为2的等边ABC ∆所在平面内一点D 满足(0)CD t AB t =>,点P 在边BC 上,||PB m =.PDB ∆a AB =,b AC =.(1)用a ,b 及m 表示PC ;(2)求CB PD ⋅的最小值.解:(1)因为ABC ∆是边长为2的等边三角形,||PB m =,所以,||2PC m =-, 所以2222222222m m m m m PC BC AC AB b a -----==-=-; (2)因为2222()2222m m m m PD PC CD b a ta b t a ----=+=-+=--,CB AB AC a b =-=-, 1222,||||22a b a b ⋅=⨯⨯===, 所以,22222()[()]24()4()2()22222m m m m m CB PD a b b t a m t t -----⋅=-⋅--=----+- 224t m =+-,设三角形PBD 在PB 边上的高为h ,则12mh =h 因为(0)CD t AB t =>,所以//,60CD AB BCD ∠=︒,所以11222sin 6022BCD S t ∆=⨯=⨯⨯︒,即2t m=,所以,44224242244CB PD t m m m m m ⋅=+-=+-⋅=,当且仅当42m m=,即m所以CB PD ⋅的最小值为4.。
2022-2023学年山东省济南市高一(下)期末数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数z =11+2i对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.《2023年五一出游数据报告》显示,济南凭借超强周边吸引力,荣登“五一”最强周边游“吸金力”前十名榜单.其中,济南天下第一泉风景区接待游客100万人次,济南动物园接待游客30万人次,千佛山景区接待游客20万人次.现采用按比例分层抽样的方法对三个景区的游客共抽取1500人进行济南旅游满意度的调研,则济南天下第一泉风景区抽取游客( ) A .1000人B .300人C .200人D .100人3.设α,β为两个平面,则α⊥β的充要条件是( ) A .α过β的一条垂线B .α,β垂直于同一平面C .α内有一条直线垂直于α与β的交线D .α内有两条相交直线分别与β内两条直线垂直 4.袋子中有5个大小质地完全相同的球,其中3个红球,2个黄球,从中不放回地依次随机摸出2个球,则第二次摸到红球的概率为( ) A .110B .15C .25D .355.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,B =π4,b =1,c =√62,则角C 的值为( )A .π3B .2π3C .π3或2π3D .无解6.如果三棱锥S ﹣ABC 底面不是等边三角形,侧棱SA ,SB ,SC 与底面ABC 所成的角都相等,SO ⊥平面ABC ,垂足为O ,则O 是△ABC 的( ) A .垂心B .重心C .内心D .外心7.已知锐角△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,B =π3,c =2,则△ABC 的周长的取值范围为( )A .(3+√3,2+2√3)B .(3+√3,4+2√3)C .(3+√3,6+2√3)D .(3+√3,+∞)8.在四棱锥P ﹣ABCD 中,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB =1.点E ,F ,G 分别为平面P AB ,平面P AD 和平面ABCD 内的动点,点Q 为棱PC 上的动点,则QE 2+QF 2+QG 2的最小值为( ) A .12B .23C .34D .1二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知复数ω=−12+√32i ,则下列说法中正确的是( )A .|ω|=1B .ω3=﹣1C .ω2=ωD .ω2+ω+1=010.先后抛掷质地均匀的硬币两次,则下列说法正确的是( ) A .事件“恰有一次正面向上”与事件“恰有一次反面向上”相等B .事件“至少一次正面向上”与事件“至少一次反面向上”互斥C .事件“两次正面向上”与事件“两次反面向上”互为对立事件D .事件“第一次正面向上”与事件“第二次反面向上”相互独立11.某学校为了调查高一年级学生每天体育活动时间情况,随机选取了100名学生,绘制了如图所示频率分布直方图,则下列说法正确的是( )A .平均数的估计值为30B .众数的估计值为35C .第60百分位数估计值是32D .随机选取这100名学生中有25名学生体育活动时间不低于40分钟12.如图,已知三棱锥D ﹣ABC 可绕AB 在空间中任意旋转,△ABC 为等边三角形,AB 在平面α内,AB ⊥CD ,AB =2,CD =√6,cos∠CBD =14,则下列说法正确的是( )A .二面角D ﹣AB ﹣C 为π2B .三棱锥D ﹣ABC 的外接球表面积为20π3C .点C 与点D 到平面α的距离之和的最大值为2 D .点C 在平面α内的射影为点M ,线段DM 的最大值为√15+√32三、填空题:本题共4小题,每小题5分,共20分. 13.一组数据1,2,4,5,8的第75百分位数为 .14.在正方体ABCD ﹣A 1B 1C 1D 1中,直线BC 1与直线CD 1夹角的余弦值为 . 15.在圆C 中,已知弦AB =2,则AB →⋅AC →的值为 .16.已知△ABC 的重心为G ,面积为1,且AB =2AC ,则3AG 2+BC 2的最小值为 . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知e →1,e →2是两个单位向量,夹角为π3,设a→=e →1+2e →2,b→=te →1−3e →2.(1)求|a →|;(2)若a →⊥b →,求t 的值.18.(12分)已知正三棱柱ABC ﹣A 1B 1C 1的棱长均为2,M 为A 1C 1的中点. (1)求证:BC 1∥平面AB 1M ; (2)求点B 到平面AB 1M 的距离d .19.(12分)独立事件是一个非常基础但又十分重要的概念,对于理解和应用概率论和统计学至关重要.它的概念最早可以追溯到17世纪的布莱兹•帕斯卡和皮埃尔•德•费马,当时被定义为彼此不相关的事件.19世纪初期,皮埃尔•西蒙•拉普拉斯在他的《概率的分析理论》中给出了相互独立事件的概率乘法公式.对任意两个事件A 与B ,如果P (AB )=P (A )P (B )成立,则称事件A 与事件B 相互独立,简称为独立.(1)若事件A 与事件B 相互独立,证明:A 与B 相互独立;(2)甲、乙两人参加数学节的答题活动,每轮活动由甲、乙各答一题,已知甲每轮答对的概率为35,乙每轮答对的概率为23.在每轮活动中,甲和乙答对与否互不影响,各轮结果也互不影响,求甲乙两人在两轮活动中答对3道题的概率.20.(12分)某社区工作人员采用分层抽样的方法分别在甲乙两个小区各抽取了8户家庭,统计了每户家庭近7天用于垃圾分类的总时间(单位:分钟),其中甲小区的统计表如下,设x i ,y i 分别为甲,乙小区抽取的第i 户家庭近7天用于垃圾分类的总时间,s x 2,s y 2分别为甲,乙小区所抽取样本的方差,已知x =18∑ 8i=1x i =200,s x 2=18∑ 8i=1(x i −x)2=200,y =195,s y 2=210,其中i =1,2,⋯,8.(1)若a ≤b ,求a 和b 的值;(2)甲小区物业为提高垃圾分类效率,优先试行新措施,每天由部分物业员工协助垃圾分类工作,经统计,甲小区住户每户每天用于垃圾分类的时间减少了5分钟.利用样本估计总体,计算甲小区试行新措施之后,甲乙两个小区的所有住户近7天用于垃圾分类的总时间的平均值z 和方差s z 2.参考公式:若总体划为2层,通过分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:m ,x 1,s 12;n ,x 2,s 22,总的样本平均数为ω,样本方差为s 2,则s 2=m m+n [s 12+(x 1−ω)2]+n m+n[s 22+(x 2−ω)2].21.(12分)如图1,在等腰△ABC 中,AC =4,A =π2,O ,D 分别为BC 、AB 的中点,过D 作DE ⊥BC 于E .如图2,沿DE 将△BDE 翻折,连接BA ,BC 得到四棱锥B ﹣ACED ,F 为AB 中点.(1)证明:DF ⊥平面AOB ;(2)当OB =√2时,求直线BF 与平面BCD 所成的角的正弦值.22.(12分)射影几何学中,中心投影是指光从一点向四周散射而形成的投影,如图,O 为透视中心,平面内四个点E ,F ,G ,H 经过中心投影之后的投影点分别为A ,B ,C ,D .对于四个有序点A ,B ,C ,D ,定义比值x =CACBDA DB叫做这四个有序点的交比,记作(ABCD ). (1)证明:(EFGH )=(ABCD );(2)已知(EFGH)=32,点B为线段AD的中点,AC=√3OB=3,sin∠ACOsin∠AOB=32,求cos A.2022-2023学年山东省济南市高一(下)期末数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数z=11+2i对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解:z=11+2i=1−2i(1+2i)(1−2i)=15−25i,它在复平面内对应点为(15,−25),在第四象限.故选:D.2.《2023年五一出游数据报告》显示,济南凭借超强周边吸引力,荣登“五一”最强周边游“吸金力”前十名榜单.其中,济南天下第一泉风景区接待游客100万人次,济南动物园接待游客30万人次,千佛山景区接待游客20万人次.现采用按比例分层抽样的方法对三个景区的游客共抽取1500人进行济南旅游满意度的调研,则济南天下第一泉风景区抽取游客()A.1000人B.300人C.200人D.100人解:依题意济南天下第一泉风景区应抽取游客1500×100100+30+20=1000(人).故选:A.3.设α,β为两个平面,则α⊥β的充要条件是()A.α过β的一条垂线B.α,β垂直于同一平面C.α内有一条直线垂直于α与β的交线D.α内有两条相交直线分别与β内两条直线垂直解:由α⊥β可得α经过β的一条垂线,反之若α经过β的一条垂线,由面面垂直的判定定理可得α⊥β,故A正确;α,β垂直于同一个平面,可得α,β平行或相交,故B错误;α内有一条直线垂直于α与β的交线,可得α,β不一定垂直,故C 错误; α内有两条相交直线分别与β内两条直线垂直,可得α,β平行或相交,故D 错误. 故选:A .4.袋子中有5个大小质地完全相同的球,其中3个红球,2个黄球,从中不放回地依次随机摸出2个球,则第二次摸到红球的概率为( ) A .110B .15C .25D .35解:袋子中有5个大小质地完全相同的球,其中3个红球,2个黄球, 从中不放回地依次随机摸出2个球, 第二次摸到红球的情况有两种:①第一次摸到红球,第二次摸到红球,概率为:P 1=35×24=310, ②第一次摸到黄球,第二次摸到红球,概率为:P 2=25×34=310, 则第二次摸到红球的概率为P =P 1+P 2=310+310=35. 故选:D .5.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,B =π4,b =1,c =√62,则角C 的值为( ) A .π3B .2π3C .π3或2π3D .无解解:∵B =π4,b =1,c =√62,由正弦定理有:bsinB=c sinC,∴sinC =csinB b =√62×√221=√32,∵c >b ,∴C >B ,∴C ∈(π4,π),∴C =π3或2π3.故选:C .6.如果三棱锥S ﹣ABC 底面不是等边三角形,侧棱SA ,SB ,SC 与底面ABC 所成的角都相等,SO ⊥平面ABC ,垂足为O ,则O 是△ABC 的( ) A .垂心 B .重心C .内心D .外心解:如图所示:因为SO ⊥平面ABC ,侧棱SA ,SB ,SC 与底面ABC 所成的角都相等, 则∠SAO =∠SBO =∠SCO ,AO =SO tan∠SAO ,BO =SO tan∠SBO ,CO =SOtan∠SCO,故AO =BO =CO ,故O 是△ABC 的外心. 故选:D .7.已知锐角△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,B =π3,c =2,则△ABC 的周长的取值范围为( )A .(3+√3,2+2√3)B .(3+√3,4+2√3)C .(3+√3,6+2√3)D .(3+√3,+∞)解:∵B =π3,c =2, ∴由正弦定理得asinA=b sinπ3=2sinC,∴b =√3sinC ,a =2sinA sinC =2sin(π3+C)sinC =√3cosC+sinCsinC, ∴a +b =√3sinC+√3cosC+sinCsinC=√3(cosC+1)sinC+1=2√3cos 2C 22sin C 2cos C 2+1=√3tan C 2+1,在锐角△ABC 中,{0<C <π20<2π3−C <π2,解得π6<C <π2, ∴π12<C 2<π4,即tanπ12<tan C2<1,又tan π6=2tanπ121−tan 2π12=√33,解得tan π12=2−√3或tan π12=−2−√3(不合题意,舍去), ∴2−√3<tan C2<1,∴1<1tan C 212−3=2+√3,∴√3+1<√3tan C 2+1<4+2√3,即√3+1<a +b <4+2√3,∴√3+3<a +b +c <6+2√3,故△ABC 的周长的取值范围为(√3+3,6+2√3). 故选:C .8.在四棱锥P ﹣ABCD 中,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB =1.点E ,F ,G 分别为平面P AB ,平面P AD 和平面ABCD 内的动点,点Q 为棱PC 上的动点,则QE 2+QF 2+QG 2的最小值为( ) A .12B .23C .34D .1解:由题意得QE ,QF ,QG 均最小时,平方和最小,过点Q 分别作平面P AB ,平面P AD ,平面ABCD 的垂线,垂足分别为E ,F ,G , 连接AQ ,因为P A ⊥面ABCD ,BC ⊂平面ABCD ,所以P A ⊥BC ,因为底面ABCD 为正方形,所以AB ⊥BC ,又因为P A ∩AB =A ,P A ,AB ⊂平面P AB ,所以BC ⊥面P AB ,因为QE ⊥平面P AB ,则QE ∥BC ,又因为点Q 在PC 上,则点E 应在PB 上, 同理可证F ,G 分别位于PD ,AC 上, 从而补出长方体EQFJ ﹣HGIA ,则AQ 是以QE ,QF ,QG 为共点的长方体的对角线,则AQ ²=QE ²+QF ²+QG ², 则题目转化为求AQ 的最小值,显然当AQ ⊥PC 时,AQ 的最小值, 因为四边形ABCD 为正方形,且P A =AB =1,则AC =√2, 因为P A ⊥面ABCD ,AC ⊂面ABCD ,所以P A ⊥AC , 所以PC =√PA 2+AC 2=√3, 则直角三角形P AC 斜边AC 的高AQ =1×√2√3=√63,此时AQ 2=23, 则QE ²+QF ²+QG ²的最小值为23,故选:B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知复数ω=−12+√32i ,则下列说法中正确的是( )A .|ω|=1B .ω3=﹣1C .ω2=ωD .ω2+ω+1=0解:ω=−12+√32i ,则ω2=(−12+√32i)=−12−√32i ,ω2≠ω,故C 错误; |ω|=√(−12)2+(√32)2=1,故A 正确;ω3=ω2•ω=(−12−√32i)(−12+√32i)=1,故B 错误; ω2+ω+1=−12−√32i −12+√32i +1=0,故D 正确.故选:AD.10.先后抛掷质地均匀的硬币两次,则下列说法正确的是()A.事件“恰有一次正面向上”与事件“恰有一次反面向上”相等B.事件“至少一次正面向上”与事件“至少一次反面向上”互斥C.事件“两次正面向上”与事件“两次反面向上”互为对立事件D.事件“第一次正面向上”与事件“第二次反面向上”相互独立解:根据题意,依次分析选项:对于A,事件“恰有一次正面向上”即“一次正面向上、一次反面向上”,同样,事件“恰有一次反面向上”也是“一次正面向上、一次反面向上”,两个事件相等,A正确;对于B,事件“至少一次正面向上”,即“一次正面向上、一次反面向上”和“两次都是正面向上”,事件“至少一次反面向上”,即“一次正面向上、一次反面向上”和“两次都是反面向上”,两个事件不互斥,B错误;对于C,事件“两次正面向上”与事件“两次反面向上”不是对立事件,还有一种情况“一次正面向上、一次反面向上”,C错误;对于D,由相互独立事件的定义,事件“第一次正面向上”与事件“第二次反面向上”相互独立,D正确.故选:AD.11.某学校为了调查高一年级学生每天体育活动时间情况,随机选取了100名学生,绘制了如图所示频率分布直方图,则下列说法正确的是()A.平均数的估计值为30B.众数的估计值为35C.第60百分位数估计值是32D.随机选取这100名学生中有25名学生体育活动时间不低于40分钟解:对于A,由频率分布直方图可知平均数的估计值为:5×0.1+15×0.18+25×0.22+35×0.25+45×0.2+55×0.05=29.2,故A 错误;对于B ,由频率分布直方图可知[30,40)的频率最大,因此众数的估计值为35,故B 正确; 对于C ,由频率分布直方图得从第一组到第六组的频率依次是0.1,0.18,0.22,0.25,0.2,0.05, 所以第60百分位数估计值m 在[30,40)内,所以0.1+0.18+0.22+(m ﹣30)×0.025=0.6,解得m =34,故C 错误;对于D ,随机选取这100名学生中体育活动时间不低于40分钟的人数为100×(0.2+0.05)=25,故D 正确. 故选:BD .12.如图,已知三棱锥D ﹣ABC 可绕AB 在空间中任意旋转,△ABC 为等边三角形,AB 在平面α内,AB ⊥CD ,AB =2,CD =√6,cos∠CBD =14,则下列说法正确的是( )A .二面角D ﹣AB ﹣C 为π2B .三棱锥D ﹣ABC 的外接球表面积为20π3C .点C 与点D 到平面α的距离之和的最大值为2 D .点C 在平面α内的射影为点M ,线段DM 的最大值为√15+√32解:对于A 选项,在△BCD 中,BC =AB =2,CD =√6,cos∠CBD =14, 由余弦定理可得CD 2=BC 2+BD 2﹣2BC •BD cos ∠CBD , 即4+BD 2−4BD ×14=6,即BD 2﹣BD ﹣2=0,因为BD >0,解得BD =2, 取AB 的中点E ,连接CE 、DE ,如下图所示:因为△ABC 为等边三角形,E 为AB 的中点,所以,CE ⊥AB ,又因为CD ⊥AB ,CD ∩CE =C ,CD ,CE ⊂平面CDE ,所以,AB ⊥平面CDE , 因为DE ⊂平面CDE ,所以,DE ⊥AB , 所以,二面角D ﹣AB ﹣C 的平面角为∠CED ,因为E 为AB 的中点,所以,AD =BD =2,故△ABD 也是边长为2的等边三角形, 所以DE =√AD 2−AE 2=√4−1=√3,CE =√AC 2−AE 2=√4−1=√3, 又因为CD =√6,所以,CE 2+DE 2=CD 2,则CE ⊥DE , 故二面角D ﹣AB ﹣C 为π2,A 对;对于B 选项,设△ABC 、△ABD 的中心分别为点G 、H ,分别过点G 、H 作GO ∥DE 、HO ∥CE ,设GO ∩HO =O , 因为CE ⊥DE ,CE ⊥AB ,AB ∩DE =E ,AB 、DE ⊂平面ABD ,所以,CE ⊥平面ABD ,因为HO ∥CE ,则OH ⊥平面ABD ,同理,OG ⊥平面ABC , 所以,O 为三棱锥D ﹣ABC 的外接球球心, 由等边三角形的几何性质可知,HE =13DE =√33,同理,GE =13CE =√33,因为OH ∥GE ,OG ∥EH ,HE =GE =√33,GE ⊥HE , 所以,四边形OHEG 为正方形,且OH =GE =√33, 又因为DH =DE −HE =√3−√33=2√33, 因为CE ⊥DE ,OH ∥CE ,则OH ⊥DE ,则OD =√OH 2+DH 2=√(33)2+(233)2=√153, 所以,三棱锥D ﹣ABC 的外接球半径为√153,因此,三棱锥D ﹣ABC 的外接球的表面积为4π⋅OD 2=4π×(√153)2=20π3,B 对; 对于C 选项,设点D 在平面α内的射影点为N ,连接MN ,因为CM ⊥a ,DN ⊥a ,则CM ∥DN ,故点C 、D 、N 、M 四点共面, 因为AB ⊂α,则AB ⊥CM ,又因为CD ⊥AB ,CD ∩CM =C ,CD 、CM ⊂平面CDNM ,则AB ⊥平面CDNM , 又因为AB ⊥平面CDE ,故平面CDE 与平面CDNM 重合, 又因为E ∈α,M ,N ∈α,故E ∈MN , 设∠CEM =θ,其中0≤θ≤π2,又因为∠CED =π2,则∠DEN =π−∠CED −∠CEM =π−π2−θ=π2−θ, 所以,CM =CEsin ∠CEM =√3sinθ,DN =DEsin ∠DEN =√3sin(π2−θ)=√3cosθ,所以,点C 与点D 到平面α的距离之和CM +DN =√3sinθ+√3cosθ=√6sin(θ+π4), 因为0≤θ≤π2,则π4≤θ+π4≤3π4,故当θ+π4=π2时,即当θ=π4时,CM +DN 取最大值√6,C 错; 对于D 选项,ME =CEcosθ=√3cosθ,∠DEM =∠CED +∠CEM =π2+θ, 由余弦定理可得DM =√DE 2+EM 2−2DE ⋅EMcos(π2+θ) =√3+3cos 2θ+2√3⋅√3cosθsinθ=√3+3×1+cos2θ2+3sin2θ =√3sin2θ+3cos2θ2+92=√352sin(2θ+φ)+92, 其中φ为锐角,且tanφ=12,因为0≤θ≤π2,则φ≤2θ+φ≤π+φ,故当2θ+φ=π2时,DM 取得最大值, 且(DM)max =√9+352=√18+654=√15+√32,D 对. 故选:ABD .三、填空题:本题共4小题,每小题5分,共20分. 13.一组数据1,2,4,5,8的第75百分位数为 5 .解:5×75%=3.75,故一组数据1,2,4,5,8的第75百分位数为5. 故答案为:5.14.在正方体ABCD ﹣A 1B 1C 1D 1中,直线BC 1与直线CD 1夹角的余弦值为 12.解:如图,连接A 1C 1,A 1B ,在正方体ABCD ﹣A 1B 1C 1D 1中,有A 1D 1∥B 1C 1∥BC ,A 1D 1=B 1C 1=BC , 所以四边形A 1D 1CB 为平行四边形,所以A 1B ∥CD 1, 所以∠A 1BC 1为直线BC 1与直线CD 1夹角或其补角, 设正方体ABCD ﹣A 1B 1C 1D 1棱长为a , 则A 1B =BC 1=A 1C 1=√2a , 所以△A 1BC 1为等边三角形, 所以∠A 1BC 1=π3,故直线BC 1与直线CD 1夹角的余弦值为cos ∠A 1BC 1=cos π3=12. 故答案为:12.15.在圆C 中,已知弦AB =2,则AB →⋅AC →的值为 2 . 解:∵在圆C 中,已知一条弦AB =2,∴根据圆的几何性质得出:|AC |cos ∠CAB =12|AB |=12×2=1, ∵AB →•AC →=|AB →•|AC →|cos ∠CAB =2×1=2. 故答案为:2.16.已知△ABC 的重心为G ,面积为1,且AB =2AC ,则3AG 2+BC 2的最小值为4√213.解:由题意c =2b ,S △ABC =12bc sin A =1,即b 2sin A =1;连接AG 并延长交BC 于D ,则D 为BC 的中点,可得AD →=12(AB →+AC →),又因为G 为三角形的重心,则AG →=23AD →,可得AG →=13(AB →+AC →),BC →=AC →−AB →,所以AG 2=AG →2=19(AB →2+AC →2+2AB →•AC →)=19(c 2+b 2+2bc cos A )=19(5b 2+4b 2cos A ), BC 2=BC →2=AC →2+AB →2﹣2AB →•AC →=b 2+c 2﹣2bc cos A =5b 2﹣4b 2cos A ,所以3AG 2+BC 2=53b 2+4b 23cos A +5b 2﹣4b 2cos A =203b 2−83b 2cos A =203sinA −8cosA 3sinA,令t =203sinA −8cosA 3sinA>0,则3t sin A +8cos A =20, 即sin (A +φ)=20√9t +64≤1,当且仅当A +φ=π2时取等号,tan φ=82t ,可得9t 2+64≥400,解得t ≥4√213或t ≤−4√213(舍), 即t 的最小值为:4√213.故答案为:4√213. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知e →1,e →2是两个单位向量,夹角为π3,设a→=e →1+2e →2,b→=te →1−3e →2.(1)求|a →|;(2)若a →⊥b →,求t 的值.解:(1)∵|e 1→|=|e 2→|=1,<e 1→,e 2→>=π3, ∴e 1→⋅e 2→=12,∴|a →|=√e 1→2+4e 2→2+4e 1→⋅e 2→=√1+4+2=√7; (2)∵a →⊥b →,∴a →⋅b →=(e 1→+2e 2→)⋅(te 1→−3e 2→)=te 1→2−6e 2→2+(2t −3)e 1→⋅e 2→=t −6+12(2t −3)=0,解得t =154. 18.(12分)已知正三棱柱ABC ﹣A 1B 1C 1的棱长均为2,M 为A 1C 1的中点. (1)求证:BC 1∥平面AB 1M ; (2)求点B 到平面AB 1M 的距离d .证明:(1)连接A 1B 交AB 1于点N ,连接MN ,则正三棱柱中A 1B 1BA 是平行四边形, 所以N 为A 1B 的中点,又M 为A 1C 1的中点,所以MN ∥BC 1,BC 1⊄平面AB 1M ,MN ⊂平面AB 1M ,所以BC 1∥平面AB 1M . 解:(2)过M 作MH ⊥A 1B 1,垂足为H ,由题意可得B 1M =√3,AM =√5,AB 1=2√2,所以B 1M 2+AM 2=AB 12,所以B 1M ⊥AM ,所以△AB 1M 的面积S △AB 1M =12×√3×√5=√152, 因为正三棱柱中平面A 1B 1C 1⊥平面A 1B 1BA ,又平面A 1B 1C 1∩平面A 1B 1BA =A 1B 1,MH ⊂平面A 1B 1C 1,且MH ⊥A 1B 1, 所以MH ⊥平面A 1B 1BA ,即M 到平面A 1B 1BA 的距离为MH =MA 1sin π3=√32,又△ABB 1的面积S △ABB 1=12AB ⋅BB 1=2, 所以V M−ABB 1=13MH ⋅S △ABB 1=13×√32×2=√33,又V M−ABB 1=V B−MAB 1, 所以13S △AB 1M ⋅d =√33,解得d =2√55, 所以点B 到平面AB 1M 的距离为2√55. 19.(12分)独立事件是一个非常基础但又十分重要的概念,对于理解和应用概率论和统计学至关重要.它的概念最早可以追溯到17世纪的布莱兹•帕斯卡和皮埃尔•德•费马,当时被定义为彼此不相关的事件.19世纪初期,皮埃尔•西蒙•拉普拉斯在他的《概率的分析理论》中给出了相互独立事件的概率乘法公式.对任意两个事件A 与B ,如果P (AB )=P (A )P (B )成立,则称事件A 与事件B 相互独立,简称为独立.(1)若事件A 与事件B 相互独立,证明:A 与B 相互独立;(2)甲、乙两人参加数学节的答题活动,每轮活动由甲、乙各答一题,已知甲每轮答对的概率为35,乙每轮答对的概率为23.在每轮活动中,甲和乙答对与否互不影响,各轮结果也互不影响,求甲乙两人在两轮活动中答对3道题的概率.解:(1)证明:事件A 与事件B 相互独立,则P (AB )=P (A )P (B ), 又由B =A B +AB ,事件A B 和AB 互斥,则有P (B )=P (A B +AB )=P (AB )+P (A B )=P (A )P (B )+P (A B ),变形可得:P (A B )=P (B )﹣P (A )P (B )=[1﹣P (A )]P (B )=P (A )P (B ), 故事件A 与B 相互独立;(2)根据题意,设事件A 1、A 2分别表示甲答对1道、2道题目,事件B 1、B 2分别表示乙答对1道、2道题目,则P (A 1)=2×35×(1−35)=1225,P (A 2)=35×35=925, P (B 1)=2×23×(1−23)=49,P (B 2)=23×23=49, 若甲乙两人在两轮活动中答对3道题,即A 2B 1+A 1B 2,则甲乙两人在两轮活动中答对3道题的概率P =P (A 2B 1+A 1B 2)=P (A 2B 1)+P (A 1B 2)=925×49+1225×49=2875. 20.(12分)某社区工作人员采用分层抽样的方法分别在甲乙两个小区各抽取了8户家庭,统计了每户家庭近7天用于垃圾分类的总时间(单位:分钟),其中甲小区的统计表如下,设x i,y i分别为甲,乙小区抽取的第i户家庭近7天用于垃圾分类的总时间,s x2,s y2分别为甲,乙小区所抽取样本的方差,已知x=18∑8i=1x i=200,s x2=18∑8i=1(x i−x)2=200,y=195,s y2=210,其中i=1,2,⋯,8.(1)若a≤b,求a和b的值;(2)甲小区物业为提高垃圾分类效率,优先试行新措施,每天由部分物业员工协助垃圾分类工作,经统计,甲小区住户每户每天用于垃圾分类的时间减少了5分钟.利用样本估计总体,计算甲小区试行新措施之后,甲乙两个小区的所有住户近7天用于垃圾分类的总时间的平均值z和方差s z2.参考公式:若总体划为2层,通过分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:m,x1,s12;n,x2,s22,总的样本平均数为ω,样本方差为s2,则s2=mm+n [s12+(x1−ω)2]+nm+n[s22+(x2−ω)2].解:(1)已知x=18∑8i=1x i=18(200+220+200+180+200+a+b+220)=200,整理得a+b=380,①又s x2=18∑8i=1(x i−x)2=8[3×(200﹣200)2+2×(220﹣200)2+(180﹣200)2+(a﹣200)2+(b﹣200)2]=200,整理得(a﹣200)2+(b﹣200)2=400,②联立①②,解得a=180,b=200或a=200,b=180,因为a≤b,所以a=180,b=200;(2)设甲小区试行新措施之后,甲小区抽取的第i户家庭近7天用于垃圾分类的总时间为m i,此时m i=x i﹣35,则m i=x−35=165,s m2=s x2=200,所以z=116(8m+8y)=12(165+195)=180,s z2=88+8[s m2+(m−z)2]+88+8[s y2+(y−z)]=12[200+(165﹣180)2]+12[210+(195﹣180)2]=430.21.(12分)如图1,在等腰△ABC中,AC=4,A=π2,O,D分别为BC、AB的中点,过D作DE⊥BC于E .如图2,沿DE 将△BDE 翻折,连接BA ,BC 得到四棱锥B ﹣ACED ,F 为AB 中点.(1)证明:DF ⊥平面AOB ;(2)当OB =√2时,求直线BF 与平面BCD 所成的角的正弦值.(1)证明:因为DE ⊥BE ,DE ⊥OE ,且BE ∩OE =E ,BE 、OE ⊂平面BCE , 所以DE ⊥平面BCE ,又OA ∥DE ,所以OA ⊥平面BCE ,设点P 是翻折前点B 所在的位置,则D 为AP 的中点, 因为F 为AB 的中点,所以DF ∥PB ,因为PB ⊂平面BCE ,所以OA ⊥PB ,所以OA ⊥DF , 由题意知,DA =DB ,因为F 为AB 的中点,所以DF ⊥AB , 又OA ∩AB =A ,OA 、AB ⊂平面AOB , 所以DF ⊥平面AOB .(2)解:以O 为坐标原点,建立如图所示的空间直角坐标系,则A (0,0,2√2),P (2√2,0,0),C (﹣2√2,0,0),D (√2,0,√2), 由(1)知,DF ⊥平面AOB ,因为DF ∥PB ,所以PB ⊥平面AOB ,所以PB ⊥OB , 又OB =√2=12OP ,所以∠POB =60°,所以B (√22,√62,0),F (√24,√64,√2), 所以BF →=(−√24,−√64,√2),CD →=(3√2,0,√2),CB →=(5√22,√62,0),设平面BCD 的法向量为n →=(x ,y ,z ),则{n →⋅CD →=0n →⋅CB →=0,即{3√2x +√2z =05√22x +√62y =0, 令x =1,则y =53,z =﹣3,所以n →=(1,53,﹣3), 设直线BF 与平面BCD 所成的角为θ,则sin θ=|cos <BF →,n →>|=|BF →⋅n →||BF →|⋅|n →|=|−√24+√64×5√3−3√2|(24)+(64)√1+(5√3)=4√3355,故直线BF 与平面BCD 所成的角的正弦值为4√3355. 22.(12分)射影几何学中,中心投影是指光从一点向四周散射而形成的投影,如图,O 为透视中心,平面内四个点E ,F ,G ,H 经过中心投影之后的投影点分别为A ,B ,C ,D .对于四个有序点A ,B ,C ,D ,定义比值x =CACBDA DB叫做这四个有序点的交比,记作(ABCD ). (1)证明:(EFGH )=(ABCD );(2)已知(EFGH )=32,点B 为线段AD 的中点,AC =√3OB =3,sin∠ACOsin∠AOB =32,求cos A .解:(1)证明:在△AOC 、△AOD 、△BOC 、△BOD 中,CA CB =S △AOC S △BOC =12OA⋅OCsin∠AOC 12OB⋅OCsin∠BOC =OAsin∠AOC OBsin∠BOC,DA DB=S △AOD S △BOD=12OA⋅ODsin∠AOD 12OB⋅ODsin∠BOD =OAsin∠AOD OBsin∠BOD,所以(ABCD)=CA CB DA DB=OAsin∠AOC OBsin∠BOC OAsin∠AOD OBsin∠BOD=sin∠AOC⋅sin∠BODsin∠BOC⋅sin∠AOD,又在△EOG 、△EOH 、△FOG 、△FOH 中,GE GF =S △EOG S △FOG =12OE⋅OGsin∠EOG 12OF⋅OGsin∠FOG =OEsin∠EOG OFsin∠FOG,HE HF=S △EOH S △FOH=12OE⋅OHsin∠EOH 12OF⋅OHsin∠FOH =OEsin∠EOH OFsin∠FOH,所以(EFGH)=GE GF HE HF=OEsin∠EOG OFsin∠FOG OEsin∠EOH OFsin∠FOH=sin∠EOG⋅sin∠FOHsin∠FOG⋅sin∠EOH ,又∠EOG =∠AOC ,∠FOH =∠BOD ,∠FOG =∠BOC ,∠EOH =∠AOD , 所以sin∠AOC⋅sin∠BOD sin∠BOC⋅sin∠AOD=sin∠EOG⋅sin∠FOH sin∠FOG⋅sin∠EOH,所以(EFGH )=(ABCD ).(2)由题意可得(EFGH)=32,所以(ABCD)=32,即CACB DA DB=32,所以CA CB ⋅DBDA=32,又点B 为线段AD 的中点,即DB DA=12,所以CACB=3,又AC =3,则AB =2,BC =1, 设OA =x ,OC =y 且OB =√3, 由∠ABO =π﹣∠CBO , 所以cos ∠ABO +cos ∠CBO =0, 即2√3)222×2×√3+2√3)222×1×√3=0,解得x 2+2y 2=15,①在△AOB 中,由正弦定理可得AB sin∠AOB =x sin∠ABO,②在△COB 中,由正弦定理可得OB sin∠BCO=y sin∠CBO,③且sin ∠ABO =sin ∠CBO ,②③得,x y=AB sin∠AOB⋅sin∠BCO OB=32×√3=√3,即x =√3y ,④由①④解得x =3,y =√3(负值舍去), 即AO =3,OC =√3所以cosA =AO 2+AB 2−OB 22AO⋅AB =32+22−(√3)22×3×2=56.。
高一(下学期)期末考试数学试卷(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、多选题1.下列抽样方法是简单随机抽样的是( )A .某工厂从老年、中年、青年职工中按2∶5∶3的比例选取职工代表B .用抽签的方法产生随机数C .福利彩票用摇奖机摇奖D .规定凡买到明信片最后四位号码是“6637”的人获三等奖 2.若直线a 平行于平面α,则下列结论正确的是( ) A .a 平行于α内的有限条直线 B .α内有无数条直线与a 平行 C .直线a 上的点到平面α的距离相等 D .α内存在无数条直线与a 成90°角3.设a ,b ,l 为不同的直线,α,β,γ为不同的平面,下列四个命题中错误的是( ) A .若//a α,a b ⊥,则b α⊥ B .若αγ⊥,βγ⊥,l αβ=,则l γ⊥C .若a α⊂,//a β,b β⊂,//b α,则//αβD .若αβ⊥,l αβ=,A α∈,AB l ⊥,则AB β⊥4.小王于2017年底贷款购置了一套房子,根据家庭收入情况,小王选择了10年期每月还款数额相同的还贷方式,且截止2021年底,他没有再购买第二套房子.如图是2018年和2021年小王的家庭收入用于各项支出的比例分配图:根据以上信息,判断下列结论中正确的是( ) A .小王一家2021年用于饮食的支出费用跟2018年相同 B .小王一家2021年用于其他方面的支出费用是2018年的3倍 C .小王一家2021年的家庭收人比2018年增加了1倍 D .小王一家2021年用于房贷的支出费用与2018年相同5.已知正方体1111ABCD A B C D -的棱长为2,点F 是棱1BB 的中点,点P 在四边形11BCC B 内(包括边界)运动,则下列说法正确的是( )A .若P 在线段1BC 上,则三棱锥1P AD F -的体积为定值B .若P 在线段1BC 上,则DP 与1AD 所成角的取值范围为,42ππ⎡⎤⎢⎥⎣⎦C .若//PD 平面1AD F ,则点PD .若AP PC ⊥,则1A P 与平面11BCC B二、单选题6.已知a ,b ,c 是三条不同的直线,α,β是两个不同的平面,⋂=c αβ,a α⊂,b β⊂,则“a ,b 相交“是“a ,c 相交”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .既不充分也不必要条件7.某校有男生3000人,女生2000人,学校将通过分层随机抽样的方法抽取100人的身高数据,若按男女比例进行分层随机抽样,抽取到的学生平均身高为165cm ,其中被抽取的男生平均身高为172cm ,则被抽取的女生平均身高为( ) A .154.5cmB .158cmC .160.5cmD .159cm8.从二面角内一点分别向二面角的两个面引垂线,则这两条垂线所夹的角与二面角的平面角的关系是( ) A .互为余角B .相等C .其和为周角D .互为补角9.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图,估计这次测试中数学成绩的平均分、众数、中位数分别是( )A .73.3,75,72B .72,75,73.3C .75,72,73.3D .75,73.3,7210.对于数据:2、6、8、3、3、4、6、8,四位同学得出了下列结论:甲:平均数为5;乙:没有众数;丙:中位数是3;丁:第75百分位数是7,正确的个数为( ) A .1B .2C .3D .411.为了贯彻落实《中共中央国务院全面加强新时代大中小学劳动教育的意见》的文件精神,某学校结合自身实际,推出了《植物栽培》《手工编织》《实用木工》《实用电工》《烹饪技术》五门校本劳动选修课程,要求每个学生从中任选三门进行学习,学生经考核合格后方能获得该学校荣誉毕业证,则甲、乙两人的选课中仅有一门课程相同的概率为( ) A .325B .15C .310 D .3512.已知正四棱柱ABCD - A 1B 1C 1D 1中 ,AB=2,CC 1=E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A.2BCD .1三、填空题13.如图,在棱长为1的正方体1111ABCD A B C D -中,点E 、F 、G 分别为棱11B C 、1CC 、11D C 的中点,P 是底面ABCD 上的一点,若1A P ∥平面GEF ,则下面的4个判断∶点P∶线段1A P ;∶11A P AC ⊥;∶1A P 与1B C 一定异面.其中正确判断的序号为__________.14.甲、乙两同学参加“建党一百周年”知识竞赛,甲、乙获得一等奖的概率分别为14、15,获得二等奖的概率分别为12、35,甲、乙两同学是否获奖相互独立,则甲、乙两人至少有1人获奖的概率为___________.15.数据1x ,2x ,…,8x 平均数为6,标准差为2,则数据126x -,226x -,…,826x -的方差为________. 16.将正方形ABCD 沿对角线AC 折起,并使得平面ABC 垂直于平面ACD ,直线AB 与CD 所成的角为__________.四、解答题17.如图,在直三棱柱111ABC A B C -中,1,AB BC AA AB ⊥=,G 是棱11A C 的中点.(1)证明:1BC AB ⊥;(2)证明:平面1AB G ⊥平面1A BC .18.甲、乙两台机床同时生产一种零件,在10天中,两台机床每天生产的次品数分别为: 甲:0,0,1,2,0,0,3,0,4,0;乙:2,0,2,0,2,0,2,0,2,0. (1)分别求两组数据的众数、中位数;(2)根据两组数据平均数和标准差的计算结果比较两台机床性能.19.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[)2030,,[)3040,,,[]8090,,并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[)4050,内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.20.某学校招聘在职教师,甲、乙两人同时应聘.应聘者需进行笔试和面试,笔试分为三个环节,每个环节都必须参与,甲笔试部分每个环节通过的概率依次为113224,,,乙笔试部分每个环节通过的概率依次为311422,,,笔试三个环节至少通过两个才能够参加面试,否则直接淘汰;面试分为两个环节,每个环节都必须参与,甲面试部分每个环节通过的概率依次为2132,,乙面试部分每个环节通过的概率依次为4354,,若面试部分的两个环节都通过,则可以成为该学校的在职教师.甲、乙两人通过各个环节相互独立. (1)求甲未能参与面试的概率;(2)记乙本次应聘通过的环节数为X ,求(3)P X =的值;(3)记甲、乙两人应聘成功的人数为Y ,求Y 的的分布列和数学期望21.如图,在三棱锥P -ABC 中,PA ⊥平面,ABC AB AC =,,M N 分别为,BC AB 的中点,(1)求证:MN //平面P AC (2)求证:平面PBC ⊥平面P AM22.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,其对角线AC 与BD 相交于点O ,1160A AB A AD BAD ∠=∠=∠=,13AA =,2AB =.(1)证明:1A O ⊥平面ABCD ; (2)求三棱锥11C A BD -的体积.参考答案:1.BC【分析】由题意,根据简单随机抽样的定义,可得答案.【详解】对于A ,此为分层抽样;对于B ,此为随机数表法;对于C ,此为简单随机抽样;对于D ,此为系统抽样. 故选:BC. 2.BCD【分析】根据直线与平面平行的性质即可判断.【详解】因为直线a 平行于平面α,所以a 与平面α内的直线平行或异面,选项A 错误;选项B ,C ,D 正确.故选:BCD. 3.ACD【分析】选项ACD ,可借助正方体构造反例;选项B ,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥,可证明l m ⊥,l n ⊥,即得证.【详解】A 选项:取11//A C 平面ABCD ,1111AC B D ⊥,但是11B D 不垂直于平面ABCD ,命题A 错误. B 选项:设a αγ⋂=,b βγ=,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥.因为αγ⊥,βγ⊥,所以m α⊥,n β⊥,又l α⊆,l β⊆,所以l m ⊥,l n ⊥,所以l γ⊥.命题B 正确. C 选项:11//A B 平面ABCD ,//CD 平面11ABB A ,但平面ABCD 与平面11ABB A 不平行,命题C 错误. D 选项:平面ABCD ⊥平面11ABB A ,交线为AB ,1B ∈平面11ABB A ,1B C AB ⊥,但1B C 与平面ABCD 不垂直,命题D 错误. 故选:ACD4.BD【分析】由题意,根据扇形统计图的性质,可得答案.【详解】对于A ,小王一家2021年用于饮食的支出比例与跟2018年相同,但是由于2021年比2018年家庭收入多,∶小王一家2021年用于饮食的支出费用比2018年多,故A 错误;对于B ,设2018年收入为a ,∶相同的还款数额在2018年占各项支出的60%,在2021年占各项支出的40%,∶2021年收入为:0.6 1.50.4aa =,∶小王一家2021年用于其他方面的支出费用为1.512%0.18a a ⨯=,小王一家2018年用于其他方面的支出费用为0.06a ,∶小王一家2021年用于其他方面的支出费用是2018年的3倍,故B 正确;对于C ,设2018年收入为a ,则2021年收入为:0.6 1.50.4aa =,故C 错误; 对于D ,小王一家2021年用于房贷的支出费用与2018年相同,故D 正确. 故选:BD . 5.ACD【分析】A. 如图,当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,分析得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN =D. 点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB 1,所以1A P 与平面11BCC B=所以该选项正确. 【详解】A. 如图,因为11//,BC AD AD ⊂平面1,AFD 1BC ⊄平面1,AFD 所以1//BC 平面1,AFD 所以当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,因为11//,BC AD 所以DP 与1AD 所成角就是DP 与1BC 所成的角(锐角或直角),当点P 在1,B C 时,由于∶1BDC 是等边三角形,所以这个角为3π,当1DP BC 时,这个角为2π,由图得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN ,由于//DM AF ,AF ⊂平面1AFD ,DM ⊄平面1AFD ,所以//DM 平面1AFD ,同理可得//MN 平面1AFD ,又,DM MN ⊂平面DMN ,DMMN M =,所以平面//DMN 平面1AFD ,所以//DP 平面1AFD ,MN ==P 选项正确;D.如图,由题得1A P 与平面11BCC B 所成角为11A PB ∠,1112tan A PB PB ∠=,即求1PB 的最小值,因为,PC AP PC AB ⊥⊥,,,AP AB A AP AB ⋂=⊂平面ABP ,所以PC ⊥平面ABP ,所以PC BP ⊥,所以点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB1,所以1A P 与平面11BCC B 所=所以该选项正确.故选:ACD 6.C【分析】根据直线与平面的位置关系进行判断即可.【详解】解:∶若a ,b 相交,a α⊂,b β⊂,则其交点在交线c 上,故a ,c 相交, ∶若a ,c 相交,可能a ,b 为相交直线或异面直线.综上所述:a ,b 相交是a ,c 相交的充分不必要条件. 故选:C . 7.A【分析】由分层抽样求出100人中的男女生数,再利用平均数公式计算作答. 【详解】根据分层随机抽样原理,被抽取到的男生为60人,女生为40人, 设被抽取到的女生平均身高为cm x ,则6017240165100x⨯+=,解得154.5cm x =,所以被抽取的女生平均身高为154.5cm . 故选:A 8.D【分析】做出图像数形结合即可判断.【详解】如图,A 为二面角--l αβ内任意一点,AB α⊥,AC β⊥,过B 作BD l ⊥于D , 连接CD ,因为AB α⊥,l α⊂,所以AB l ⊥因为AC β⊥,l β⊂,所以AC l ⊥,且AB AC A ⋂=, 所以l ⊥平面ABCD ,且CD ⊂面ABCD ,所以⊥l CD 则BDC ∠为二面角l αβ--的平面角,90ABD ACD ∠∠︒==,BAC ∠为两条垂线AB 与AC 所成角,所以180A BDC ∠∠︒+=, 所以两条垂线所夹的角与二面角的平面角互为补角. 故选:D. 9.B【解析】根据频率分布直方图,结合平均数、众数、中位数的求法,即可得解. 【详解】由频率分布直方图可知,平均数为450.00510450.00510550.01510650.02010⨯⨯+⨯⨯+⨯⨯+⨯⨯750.03010850.02510950.0051072+⨯⨯+⨯⨯+⨯⨯=众数为最高矩形底边的中点,即75中为数为:0.005100.015100.02010100.5x ⨯+⨯+⨯+⨯= 可得0.010x = 所以中为数为0.010701073.30.030+⨯≈ 综上可知,B 为正确选项 故选:B【点睛】本题考查了频率分布直方图的应用,平均数、众数、中位数的计算,属于基础题. 10.B【分析】分别求出平均数,中位数,众数,第75百分位数即可得解. 【详解】解:平均数为2683346858+++++++=,故甲正确;众数为:3,6,8,故乙错误;将这组数据按照从小到大的顺序排列:2,3,3,4,6,6,8,8, 则中位数为4652+=,故丙错误; 875%6⨯=,则第75百分位数为6872+=,故丁正确, 所以正确的个数为2个. 故选:B. 11.C【分析】先分析总的选课情况数,然后再分析甲、乙两人的选课中仅有一门课程相同的情况数,然后两者相除即可求解出对应概率.【详解】甲、乙总的选课方法有:3355C C ⋅种,甲、乙两人的选课中仅有一门课程相同的选法有:5412C C ⋅种,(先选一门相同的课程有15C 种选法,若要保证仅有一门课程相同只需要其中一人从剩余4门课程中选取2门,另一人选取剩余的2门课程即可,故有24C 种选法)所以概率为12543355310C C P C C ==,故选:C.【点睛】关键点点睛:解答本题的关键在于分析两人的选课仅有1门相同的选法数,可通过先确定相同的选课,然后再分析四门课程中如何做到两人的选课不同,根据古典概型的概率计算方法完成求解. 12.D【详解】试题分析:因为线面平行,所求求线面距可以转化为求点到面的距离,选用等体积法.1//AC 平面BDE ,1AC ∴到平面BDE 的距离等于A 到平面BDE 的距离,由题计算得11111223232E ABD ABD V S CC -=⨯=⨯⨯⨯在BDE 中,BE DE BD ===BD边上的高2==,所以122BDE S =⨯=所以1133A BDE BDE V S h -==⨯,利用等体积法A BDE E ABD V V --=,得: 13⨯=解得: 1h = 考点:利用等体积法求距离 13.∶∶【分析】先证明平面1A BD ∥平面GEF ,可判断P 的轨迹是线段BD ,结合选项和几何性质一一判断即可. 【详解】分别连接11,,BD A B A D ,所以11BD B D ∥,又因为11B D ∥EG ,则BD EG ∥, 同理1A D EF ∥,1,BDA D D EGEF E ==,故平面1A BD ∥平面GEF ,又因为1A P ∥平面GEF ,且P 是底面ABCD 上的一点,所以点P 在BD 上.所以点P 的轨迹是一段长度为BD =,故∶正确;当P 为BD 中点时1A P BD ⊥,线段1A P ,故∶错; 因为在正方体1111ABCD A B C D -中,1AC ⊥平面1A BD ,又1A P ⊂平面1A BD , 则11A P AC ⊥,故∶正确;当P 与D 重合时,1A P 与1B C 平行,则∶错. 故答案为:∶∶14.1920【分析】利用独立事件的概率乘法公式和对立事件的概率公式可求得所求事件的概率.【详解】由题意可知,甲不中奖的概率为1111424--=,乙不中奖的概率为1311555--=,因此,甲、乙两人至少有1人获奖的概率为111914520-⨯=.故答案为:1920. 15.16【详解】试题分析:由题意知12868x x x x +++==,(862s x +-=,则12848x x x +++=,24s =,而()()()12826262624886688x x x y -+-++-⨯-⨯===,所以所求方差为()()()2222212812122122124168s x x x s ⎡⎤=-+-++-=⨯=⎣⎦'.故正确答案为16.考点:两组线性数据间的特征数的运算.【方法点晴】此题主要考查两组俱有线性关系的数据的特征数关系,当数据{}12,,,n x x x 与{}12,,,n y y y 中若有i i y ax b =+时,那么它们之间的平均数与方差(标准差)之间的关系是:y x =,222y x s a s =或是y x s as =,掌握此关系会给我们计算带来很大方便. 16.60°【分析】将所求异面直线平移到同一个三角形中,即可求得异面直线所成的角. 【详解】如图,取AC ,BD ,AD 的中点,分别为O ,M ,N ,则11,22ON CD MN AB ∥∥,所以ONM ∠或其补角即为所求的角.因为平面ABC ⊥平面ACD ,BO AC ⊥,平面ABC平面ACD AC =,BO ⊂平面ABC ,所以BO ⊥平面ACD ,又因为OD ⊂平面ACD ,所以BO OD ⊥. 设正方形边长为2,OB OD ==2BD =,则112OM BD ==. 所以=1ON MN OM ==.所以OMN 是等边三角形,60ONM ∠=︒. 所以直线AB 与CD 所成的角为60︒. 故答案为: 60° 17.(1)证明见解析 (2)证明见解析【分析】(1)由线面垂直得到1AA BC ⊥,从而求出BC ⊥平面11ABB A ,得到1BC AB ⊥;(2)根据正方形得到11BA AB ⊥,结合第一问求出的1BC AB ⊥,得到1AB ⊥平面1A BC ,从而证明面面垂直. (1)∶1AA ⊥平面ABC ,且BC ⊂平面ABC , ∶1AA BC ⊥. 又因为1,BC AB AA AB A ⊥=,1,AA AB ⊂平面11ABB A ,所以BC ⊥平面11ABB A . ∶1AB ⊂平面11ABB A , ∶1BC AB ⊥. (2)∶1AA AB =,易知矩形11ABB A 为正方形, ∶11BA AB ⊥.由(1)知1BC AB ⊥,又由于11,,A B BC B A B BC =⊂平面1A BC ,∶1AB ⊥平面1A BC . 又∶1AB ⊂平面1AB G , ∶平面1AB G ⊥平面1A BC .18.(1)甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1;(2)甲乙的平均水平相当,但是乙更稳定.【分析】(1)根据众数和中位数的公式直接计算,众数是指数据中出现次数最多的数据,中位数是按从小到大排列,若是奇数个,则正中间的数是中位数,若是偶数个数,则正中间两个数的平均数是中位数;(2)平均数指数据的平均水平,标准差指数据的稳定程度,离散水平.【详解】解:(1)由题知:甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1 (2)甲的平均数等于0012003040110+++++++++=乙的平均数等于2020202020110+++++++++=甲的方差等于2222222222(01)(01)(11)(21)(01)(01)(31)(01)(41)(01)210-+-+-+-+-+-+-+-+-+-=乙的方差等于2222222222(21)(01)(21)(01)(21)(01)(21)(01)(21)(01)110-+-+-+-+-+-+-+-+-+-=1 因此,甲乙的平均水平相当,但是乙更稳定!【点睛】本题考查样本的众数,中位数,标准差,重点考查定义和计算能力,属于基础题型. 19.(1)0.4;(2)20;(3)3:2.【分析】(1)根据频率=组距⨯高,可得分数小于70的概率为:1(0.040.02)10-+⨯;(2)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等,分别求出男生、女生的人数,进而得到答案.【详解】解:(1)由频率分布直方图知:分数小于70的频率为:1(0.040.02)100.4-+⨯= 故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4; (2)已知样本中分数小于40的学生有5人, 故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1(0.040.020.020.01)100.050.05-+++⨯-=, 估计总体中分数在区间[40,50)内的人数为4000.0520⨯=人, (3)样本中分数不小于70的频率为:0.6, 由于样本中分数不小于70的男女生人数相等. 故分数不小于70的男生的频率为:0.3, 由样本中有一半男生的分数不小于70,故男生的频率为:0.6,则男生人数为0.610060⨯=, 即女生的频率为:0.4,则女生人数为0.410040⨯=, 所以总体中男生和女生人数的比例约为:3:2. 20.(1)38;(2)13(3)80P X ==;(3)分布列见解析;期望为712. 【分析】(1)甲未能参与面试,则甲笔试最多通过一个环节,结合已知条件计算即可;(2)分析3X =时,分析乙笔试和面试分别通过的环节即可求解;(3)首先分别求出甲乙应聘的概率,然后利用独立事件的性质求解即可.【详解】(1)设事件A =“甲未能参与面试”,即甲笔试最多通过一个环节, 故1131131133()(1)(1)(1)(1)(1)2(1)(1)2242242248P A =---+⨯--⨯+--⨯=;(2)当3X =时,可知乙笔试通过两个环节且面试通过1个环节,或者乙笔试通过三个环节且面试都未通过, 3113114343(3)[(1)(1)2][(1)(1)]4224225454P X ==-⨯⨯+⨯⨯-⨯⨯-+-⨯3114313(1)(1)4225480+⨯⨯⨯--=;(3)甲应聘成功的概率为1113113113215[(1)2(1)]2242242243224P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=, 乙应聘成功的概率为2113113113433[(1)2(1)]224224224548P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=,由题意可知,Y 的取值可能为0,1,2, 5395(0)(1)(1)248192P Y ==--=, 535341(1)(1)(1)24824896P Y ==⨯-+-⨯=535(2)24864P Y ==⨯=, 所以Y 的分布列如下表:所以数学期望7()12E Y =. 21.(1)证明见解析; (2)证明见解析.【分析】(1)由题意证得//MN AC ,结合线面平行的判定定理,即可证得//MN 平面PAC ;(2)由PA ⊥平面ABC ,证得PA BC ⊥,再由AB AC =,证得AM BC ⊥,根据线面垂直的判定定理证得BC ⊥平面PAM ,进而得到平面PBC ⊥平面PAM . (1)证明:在ABC 中,因为,M N 分别为,BC AB 中点,可得//MN AC , 又因为MN ⊄平面PAC ,AC ⊂平面PAC ,所以//MN 平面PAC . (2)证明:因为PA ⊥平面ABC ,且BC ⊂平面ABC ,可得PA BC ⊥, 又因为AB AC =,且M 为BC 中点,可得AM BC ⊥,又由PA AM A =且,PA AM ⊂平面PAM ,所以BC ⊥平面PAM , 因为BC ⊂平面PBC ,所以平面PBC ⊥平面PAM . 22.(1)证明见解析 (2)【分析】(1)连接1A B ,1A D ,可证明1AO BD ⊥,再证明1A O OA ⊥,从而可证明结论. (2)由线面垂直的判断定理得AC ⊥平面1A BD ,由11//AC A C 得11A C ⊥平面1A BD ,再由棱锥的体积可得答案. (1)连接11,A D A B ,111,,AD AB A AB A AD A A =∠=∠为公共边,1111,∴≅∴=A AB A AD A D A B ,又O 为BD 的中点,1A O BD ∴⊥,在1A AB 中,由余弦定理可知1A B在1Rt AOB 中1AO =13,A A AO = 满足22211A O AO A A +=1A O OA ∴⊥,又AO BD O ⋂=,1A O ∴⊥平面ABCD .(2)由(1)知1A O ⊥平面ABCD ,AC ⊂平面ABCD , 1A O AC ∴⊥且1BD AC BD AO O ⊥⋂=,, AC ∴⊥平面1A BD ,且11//AC A C , 11A C ∴⊥平面1A BD ,1111232C A BD V -=⨯⨯。
高一下学期期末考试数学试题第Ⅰ卷 选择题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}A |2,x x x R =≤∈,集合B 为函数y lg(1)x =-的定义域,则B A I ( ) A .(1,2) B .[1,2] C .[1,2) D .(1,2]2.已知20.5log a =,0.52b =,20.5c =,则a ,b ,c 的大小关系为( )A .a b c <<B .c b a <<C .a c b <<D .c b a <<3.一个单位有职工800人,其中高级职称160人,中级职称300人,初级职称240人,其余人员100人,为了解职工收入情况,现采取分层抽样的方法抽取容量为40的样本,则从上述各层中依次抽取的人数分别为( )A .15,24,15,19B .9,12,12,7C .8,15,12,5D .8,16,10,6 4.已知某程序框图如图所示,若输入实数x 为3,则输出的实数x 为( )A .15B .31 C.42 D .63 5.为了得到函数4sin(2)5y x π=+,x R ∈的图像,只需把函数2sin()5y x π=+,x R ∈的图像上所有的点( )A .横坐标伸长到原来的2倍,纵坐标伸长到原来的2倍.B .纵坐标缩短到原来的12倍,横坐标伸长到原来的2倍.C .纵坐标缩短到原来的12倍,横坐标缩短到原来的12倍. D .横坐标缩短到原来的12倍,纵坐标伸长到原来的2倍.6.函数()1ln f x x x=-的零点所在的区间是( )A .(0,1)B .(1,2) C.(2,3) D .(3,4)7.下面茎叶图记录了在某项体育比赛中,九位裁判为一名选手打出的分数情况,则去掉一个最高分和最低分后,所剩数据的方差为( )A .327 B .5 C.307D .4 8.已知函数()222cos 2sin 1f x x x =-+,则( )A .()f x 的最正周期为2π,最大值为3.B .()f x 的最正周期为2π,最大值为1. C.()f x 的最正周期为π,最大值为3. D .()f x 的最正周期为π,最大值为1.9.平面向量a r 与b r 的夹角为23π,(3,0)a =r ,||2b =r ,则|2|a b +=r r ( )A C.7 D .3 10.已知函数2log (),0()(5),0x x f x f x x -<⎧=⎨-≥⎩,则()2018f 等于( )A .1-B .2 C.()f x D .111.设点E 、F 分别为直角ABC ∆的斜边BC 上的三等分点,已知3AB =,6AC =,则AE AF ⋅u u u r u u u r( )A .10B .9 C. 8 D .712.气象学院用32万元买了一台天文观测仪,已知这台观测仪从启动的第一天连续使用,第n 天的维修保养费为446(n )n N *+∈元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( )A .300天B .400天 C.600天 D .800天第Ⅱ卷 非选择题二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上) 13.已知θ为锐角且4tan 3θ=,则sin()2πθ-= . 14.A 是圆上固定的一点,在圆上其他位置任取一点B ,连接A 、B 两点,它是一条弦,它的长度不小于半径的概率为 .15.若变量x ,y 满足2425()00x y x y f x x y +≤⎧⎪+≤⎪=⎨≥⎪⎪≥⎩,则32z x y =+的最大值是 .16.关于x 的不等式232x ax >+(a为实数)的解集为,则乘积ab 的值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 在ABC ∆中,角A ,B C ,所对应的边分别为a ,b ,c ,且5a =,3A π=,cos B =(1)求b 的值; (2)求sin C 的值.18. 已知数列{}n a 中,前n 项和和n S 满足22n S n n =+,n N *∈.(1)求数列{}n a 的通项公式; (2)设12n n n b a a +=,求数列{}n b 的前n 项和n T . 19. 如图,在ABC ∆中,点P 在BC 边上,AC AP >,60PAC ∠=︒,PC =10AP AC +=.(1)求sin ACP ∠的值;(2)若APB ∆的面积是,求AB 的长.20. 已知等差数列{}n a 的首项13a =,公差0d >.且1a 、2a 、3a 分别是等比数列{}n b 的第2、3、4项. (1)求数列{}n a 与{}n b 的通项公式;(2)设数列{}n c 满足2 (n 1)(n 2)n n na c ab =⎧=⎨⋅≥⎩,求122018c c c +++L 的值(结果保留指数形式).21.为响应党中央“扶贫攻坚”的号召,某单位知道一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2018年种植的一批试验紫甘薯在不同温度时6组死亡株数:经计算:615705i i i x y ==∑,6214140ii x ==∑,62110464i i y ==∑≈0.00174.其中i x ,i y 分别为试验数据中的温度和死亡株数,1,2,3,4,5,6.i =(1)y 与x 是否有较强的线性相关性?请计算相关系数r (精确到0.01)说明.(2)求y 与x 的回归方程ˆˆˆ+a y bx =(ˆb 和ˆa 都精确到0.01);(3)用(2)中的线性回归模型预测温度为35C ︒时该批紫甘薯死亡株数(结果取整数). 附:对于一组数据11(,v )u ,22(,v )u ,L L ,(,v )n n u ,①线性相关系数ni i u v nu vr -=∑,通常情况下当|r |大于0.8时,认为两个变量具有很强的线性相关性.②其回归直线ˆˆv u αβ=+的斜率和截距的最小二乘估计分别为: 1221ˆni i i nii u v nu vunu β==-=-∑∑,ˆˆˆav u β=-;22.已知函数()2lg(a)1f x x =+-,a R ∈. (1)若函数()f x 是奇函数,求实数a 的值;(2)在在(1)的条件下,判断函数()y f x =与函数lg(2)xy =的图像公共点各数,并说明理由;(3)当[1,2)x ∈时,函数lg(2)x y =的图像始终在函数lg(42)xy =-的图象上方,求实数a 的取值范围.答案一、选择题答案9. 【解析】方法1: (1,b =-,2(1,a b +=±,|2|13a b +=。
启东市高一下学期数学期末试卷一、填空题(每题5分,共70分)1.若直线l的斜率为﹣1,则直线l的倾斜角为.2.一元二次不等式﹣2x2﹣x+6≥0的解集为.3.一个三角形的两个内角分别为30°和45°,如果45°角所对的边长为8,那么30°角所对的边长是.4.给出下列条件:①l∥α;②l与α至少有一个公共点;③l与α至多有一个公共点.能确定直线l在平面α外的条件的序号为.5.已知直线l过点P(2,3),且与两条坐标轴在第一象限所围成的三角形的面积为12,则直线l的方程为.6.在等比数列{a n}中,已知公比q=,S5=﹣,则a1= .7.在△ABC中,已知a=6,b=5,c=4,则△ABC的面积为.8.已知正四棱锥的底面边长是2,侧面积为12,则该正四棱锥的体积为.9.已知点P(x,y)在不等式组所表示的平面区域内运动,则的取值范围为.10.在平面直角坐标系xOy中,直线l:(2k﹣1)x+ky+1=0,则当实数k变化时,原点O到直线l的距离的最大值为.11.已知正三角形ABC的边长为2,AM是边BC上的高,沿AM将△ABM折起,使得二面角B ﹣AM﹣C的大小为90°,此时点M到平面ABC的距离为.12.已知正实数m,n满足+=1,则3m+2n的最小值为.13.已知直线l:2x﹣y﹣2=0和直线l:x+2y﹣1=0关于直线l对称,则直线l的斜率为.14.正项数列{a n}的前n项和为S n,满足a n=2﹣1.若对任意的正整数p、q(p≠q),不等式S P+S q>kS p+q恒成立,则实数k的取值范围为.二、解答题15.设△ABC的内角A,B,C的对边分别为a,b,c,且bcosA=asinB.(1)求角A的大小;(2)若a=1,求△ABC面积的最大值.16.如图所示,在正三棱柱ABC﹣A1B1C1中,点D在边BC上,AD⊥C1D.(1)求证:平面ADC1⊥平面BCC1B1;(2)如果点E是B1C1的中点,求证:AE∥平面ADC1.三、解答题17.已知数列{a n}满足a n+1=λa n+2n(n∈N*,λ∈R),且a1=2.(1)若λ=1,求数列{a n}的通项公式;(2)若λ=2,证明数列{}是等差数列,并求数列{a n}的前n项和S n.18.已知三条直线l1:ax﹣y+a=0,l2:x+ay﹣a(a+1)=0,l3:(a+1)x﹣y+a+1=0,a>0.(1)证明:这三条直线共有三个不同的交点;(2)求这三条直线围成的三角形的面积的最大值.19.如图是市儿童乐园里一块平行四边形草地ABCD,乐园管理处准备过线段AB上一点E设计一条直线EF(点F在边BC或CD上,不计路的宽度),将该草地分为面积之比为2:1的左、右两部分,分别种植不同的花卉.经测量得AB=18m,BC=10m,∠ABC=120°.设EB=x,EF=y(单位:m).(1)当点F与C重合时,试确定点E的位置;(2)求y关于x的函数关系式;(3)请确定点E、F的位置,使直路EF长度最短.20.已知数列{a n}满足对任意的n∈N*,都有a13+a23+…+a n3=(a1+a2+…+a n)2且a n>0.(1)求a1,a2的值;(2)求数列{a n}的通项公式;(3)若b n=,记S n=,如果S n<对任意的n∈N*恒成立,求正整数m的最小值.参考答案一、填空题(每题5分,共70分)1.若直线l的斜率为﹣1,则直线l的倾斜角为.【考点】I2:直线的倾斜角.【分析】设直线l的倾斜角为θ,θ∈[θ,π).可得tanθ=﹣1,解得θ.【解答】解:设直线l的倾斜角为θ,θ∈[θ,π).∴tanθ=﹣1,解得θ=.故答案为:.2.一元二次不等式﹣2x2﹣x+6≥0的解集为[﹣2,] .【考点】74:一元二次不等式的解法.【分析】把不等式化为(2x﹣3)(x+2)≤0,求出解集即可.【解答】解:不等式﹣2x2﹣x+6≥0化为2x2+x﹣6≤0,即(2x﹣3)(x+2)≤0,解得﹣2≤x≤,所以不等式的解集为[﹣2,].故答案为:[﹣2,].3.一个三角形的两个内角分别为30°和45°,如果45°角所对的边长为8,那么30°角所对的边长是4.【考点】HP:正弦定理.【分析】设30°角所对的边长是x,由正弦定理可得,解方程求得x的值.【解答】解:设30°角所对的边长是x,由正弦定理可得,解得 x=,故答案为.4.给出下列条件:①l∥α;②l与α至少有一个公共点;③l与α至多有一个公共点.能确定直线l在平面α外的条件的序号为①③.【考点】LP:空间中直线与平面之间的位置关系.【分析】根据直线与平面的位置关系的定义判定即可.【解答】解:直线l在平面α外包含两种情况:平行,相交.对于①,l∥α,能确定直线l在平面α外,对于②,l与α至少有一个公共点,直线可能与平面相交,故不能确定直线l在平面α外,对于③,l与α至多有一个公共点,直线可能与平面相交或平行,故能确定直线l在平面α外,故答案为:①③5.已知直线l过点P(2,3),且与两条坐标轴在第一象限所围成的三角形的面积为12,则直线l的方程为3x+2y﹣12=0 .【考点】IB:直线的点斜式方程.【分析】写出直线的截距式方程,根据要求条件参数的值,得到本题结论.【解答】解:设l在x轴、y轴上的截距分别为a,b(a>0,b>0),则直线l的方程为+=1∵P(2,3)在直线l上,∴+=1.又由l与两条坐标轴在第一象限所围成的三角形面积为12,可得ab=24,∴a=4,b=6,∴直线l的方程为+=1,即3x+2y﹣12=0,故答案为:3x+2y﹣12=0.6.在等比数列{a n}中,已知公比q=,S5=﹣,则a1= ﹣4 .【考点】89:等比数列的前n项和.【分析】利用等比数列的前n项和公式直接求解.【解答】解:∵在等比数列{a n}中,公比q=,S5=﹣,∴==﹣,a1=﹣4.故答案为:﹣4.7.在△ABC中,已知a=6,b=5,c=4,则△ABC的面积为.【考点】HR:余弦定理;%H:三角形的面积公式.【分析】由余弦定理算出cosA,结合同角三角函数的平方关系得sinA,最后由正弦定理的面积公式,可得△ABC的面积.【解答】解:∵△ABC中,a=6,b=5,c=4,∴由余弦定理,得cosA==,∵A∈(0,π),∴sinA==,由正弦定理的面积公式,得:△ABC的面积为S=bcsinA=×5×4×=,故答案为:.8.已知正四棱锥的底面边长是2,侧面积为12,则该正四棱锥的体积为.【考点】LF:棱柱、棱锥、棱台的体积.【分析】由题意画出图形,求出正四棱锥的斜高,进一步求出高,代入棱锥体积公式得答案.【解答】解:如图,∵P﹣ABCD为正四棱锥,且底面边长为2,过P作PG⊥BC于G,作PO⊥底面ABCD,垂足为O,连接OG.由侧面积为12,即4×,即PG=3.在Rt△POG中,PO=∴正四棱锥的体积为V=故答案为:9.已知点P(x,y)在不等式组所表示的平面区域内运动,则的取值范围为(1,).【考点】7C:简单线性规划.【分析】作出题中不等式组表示的平面区域,得如图的阴影部分.则z=,表示直线的斜率,再将点P移动,观察倾斜角的变化即可得到k的最大、最小值,从而得到的取值范围.【解答】解:设直线3x﹣2y+4=0与直线2x﹣y﹣2=0交于点A,可得A(8,14),不等式组表示的平面区域如图:则的几何意义是可行域内的P(x,y)与坐标原点连线的斜率,由可行域可得k的最大值为:k OA=,k的最小值k=1.因此,的取值范围为(1,)故答案为:(1,).10.在平面直角坐标系xOy中,直线l:(2k﹣1)x+ky+1=0,则当实数k变化时,原点O到直线l的距离的最大值为.【考点】IT:点到直线的距离公式.【分析】由于直线l:(2k﹣1)x+ky+1=0经过定点P(1,﹣2),即可求出原点O到直线l 的距离的最大值.【解答】解:直线l:(2k﹣1)x+ky+1=0化为(1﹣x)+k(2x+y)=0,联立,解得,经过定点P(1,﹣2),由于直线l:(2k﹣1)x+ky+1=0经过定点P(1,﹣2),∴原点O到直线l的距离的最大值为.故答案为:.11.已知正三角形ABC的边长为2,AM是边BC上的高,沿AM将△ABM折起,使得二面角B ﹣AM﹣C的大小为90°,此时点M到平面ABC的距离为.【考点】MK:点、线、面间的距离计算.【分析】以M为原点,MB,MC,MA为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出点M到平面ABC的距离.【解答】解:∵正三角形ABC的边长为2,AM是边BC上的高,沿AM将△ABM折起,使得二面角B﹣AM﹣C的大小为90°,∴MA、MB、MC三条直线两两垂直,AM=,BM=CM=1,以M为原点,MB,MC,MA为x轴,y轴,z轴,建立空间直角坐标系,则M(0,0,0),B(1,0,0),C(0,1,0),A(0,0,),=(﹣1,0,0),=(﹣1,0,),=(﹣1,1,0),设平面ABC的法向量=(x,y,z),则,取x=,得=(,,1),∴点M到平面ABC的距离为:d===.故答案为:.12.已知正实数m,n满足+=1,则3m+2n的最小值为3+.【考点】7F:基本不等式.【分析】根据题意,分析可得3m+2n=(m+n)+(m﹣n),又由+=1,则有3m+2n=[(m+n)+(m﹣n)]×[+]=3++,利用基本不等式分析可得答案.【解答】解:根据题意,3m+2n=(m+n)+(m﹣n),又由m,n满足+=1,则有3m+2n=[(m+n)+(m﹣n)]×[+]=3++≥3+2=3+,当且仅当=时,等号成立,即3m+2n的最小值为3+,故答案为:3+.13.已知直线l:2x﹣y﹣2=0和直线l:x+2y﹣1=0关于直线l对称,则直线l的斜率为或﹣3 .【考点】IQ:与直线关于点、直线对称的直线方程.【分析】设P(a,b)是直线l上任意一点,则点P到直线l:2x﹣y﹣2=0和直线l:x+2y﹣1=0的距离相等.,整理得a﹣3b﹣1=0或3a+b﹣3=0,即可求解.【解答】解:设P(a,b)是直线l上任意一点,则点P到直线l:2x﹣y﹣2=0和直线l:x+2y﹣1=0的距离相等.整理得a﹣3b﹣1=0或3a+b﹣3=0,∴直线l的斜率为或﹣3.故答案为:或﹣314.正项数列{a n}的前n项和为S n,满足a n=2﹣1.若对任意的正整数p、q(p≠q),不等式S P+S q>kS p+q恒成立,则实数k的取值范围为.【考点】8H:数列递推式.【分析】a n=2﹣1,可得S n=,n≥2时,a n=S n﹣S n﹣1,利用已知可得:a n﹣a n﹣=2.利用等差数列的求和公式可得S n,再利用基本不等式的性质即可得出.1【解答】解:∵a n=2﹣1,∴S n=,∴n≥2时,a n=S n﹣S n﹣1=﹣,化为:(a n+a n﹣1)(a n﹣a n﹣1﹣2)=0,∵∀n∈N*,a n>0,∴a n﹣a n﹣1=2.n=1时,a1=S1=,解得a1=1.∴数列{a n}是等差数列,首项为1,公差为2.∴S n=n+=n2.∴不等式S P+S q>kS p+q化为:k<,∵>,对任意的正整数p、q(p≠q),不等式S P+S q>kS p+q恒成立,∴.则实数k的取值范围为.故答案为:.二、解答题15.设△ABC的内角A,B,C的对边分别为a,b,c,且bcosA=asinB.(1)求角A的大小;(2)若a=1,求△ABC面积的最大值.【考点】HP:正弦定理.【分析】(1)根据正弦定理化简可得sinAsinB=sinBcosA,结合sinB≠0,可求tanA,由范围0<A<π,可求A的值.(2)由已知利用余弦定理,基本不等式可求bc≤2,进而利用三角形面积公式即可计算得解.【解答】解:(1)在△ABC中,∵ asinB=bcosA.由正弦定理,得: sinAsinB=sinBcosA,∵0<B<π,sinB≠0.∴sinA=cosA,即tanA=.∵0<A<π,∴A=.(2)∵由a=1,A=,∴由余弦定理,1=b2+c2﹣bc≥2bc﹣bc,得:bc≤2,当且仅当b=c等号成立,∴△ABC的面积S=bcsinA≤(2+)×=,即△ABC面积的最大值为.16.如图所示,在正三棱柱ABC﹣A1B1C1中,点D在边BC上,AD⊥C1D.(1)求证:平面ADC1⊥平面BCC1B1;(2)如果点E是B1C1的中点,求证:AE∥平面ADC1.【考点】LY:平面与平面垂直的判定;LS:直线与平面平行的判定.【分析】(1)推导出AD⊥C1D,从而CC1⊥平面ABC,进而AD⊥CC1,由此能证明AD⊥平面BCC1B1.即平面ADC1⊥平面BCC1B1(2)由AD⊥BC,得D是BC中点,连结ED,得四边形AA1DE是平行四边形,由此能证明A1E ∥平面ADC1.【解答】证明:(1)∵在正三棱柱ABC﹣A1B1C1中,点D在边BC上,AD⊥C1D,∴CC1⊥平面ABC,又AD⊂平面ABC,∴AD⊥CC1,又C1D∩CC1=C1,∴AD⊥平面BCC1B1.AD⊂面ADC1,∴平面ADC1⊥平面BCC1B1(2)∵AD⊥平面BCC1B1,∴AD⊥BC,∵在正三棱柱ABC﹣A1B1C1中,AB=BC=AC,∴D是BC中点,连结ED,∵点E是C1B1的中点,∴AA1∥DE且AA1=DE,∴四边形AA1DE是平行四边形,∴A1E∥AD,又A1E⊄面ADC1,AD⊂平面ADC1.∴A1E∥平面ADC1.三、解答题17.已知数列{a n}满足a n+1=λa n+2n(n∈N*,λ∈R),且a1=2.(1)若λ=1,求数列{a n}的通项公式;(2)若λ=2,证明数列{}是等差数列,并求数列{a n}的前n项和S n.【考点】8H:数列递推式;8E:数列的求和.【分析】(1)当λ=1时,,由此利用累加法能求出数列{a n}的通项公式.(2)当λ=2时, =,再由,能证明数列{}是首项为1,公差为的等差数列,从而a n=()•2n=(n+1)•2n﹣1,由此利用错位相减法能出数列{a n}的前n项和.【解答】解:(1)当λ=1时,a n+1=a n+2n(n∈N*),且a1=2.∴,∴a n=a1+a2﹣a1+a3﹣a2+…+a n﹣a n﹣1=2+2+22+…+2n﹣1=2+=2n.证明:(2)当λ=2时,a n+1=2a n+2n(n∈N*),且a1=2.∴,即=,∵,∴数列{}是首项为1,公差为的等差数列,∴=,∴a n=()•2n=(n+1)•2n﹣1,∴数列{a n}的前n项和:S n=2•20+3•2+4•22+…+(n+1)•2n﹣1,①2S n=2•2+3•22+4•23+…+(n+1)•2n,②②﹣①,得:S n=(n+1)•2n﹣2﹣(2+22+23+…+2n﹣1)=(n+1)•2n﹣2﹣=(n+1)•2n﹣2﹣2n+2=n•2n.18.已知三条直线l1:ax﹣y+a=0,l2:x+ay﹣a(a+1)=0,l3:(a+1)x﹣y+a+1=0,a>0.(1)证明:这三条直线共有三个不同的交点;(2)求这三条直线围成的三角形的面积的最大值.【考点】IM:两条直线的交点坐标.【分析】(1)分别求出直线l1与l3的交点A、l1与l2的交点B和l2与l3的交点C,且判断三点的坐标各不相同即可;(2)根据题意画出图形,由AB⊥BC知点B在以AC为直径的半圆上,除A、C点外;由此求出△ABC的面积最大值.【解答】解:(1)证明:直线l1:ax﹣y+a=0恒过定点A(﹣1,0),直线l3:(a+1)x﹣y+a+1=0恒过定点A(﹣1,0),∴直线l1与l3交于点A;又直线l2:x+ay﹣a(a+1)=0不过定点A,且l1与l2垂直,必相交,设交点为B,则B(,);l2与l3相交,交点为C(0,a+1);∵a>0,∴三点A、B、C的坐标不相同,即这三条直线共有三个不同的交点;(2)根据题意,画出图形如图所示;AB⊥BC,∴点B在以AC为直径的半圆上,除A、C点外;则△ABC的面积最大值为S=•|AC|•|AC|=×(1+(a+1)2)=a2+a+.19.如图是市儿童乐园里一块平行四边形草地ABCD,乐园管理处准备过线段AB上一点E设计一条直线EF(点F在边BC或CD上,不计路的宽度),将该草地分为面积之比为2:1的左、右两部分,分别种植不同的花卉.经测量得AB=18m,BC=10m,∠ABC=120°.设EB=x,EF=y(单位:m).(1)当点F与C重合时,试确定点E的位置;(2)求y关于x的函数关系式;(3)请确定点E、F的位置,使直路EF长度最短.【考点】5C:根据实际问题选择函数类型.【分析】(1)根据面积公式列方程求出BE;(2)对F的位置进行讨论,利用余弦定理求出y关于x的解析式;(3)分两种情况求出y的最小值,从而得出y的最小值,得出E,F的位置.【解答】解:(1)∵S△BCE=,S ABCD=2×,∴==,∴BE=AB=12.即E为AB靠近A的三点分点.(2)S ABCD=18×10×sin120°=90,当0≤x<12时,F在CD上,∴S EBCF=(x+CF)BCsin60°=90,解得CF=12﹣x,∴y==2,当12≤x≤18时,F在BC上,∴S△BEF==,解得BF=,∴y==,综上,y=.(3)当0≤x<12时,y=2=2≥5,当12≤x≤18时,y=>>5,∴当x=,CF=时,直线EF最短,最短距离为5.20.已知数列{a n}满足对任意的n∈N*,都有a13+a23+…+a n3=(a1+a2+…+a n)2且a n>0.(1)求a1,a2的值;(2)求数列{a n}的通项公式;(3)若b n=,记S n=,如果S n<对任意的n∈N*恒成立,求正整数m的最小值.【考点】8E:数列的求和.【分析】(1)由题设条件知a1=1.当n=2时,有a13+a23=(a1+a2)2,由此可知a2=2.(2)由题意知,a n+13=(a1+a2++a n+a n+1)2﹣(a1+a2++a n)2,由于a n>0,所以a n+12=2(a1+a2++a n)+a n+1.同样有a n2=2(a1+a2++a n﹣1)+a n(n≥2),由此得a n+12﹣a n2=a n+1+a n.所以a n+1﹣a n=1.所以数列{a n}是首项为1,公差为1的等差数列,由通项公式即可得到所求.(3)求得b n===2[﹣],运用数列的求和方法:裂项相消求和,可得S n,结合不等式的性质,恒成立思想可得m≥,进而得到所求最小值.【解答】解:(1)当n=1时,有a13=a12,由于a n>0,所以a1=1.当n=2时,有a13+a23=(a1+a2)2,将a1=1代入上式,可得a22﹣a2﹣2=0,由于a n>0,所以a2=2.(2)由于a13+a23+…+a n3=(a1+a2+…+a n)2,①则有a13+a23+…+a n3+a n+13=(a1+a2+…+a n+a n+1)2.②②﹣①,得a n+13=(a1+a2+…+a n+a n+1)2﹣(a1+a2+…+a n)2,由于a n>0,所以a n+12=2(a1+a2+…+a n)+a n+1.③同样有a n2=2(a1+a2+…+a n﹣1)+a n(n≥2),④③﹣④,得a n+12﹣a n2=a n+1+a n.所以a n+1﹣a n=1.由于a2﹣a1=1,即当n≥1时都有a n+1﹣a n=1,所以数列{a n}是首项为1,公差为1的等差数列.故a n=n.(3)b n===2[﹣],则S n=2[﹣+﹣+﹣+﹣+…+﹣+﹣]=2[+﹣﹣]<2×=,S n<对任意的n∈N*恒成立,可得≥,即有m≥,可得正整数m的最小值为4.2017年7月28日。
惠州市2021—2022学年度第二期期末质量检测试题高一数学全卷满分150分,考试时间120分钟.注意事项:1、答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上.2、作答单项及多项选择题时,选出每个小题答案后,用2B 铅笔把答题卡上对应题目的答案信息点涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,写在本试卷上无效.3、非选择题必须用黑色字迹签字笔作答,作图题可先用铅笔作答,答案必须写在答题卡各题指定的位置上,写在本试卷上无效.4、作答作图题时,请用2B 铅笔、直尺等工具作图.一、单项选择题:本题共8小题,每小题滴分5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求,选对得5分,选错得0分.1.已知复数z 满足iz 1i=-(其中i 为虚数单位),则z 的虚部是()A.12B.22C.1D.【答案】A 【解析】【分析】求出11z i 22=-+即得解.【详解】解:由题得i i(1+i)1i 11z i 1i (1i)(1+i)222-+====-+--.所以z 的虚部是12.故选:A2.已知向量()1,1e x = ,()22,3e x =-共线,则x 的值为()A.-1B.0C.1D.2【答案】A 【解析】【分析】由向量共线的坐标表示可得3(2)0x x --=,即可求x 的值.【详解】由题意,3(2)0x x --=,解得1x =-.故选:A3.小红、小明、小芳参加技能展示比赛,他们约定用“石头、剪子、布”的方式确定出场的先后顺序.问在1个回合中3个人都出“布”的概率是()A.19B.13 C.16D.127【答案】D 【解析】【分析】先求得三个人各自出“布”的概率,再根据独立事件的概率公式求解即可.【详解】由题,三个人各自出“布”的概率为13,所以1个回合中3个人都出“布”的概率为311327⎛⎫= ⎪⎝⎭,故选:D4.已知某地区中小学生人数和近视情况分别如图甲和图乙所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和估计抽取的高中生近视人数分别为()A.180,40B.180,20C.180,10D.100,10【答案】B 【解析】【分析】利用总量乘以抽取比例即可得到样本容量;根据图表可知高中生近视率从而估计抽取的高中生近视人数【详解】所有学生数为3000+4000+2000=9000,故样本容量为9000×2%=180,根据图甲以及抽取百分比可知,样本中高中生人数为2000×2%=40,根据图乙可知,抽取的高中生近视人数为40×50%=20,故选:B .5.在ABC 中,D 为BC 上一点,且2BD DC =,则AD =()A.13AB AC+ B.13AB AC-C.2133AB AC +D.1233AB AC +【答案】D 【解析】【分析】根据向量加法、减法的三角形法则及数乘向量的运算性质即可求解.【详解】解:因为在ABC 中,D 为BC 上一点,且2BD DC =,所以()22123333AD AB BD AB BC AB AC AB AB AC =+=+=+-=+,故选:D.6.一个直角三角形的两条直角边长分别为2和转一周所围成的几何体的表面积为()A.(6π+ B.(6π- C.D.6π【答案】A 【解析】【分析】先判断出旋转体为两个圆锥拼接在一起的几何体,再按照圆锥侧面积计算旋转体表面积即可.【详解】如图所示旋转体为两个圆锥拼接在一起的几何体,设直角三角形为ABC ,斜边为AC ,过B 作BD AC ⊥,由题意知,三角形的斜边AC =4=,斜边上的高BD =24⨯=,圆锥底面圆的半径为两个圆锥的母线长分别为2和()12(262ππ⨯+=.故选:A7.已知甲、乙两个企业生产同一款产品的合格率分别为80%和90%,通过市场调查发现甲、乙两企业产品的市场占有率分别为34和14.现从市场上随机购买一件该产品,则买到的产品是合格品的概率为()A.740 B.910 C.3340 D.78【答案】C【解析】【分析】根据题意,分别计算买到的合格品是甲厂生产的和乙厂生产的概率,由互斥事件概率的加法公式计算可得答案.【详解】解:根据题意,若买到的合格品是甲厂生产的,其概率13380% 45P=⨯=,若买到的合格品是乙厂生产的,其概率21990% 440P=⨯=,则从市场上买到一个合格品的概率123933 54040P P P=+=+=,故选:C.8.某校为调查高一年级的某次考试的数学成绩情况,随机调查高一年级甲班10名学生,成绩的平均数为90,方差为3,乙班15名学生,成绩的平均数为85,方差为5,则这25名学生成绩的平均数和方差分别为()A.87,10.2B.85,10.2C.87,10D.85,10【答案】A【解析】【分析】按照平均数和方差的性质计算即可得到答案【详解】由题意可知这25名学生成绩的平均数为1090+1585=8725⨯⨯这25名同学成绩的方差为2210[3(9087)]15[5(8587)]10.225⨯+-+⨯+-=故选:A二、多项选择题:本题共4小题,每小题滴分5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分,部分选对得2分,有选错的得0分.9.有甲、乙两种报纸供市民订阅,记事件E为“只订甲报纸”,事件F为“至少订一种报纸”,事件G为“至多订一种报纸”,事件H为“不订甲报纸”,事件I为“一种报纸也不订”.下列命题正确的是()A.E与G是互斥事件B.F与I是互斥事件,且是对立事件C.F与G不是互斥事件D.G 与I 是互斥事件【答案】BC 【解析】【分析】根据互斥事件、对立事件的概念判断即可.【详解】对于A 选项,E 、G 事件有可能同时发生,不是互斥事件;对于B 选项,F 与I 不可能同时发生,且发生的概率之和为1,是互斥事件,且是对立事件;对于C 选项,F 与G 可以同时发生,不是互斥事件;对于D 选项,G 与I 也可以同时发生,不是互斥事件.故选:BC.【点睛】在一次实验中,不可能同时发生的两个事件成为互斥事件,不可能同时发生且发生的概率之和为1的两个事件成为对立事件.10.已知圆锥的底面半径为1,S 为顶点,A ,B 为底面圆周上两个动点,则()A.圆锥的体积为33πB.圆锥的侧面展开图的圆心角大小为π2C.圆锥截面SABD.从点A 出发绕圆锥侧面一周回到点A 的无弹性细绳的最短长度为【答案】AC 【解析】【分析】对于A :直接求出圆锥的体积即可判断;对于B :直接求出圆锥的侧面展开图的圆心角即可判断;对于C :先判断出圆锥截面SAB 为轴截面时,其面积最大,然后可判断;对于D :利用圆锥的侧面展开图可求解判断.【详解】对于A :因为圆锥的底面半径为123113π3π13V Sh ==⨯⨯=,故A 正确;对于B :设圆锥的母线为l ,则2l ==,设圆锥的侧面展开图的圆心角为θ,由弧长公式得:2l r θπ=,即22θπ=,解得:πθ=,故B 错误;对于C :显然当圆锥截面SAB 为轴截面时,其面积最大,此时112222S r h =⋅⋅⋅⋅==C 正确;对于D :由B 可得该圆锥的侧面展开图是半径为2的半圆,所以从点A 出发绕圆锥侧面一周回到点A 的无弹性细绳的最短长度为4,故D 错误;故选:AC11.将一组数据从小到大排列为:1211,,a a a ,中位数和平均数均为a ,方差为21s ,从中去掉第6项,从小到大排列为:1210,,,b b b ,方差为22s ,则下列说法中一定正确的是()A.6a a= B.1210,,,b b b 的中位数为a C.1210,,,b b b 的平均数为a D.2212s s >【答案】AC 【解析】【分析】由中位数的定义即可判断A 、B 选项;由平均数的定义即可判断C 选项;由方差的定义即可判断D 选项.【详解】由1211,,a a a 的中位数和平均数均为a ,可知6a a =,121111a a a a ++=+ ,故A 正确;1210,,,b b b 的中位数为565722b b a a ++=,57a a +不一定等于2a ,故1210,,,b b b 的中位数不一定为a ,B 错误;2612101111110b a b b a a a a a ++++=-=-+=+ ,故1210,,,b b b 的平均数为a ,C 正确;()()()()()()222222121112102212,1110a a a a a ab a b a b a s s -+-++--+-++-==,由于()260a a -=,故()()()()()()22222212111210a a a a a a b a b a b a-+-++-=-+-++- ,故2212s s <,D 错误.故选:AC.12.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 垂直的是()A. B. C.D.【答案】ABD 【解析】【分析】根据正方体的性质,结合线面垂直的判定定理依次讨论各选项即可得答案.【详解】对于A 选项,如图,因为,,M N Q 为所在棱的中点,故由正方体的性质易得11,,//,//BB AB CD AB MQ CD MN BB ⊥⊥,所以,MQ AB MN AB ⊥⊥,由于MQ MN M ⋂=,故AB ⊥平面MNQ ,故A 选项正确;对于B 选项,如图,因为,,M N Q 为所在棱的中点,所以1//,//MN CD MQ A C ,由正方体的性质得11111,,AB CD CD BB AB BB B ⊥⊥= ,所以CD ⊥平面1ABB ,故CD AB ⊥,所以MN AB ⊥,同理得MQ AB ⊥,MN MQ M ⋂=,故AB ⊥平面MNQ ,故B 选项正确;对于C 选项,如图,因为,,M N Q 为所在棱的中点,所以1111//,//MN A B AC A B ,所以在ABC 中,AB 与AC 夹角为π3,故异面直线MN 与AB 所成的角为π3,故AB ⊥平面MNQ 不成立,故C 选项错误;对于D 选项,同A 选项,可判断AB ⊥平面MNQ ,故D 选项正确;故选:ABD三、填空题:本题共4小题,每小题5分,共20分;其中第16题的第一个空2分,第二个空3分13.已知复数2022i i z =-+,其中i 为虚数单位,则z =___________.【解析】【分析】根据i 的多次方的周期性,可知()505202242i i i 1=⋅=-,进而根据复数的模的公式求解即可.【详解】因为2i 1=-,3i i =-,41i =,所以()505202242i i i 1=⋅=-,所以1i z =+,则z ==,14.高一某班举行党史知识竞赛,其中12名学生的成绩分别是:61、67、73、74、76、82、82、87、90、94、97、98,则该小组12名学生成绩的75%分位数是____________.【答案】92【解析】【分析】利用百分位数的计算公式进行计算.【详解】0127590⨯=,故选取第9个和第10个数的平均数作为75%分位数,即9094922+=故答案为:9215.已知向量()()1,2,1,1a b =-= ,则向量a 在向量b上的投影向量的坐标为___________.【答案】11,22⎛⎫-- ⎪⎝⎭【解析】【分析】根据投影向量的求法,代入数据,即可求得答案.【详解】由题,向量a 在向量b上的投影向量为112111cos ,,1122b a b b a a b a b b a b b ⋅⨯-⨯⎛⎫⋅<>⋅=⋅==-- ⎪+⎝⎭⋅,故答案为:11,22⎛⎫-- ⎪⎝⎭16.如图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后、左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这个几何体有________个面,其体积为________.【答案】①.20②.323-【解析】【分析】由图形可直接得到几何体面的个数,几何体体积等于两个四棱柱的体积和减去两个四棱柱交叉部分的体积,根据直观图分别进行求解即可.【详解】由图形观察可知,几何体的面共有2(242)20⨯⨯+=个,该几何体的直观图如图所示,该几何体的体积为两个四棱柱的体积和减去两个四棱柱交叉部分的体积.两个四棱柱的体积和为222432V =⨯⨯⨯=.交叉部分的体积为四棱锥S ABCD -的体积的2倍.在等腰ABS 中,2,SB SB =边上的高为2,则 6.SA =由该几何体前后,左右上下均对称,知四边形ABCD 6的菱形.设AC 的中点为H ,连接,BH SH 易证SH 即为四棱锥S ABCD -的高,在Rt ABH 中,2262 2.BH AB AH =-=-=又22AC SB ==所以122222ABCD S =⨯⨯= 因为BH SH =,所以1182222333ABCD S ABCD V S -=⨯=⨯=四棱柱,所以求体积为821623223233-⨯=-故答案为:20;162323-【点睛】本题考查空间组合体的结构特征,棱柱、棱锥的体积,关键需要弄清楚几何体的组成,属于较易题目.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程成演算步骤17.已知复数()()22815918i z m m m m =-++-+,其中i 为虚数单位.(1)若复数z 是纯虚数,求实数m 的值:(2)若复数z 在复平面内对应的点位于第三象限,求实数m 的取值范围.【答案】(1)5(2)35m <<【解析】【分析】(1)纯虚数需满足实部为0,虚部不为0,进而求解即可;(2)由对应点位于第三象限可知实部,虚部均为负数,根据不等式组求解即可.【小问1详解】因为复数z 是纯虚数,所以2281509180m m m m ⎧-+=⎨-+≠⎩,解得5m =.【小问2详解】因为复数z 在复平面内对应的点位于第三象限,所以2281509180m m m m ⎧-+<⎨-+<⎩,解得35m <<.18.已知向量()3,4OA =- ,()6,3OB =- ,()5,3OC m m =--- .(1)若点A ,B ,C 能够成三角形,求实数m 应满足的条件;(2)若ABC 为直角三角形,且A ∠为直角,求实数m 的值.【答案】(1)12m ≠;(2)74m =.【解析】【分析】(1)点A ,B ,C 能构成三角形,则这三点不共线,即AB 与BC 不共线,利用向量共线的坐标公式计算即可.(2)ABC 为直角三角形,且A ∠为直角,则AB AC ⊥,利用向量的数量积坐标公式计算即可.【详解】(1)已知向量()3,4OA =- ,()6,3OB =- ,()5,3OC m m =--- ,若点A ,B ,C 能构成三角形,则这三点不共线,即AB 与BC 不共线.()3,1AB =uu u r ,()2,1AC m m =-- ,故知()312m m -≠-,∴实数12m ≠时,满足条件.(2)若ABC 为直角三角形,且A ∠为直角,则AB AC ⊥ ,∴()()3210m m -+-=,解得74m =.【点睛】本题考查平面向量共线的坐标公式和数量积的坐标运算,考查学生逻辑思维能力,属于基础题.19.2022年4月开始,新冠奥密克戎病毒在上海等地肆虐,感染病毒人数急剧上升.全国各地积极应对,认真做好新冠病毒防控工作,实现社会面动态清零.为保障抗疫一线医疗物资的供应,惠州市某企业加班加点生产口罩、防护服,消毒水等防疫物品.在加大生产的同时,该公可狠抓质量管理,不定时抽查口罩质量.该企业质检人员从所生产的口罩中随机抽取了100个,将其质量指标值分成以下六组:[40,50),[50,60),[60,70) ,[90,100],得到如图所示的频率分布直方图.(1)求出直方图中m 的值:(2)利用样本估计总体的思想,估计该企业所生产的口罩的质量指标值的平均数和中位数.(中位数精确到0.1)【答案】(1)0.03m =(2)平均数为71,中位数为73.3【解析】【分析】(1)根据频率分布直方图中所有小矩形的面积之和为1得到方程,解得即可;(2)根据频率分布直方图中平均数、中位数计算公式计算可得;【小问1详解】解:由频率分布直方图可得()100.010.0150.0150.0250.0051m ⨯+++++=,解得0.03m =;【小问2详解】解:平均数为()450.01550.015650.015750.03850.025950.0051071⨯+⨯+⨯+⨯+⨯+⨯⨯=因为0.10.150.150.40.5++=<,0.10.150.150.30.70.5+++=>,所以中位数位于[)70,80之间,设中位数为x ,则()0.10.150.15700.030.5x +++-⨯=,解得22073.33x =≈,所以可以估计该企业所生产口罩的质量指标值的平均数为71,中位数为73.3;20.在①()cos 2cos A B C =+,②sin cos a C A =这两个条件中任选一个作为已知条件,然后解答问题.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,______.(1)求角A ;(2)若2b =,4c =,求ABC 的BC 边上的中线AD 的长.【答案】(1)3π(2【解析】【分析】(1)若选①,由已知可得22cos 1cos A A -=-,可求出cos A ,进而求出A ;若选②:由正弦定理,得sin sin cos A C C A =,可求出tan A ,进而求出A ;(2)AD 是ABC 的BC 边上的中线,1()2AD AB AC =+ ,利用向量法可求AD 的长.【小问1详解】解:(1)若选①,即cos 2cos()A B C =+,得22cos 1cos A A -=-,22cos cos 10A A ∴+-=,1cos 2A ∴=或cos 1A =-(舍去),(0,)A π∈ ,3A π∴=;若选②:sin cos a C A =,由正弦定理,得sin sin cos A C C A =,A,(0,)C π∈,sin 0C ∴>,则sin A A =,tan A ∴=,3A π∴=;【小问2详解】解:AD 是ABC 的BC 边上的中线,∴1()2AD AB AC =+ ,∴222211()(2)44AD AB AC AB AB AC AC =+=+⋅+ ()22124AB AB AC AC =+⋅+221(2cos )43c c b b π=+⋅+,221(4242cos 2)743π=+⨯⨯⨯+=,AD ∴=.21.如图,在Rt ABC △中.90C ∠=︒,3BC =,6AC =,D ,E 分别是AC ,AB 上的点,且//DE BC ,将ADE 沿DE 折起到1A DE △的位置,使1A D CD ⊥,如图.(1)求证:BC ⊥平面1A DC ;(2)若2CD =,F 为1A D 的中点,作出过F 且与平面1A BC 平行的截面,并给出证明;【答案】(1)证明见解析(2)作图见解析,证明见解析【解析】【分析】(1)依题意可得1AD DE ⊥,再由1A D CD ⊥,即可得到1A D ⊥平面BCDE ,则1A D BC ⊥,再结合BC CD ⊥,即可得证;(2)过点F 作1//FM A C 交CD 于M ,过F 作//FG DE 交1A E 于G ,过点M 作//MN BC 交BE 于N ,连接GN ,推导出//FG MN ,从而G ,F ,M ,N 四点共面,推导出//FM 平面1A BC ,//MN 平面1A BC ,由此能证明平面//GFMN 平面1A BC .【小问1详解】证明:在ABC 中,90C ∠=︒,//DE BC ,所以AD DE ⊥,所以1AD DE ⊥.又1A D CD ⊥,CD DE D = ,,CD DE ⊂平面BCDE ,所以1A D ⊥平面BCDE ,由BC ⊂平面BCDE ,所以1A D BC ⊥.又BC CD ⊥,1CD A D D = ,1,CD A D ⊂平面1A DC ,所以BC ⊥平面1A DC .【小问2详解】解:如图,过点F 作1//FM A C 交CD 于M ,过F 作//FG DE 交1A E 于G ,过点M 作//MN BC 交BE 于N ,连接GN ,则平面//GFMN 平面1A BC .证明如下://FG DE ,//MN BC ,且//DE BC ,//FG MN ∴,G ∴,F ,M ,N 四点共面.1//FM A C ,FM ⊂/平面1A BC ,1AC ⊂平面1A BC ,//FM ∴平面1A BC ,同理//MN 平面1A BC又FM M N M = ,FM ⊂平面GFMN ,MN ⊂平面GFMN ,∴平面//GFMN 平面1A BC .22.为普及抗疫知识、弘扬抗疫精神,惠州市某学校组织防疫知识挑战赛,每位选手挑战时,主持人从电脑题库中随机抽出3道题,并编号为1T ,2T ,3T ,并依次展示题目,选手按规则作答.挑战规则如下:①选手每答对一道题目得5分,每答错一道题目扣3分:②选手若答对第i T 题,则继续作答第1i T +题:选手若答错第i T 题,则失去第1i T +题的答题机会,从第2i T +题开始继续答题:直到3道题目回答完,挑战结束:③选手初始分为0分,若挑战结束后,累计得分不低于7分,则选手挑战成功,否则挑战失败.选手甲即将参与挑战,已知选手甲答对题库中任何一题的概率均为34,各次作答结果相互独立,且他不会主动放弃任何一次作答机会,求:(1)挑战结束时,选手甲恰好作答了2道题的概率;(2)选手甲挑战成功的概率.【答案】(1)716(2)916【解析】【分析】(1)设i A 为选手答对i T 题,其中1i =,2,3,设挑战结束时,选手甲恰好作答了2道题为事件B ,选手甲恰好作答了2道题即选手甲第一题答错或第一题答对且第2题答错,即112B A A A = ,结合概率的加法公式和事件独立性的定义,即可求解.(2)设选手甲挑战成功为事件C ,若选手甲挑战成功,则选手甲共作答了3道题,且选手甲只可能作答2道题或3道题,“选手甲闯关成功”是“选手甲恰好作答了2道题”的对立事件,结合对立事件的性质,即可求解.【小问1详解】解:设i A 为选手答对i T 题,其中1i =,2,3设挑战结束时,选手甲恰好作答了2道题为事件B ,选手甲恰好作答了2道题即选手甲第一题答错或第一题答对且第2题答错,∴112B A A A =,由概率的加法公式和事件独立性的定义得1121123337()()()()(1)(1)44416P B P A A A P A P A A ==+=-+⨯-= .即挑战结束时,选手甲恰好作答了2道题的概率为716;【小问2详解】解:设选手甲挑战成功为事件C ,若选手甲挑战成功,则选手甲共作答了3道题,且选手甲只可能作答2道题或3道题,∴“选手甲闯关成功”是“选手甲恰好作答了2道题”的对立事件,∴C B=根据对立事件的性质得79()()1()11616P C P B P B ==-=-=.所以选手甲挑战成功的概率9 16;。