潍坊市昌邑市2015届中考学业水平考试数学试卷含答案解析
- 格式:doc
- 大小:650.50 KB
- 文档页数:27
精品文档使用文档易财第一时目興供 Wore 版中 ^MBSWKil析 一.逸持JK (本大£1共12 A>K 9在毎个的四个迅項中,只有_项是正■節 言号拦的迭項设出来.f 5得3分,迭销、不选或五出的答口过一个将 I.在l ・2l.2\ 2 \ S 个散中.曇大的致是() A ,・2I D. 2C C. 2 1 0. A 2如右圈所不几何体的左权图是()□ a B □ t A B C D /餐力由3.2015年5月17 H 左常2S 个全国困外口.今年全国助获日的主■是■关注H 续窪人 旗•走向美灯未H 第二次全"牧人推样圖査时显元我国0-6岁情神加 儿盧的为11- I 刀人-"• I 力月斛学记數正表示为{)A. 1.1顷0・ 嵐 11.1 K104 C. 1.11,伸 几 1.11、io ・ 4-下列汽车标志中不H 中心时称傳形的足()I)5.下列居算正稔的屋() A ・D. 3/yTy 言3C =a4feD.(小尸 M W6不社叫、《:,满林燹财的和是() A. 2 R 3 C. 3 D . 6效学试1B( A )第1JU 共4 n)易题库www.rmKU.««*启用前2015年潍坊市初中学业水平考试数学试题试卷类型:A2015 06SUWOI1-本试精分第I 5氟I 0网部分.第I * 2页,为世押賜.页,为节14拝畛,《4分5共120分.与澀时间为IR 分仲 ?篝鷺郭堆*线内欢5上m 的项目唳M.所條案■软療、 Lttrng 卡帕収位*.尊在本试卷上一*力気.*>»; «n(22 第I 卷(选择息共36分)—邕ora:如图.4&是GO的弦,40的延长线交过点白的的切线于点C.如果£480=20。
,娴Z.C的度数是('• 70。
B. 50°C. 45°D.址易题库WWW.rmKUCN若式f ♦(& -1 )。
一、选择题(1-8小题每小题3分,9-12小题每小题3分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()2.的算术平方根是()B. ±2C.D. ±3.计算(﹣a3)2的结果是()A. a5B. ﹣a5C. a6D. ﹣a64.A. 众数是35B. 中位数是34C. 平均数是35D. 方差是65.小红在观察由一些相同小立方块搭成的几何体时,发现它的右视图、俯视图、左视图均为如图,则构成该几何体的小立方块的个数有()A. 3个B. 4个个 D. 6个6.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A. ①②B. ②③C. ①③D. ②④7.不等式组的解集在数轴上表示正确的是()8.如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)()A. 24﹣4πB. 32﹣4πC. 32﹣8πD. 169.A. 20%B. 40%C. ﹣220%D. 30%10.如图,在直角△BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tanB=,则tan∠CAD的值()A. B. C. D.11.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A. 36B. 45C. 55D. 6612.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B (4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A. ①②③B. ①③④C. ①③⑤D. ②④⑤二、填空题(每小题4分,共16分)13.若=3﹣x,则x的取值范围是.14.边长为1的一个正方形和一个等边三角形如图摆放,则△ABC的面积为.15.如果m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2015= .16.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数y=(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为.三、解答题(本大题共6小题,共64分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)(1)先化简,再求值:(+1),其中a=;(2)已知关于x,y的二元一次方程组的解满足x+y=0,求实数m的值.18.(9分)为进一步推广“阳光体育”大课间活动,某中学对已开设的A实心球,B立定跳远,C跑步,D 跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;(2)随机抽取了5名喜欢“跑步”的学生,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.19.(10分)如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地路程y(千米)与行驶时间x(小时)时间的函数关系图象.(1)填空:甲、丙两地距离千米.(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.20.(10分)如图,已知,在△ABC中,CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,将△ECF 绕点C逆时针旋转α角(0°<α<90°),得到△MCN,连接AM,BN.(1)求证:AM=BN;(2)当MA∥CN时,试求旋转角α的余弦值.21.(12分)阅读资料:如图1,在平面之间坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B两点间的距离为AB=.我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2.问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为.综合应用:如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.①证明AB是⊙P的切点;②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙O的方程;若不存在,说明理由.22.(14分)如图,抛物线y=x2+mx+n与直线y=﹣x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).(Ⅰ)求抛物线的解析式和tan∠BAC的值;(Ⅱ)在(Ⅰ)条件下:(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?一、选择题(1-8小题每小题3分,9-12小题每小题3分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()【答案】D考点:轴对称图形.2.的算术平方根是()±2 C. D. ±【答案】C考点:算术平方根.3.计算(﹣a3)2的结果是()A. a5B. ﹣a5C. a6D. ﹣a6【答案】C考点:幂的乘方与积的乘方.4.A. 众数是35B. 中位数是34C. 平均数是35D. 方差是6【答案】B考点:1.方差;2.加权平均数;3.中位数;4.众数.5.小红在观察由一些相同小立方块搭成的几何体时,发现它的右视图、俯视图、左视图均为如图,则构成该几何体的小立方块的个数有()A. 3个B. 4个个 D. 6个【答案】B考点:由三视图判断几何体.6.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A. ①②B. ②③C. ①③D. ②④【答案】B考点:正方形的判定.7.不等式组的解集在数轴上表示正确的是()【答案】A考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.8.如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)()A. 24﹣4πB. 32﹣4πC. 32﹣8πD. 16【答案】A考点:扇形面积的计算.9.A. 20%B. 40%C. ﹣220%D. 30%【答案】A考点:一元二次方程的应用.10.如图,在直角△BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tanB=,则tan∠CAD的值()A. B. C. D.【答案】D考点:解直角三角形.11.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A. 36B. 45C. 55D. 66【答案】B故选B.考点:完全平方公式.12.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B (4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A. ①②③B. ①③④C. ①③⑤D. ②④⑤【答案】C考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点.二、填空题(每小题4分,共16分)13.若=3﹣x,则x的取值范围是.【答案】x≤3考点:二次根式的性质与化简.14.边长为1的一个正方形和一个等边三角形如图摆放,则△ABC的面积为.【答案】考点:1.正方形的性质;2.等边三角形的性质;3.含30度角的直角三角形15.如果m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2015= .【答案】2026考点:根与系数的关系.16.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数y=(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为.【答案】6+2.【解析】学科网考点:反比例函数图象上点的坐标特征.三、解答题(本大题共6小题,共64分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)(1)先化简,再求值:(+1),其中a=;(2)已知关于x,y的二元一次方程组的解满足x+y=0,求实数m的值.【答案】(1)a﹣1,﹣1;(2)m=4.考点:1.分式的化简求值;2.二元一次方程组的解.18.(9分)为进一步推广“阳光体育”大课间活动,某中学对已开设的A实心球,B立定跳远,C跑步,D 跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;(2)随机抽取了5名喜欢“跑步”的学生,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.【答案】(1)60(人),40%,(2).考点:1.列表法与树状图法;2.扇形统计图;3.条形统计图.19.(10分)如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地路程y(千米)与行驶时间x(小时)时间的函数关系图象.(1)填空:甲、丙两地距离千米.(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.【答案】(1)900.(2)y=.考点:一次函数的应用.20.(10分)如图,已知,在△ABC中,CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,将△ECF 绕点C逆时针旋转α角(0°<α<90°),得到△MCN,连接AM,BN.(1)求证:AM=BN;(2)当MA∥CN时,试求旋转角α的余弦值.【答案】(1)见解析(2)考点:1.旋转的性质;2.全等三角形的判定与性质.21.(12分)阅读资料:如图1,在平面之间坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B两点间的距离为AB=.我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2.问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为.综合应用:如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.①证明AB是⊙P的切点;②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙O的方程;若不存在,说明理由.【答案】问题拓展:(x﹣a)2+(y﹣b)2=r2综合应用:①见解析②点Q的坐标为(4,3),方程为(x﹣4)2+(y﹣3)2=25.考点:圆的综合题;全等三角形的判定与性质;等腰三角形的性质;直角三角形斜边上的中线;勾股定理;切线的判定与性质;相似三角形的判定与性质;锐角三角函数的定义.22.(14分)如图,抛物线y=x2+mx+n与直线y=﹣x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).(Ⅰ)求抛物线的解析式和tan∠BAC的值;(Ⅱ)在(Ⅰ)条件下:(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?【答案】(Ⅰ)y=x2﹣x+3.tan∠BAC=;(Ⅱ)(1)(11,36)、(,)、(,);(2)点E的坐标为(2,1).考点:二次函数综合题;线段的性质:两点之间线段最短;矩形的判定与性质;轴对称的性质;相似三角形的判定与性质;锐角三角函数的定义.。
2015年山东省潍坊市昌邑市初中学业水平考试数学试卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.)1.(3分)下面的几何体中,主视图为三角形的是()A.B.C.D.2.(3分)()2的算术平方根是()A.4 B.±4 C.﹣4 D.163.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n,则n等于()A.10 B.11 C.12 D.135.(3分)函数y=的自变量x的取值范围在数轴上可表示为()A. B.C.D.6.(3分)小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是()A.22℃B.23℃C.24℃D.25℃7.(3分)下列各式计算正确的是()A.+=B.2+=2C.3﹣=2D.=﹣8.(3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥B.x≤3 C.x≤D.x≥39.(3分)如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于()A.B.C.D.10.(3分)若方程组的解是,则方程组的解为()A.B.C. D.11.(3分)已知直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为()A.﹣6 B.﹣9 C.0 D.912.(3分)如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点,且PC=BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A.B.5cm C.D.7cm二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.(3分)分解因式:8(a2+1)+16a=.14.(3分)一组数据:1,2,1,0,2,a,若它们众数为1,则这组数据的平均数为.15.(3分)如图,已知矩形ABCD中,AB=8,BC=5π.分别以B,D为圆心,AB 为半径画弧,两弧分别交对角线BD于点E,F,则图中阴影部分的面积为.16.(3分)已知抛物线y=x2﹣x﹣1与x轴的一个交点为(a,0),那么代数式a2﹣a+2014的值为.17.(3分)如图,将边长为6的正方形ABCD折叠,使点D落在AB边的中点E 处,折痕为FH,点C落在点Q处,EQ与BC交于点G,则△EBG的周长是cm.18.(3分)如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=.三、解答题(本题共6小题,共66分.解答应写出文字说明、证明过程或推演步骤.)19.(10分)我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)请你求出该班的总人数,并补全频数分布直方图;(2)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.20.(10分)如图,根据图中数据完成填空,再按要求答题:sin2A1+sin2B1=;sin2A2+sin2B2=;sin2A3+sin2B3=.(1)观察上述等式,猜想:在Rt△ABC中,∠C=90°,都有sin2A+sin2B=.(2)如图④,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,利用三角函数的定义和勾股定理,证明你的猜想.(3)已知:∠A+∠B=90°,且sinA=,求sinB.21.(10分)如图,在平面直角坐标系中,点A,B的坐标分别是(﹣3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C 从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造□PCOD.在线段OP延长线上一动点E,且满足PE=AO.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为秒时,求此时四边形ADEC的周长是多少?22.(10分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23.(13分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P 是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)连接AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.24.(13分)如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.2015年山东省潍坊市昌邑市初中学业水平考试数学试卷参考答案与试题解析一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.)1.(3分)下面的几何体中,主视图为三角形的是()A.B.C.D.【分析】主视图是从几何体的正面看所得到的图形,根据主视图所看的方向,写出每个图形的主视图及可选出答案.【解答】解:A、主视图是长方形,故A选项错误;B、主视图是长方形,故B选项错误;C、主视图是三角形,故C选项正确;D、主视图是正方形,中间还有一条线,故D选项错误;故选:C.2.(3分)()2的算术平方根是()A.4 B.±4 C.﹣4 D.16【分析】根据算术平方根定义求出即可.【解答】解:()2的算术平方根是4,故选:A.3.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.4.(3分)据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n,则n等于()A.10 B.11 C.12 D.13【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:3875.5亿=3875 5000 0000=3.8755×1011,故选:B.5.(3分)函数y=的自变量x的取值范围在数轴上可表示为()A. B.C.D.【分析】函数y=有意义,则分母必须满足,解得出x的取值范围,在数轴上表示出即可;【解答】解:∵函数y=有意义,∴分母必须满足,解得,,∴x>1;故选:B.6.(3分)小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是()A.22℃B.23℃C.24℃D.25℃【分析】将数据从小到大排列,根据中位数的定义求解即可.【解答】解:将数据从小到大排列为:21,22,22,23,24,24,25,中位数是23.故选:B.7.(3分)下列各式计算正确的是()A.+=B.2+=2C.3﹣=2D.=﹣【分析】根据二次根式的加减法则对各选项进行逐一分析即可.【解答】解:A、与不是同类项,不能合并,故本选项错误;B、2与不是同类项,不能合并,故本选项错误;C、3﹣=(3﹣1)=2,故本选项正确;D、与不是同类项,不能合并,故本选项错误.故选:C.8.(3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x ≥ax+4的解集为()A.x≥B.x≤3 C.x≤D.x≥3【分析】将点A(m,3)代入y=2x得到A的坐标,再根据图形得到不等式的解集.【解答】解:将点A(m,3)代入y=2x得,2m=3,解得,m=,∴点A的坐标为(,3),∴由图可知,不等式2x≥ax+4的解集为x≥.故选:A.9.(3分)如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于()A.B.C.D.【分析】过点O作OD⊥BC,垂足为D,根据圆周角定理可得出∠BOD=∠A,再根据勾股定理可求得BD=4,从而得出∠A的正切值.【解答】解:过点O作OD⊥BC,垂足为D,∵OB=5,OD=3,∴BD=4,∵∠A=∠BOC,∴∠A=∠BOD,∴tanA=tan∠BOD==,故选:D.10.(3分)若方程组的解是,则方程组的解为()A.B.C. D.【分析】根据已知方程组的解,确定出所求方程组的解即可.【解答】解:由题意得:所求方程组的解为,解得:,故选:C.11.(3分)已知直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为()A.﹣6 B.﹣9 C.0 D.9【分析】先根据点A(x1,y1),B(x2,y2)是双曲线y=上的点可得出x1•y1=x2•y2=3,再根据直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点可得出x1=﹣x2,y1=﹣y2,再把此关系代入所求代数式进行计算即可.【解答】解:∵点A(x1,y1),B(x2,y2)是双曲线y=上的点∴x1•y1=x2•y2=3①,∵直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点,∴x1=﹣x2,y1=﹣y2②,∴原式=﹣x1y1﹣x2y2=﹣3﹣3=﹣6.故选:A.12.(3分)如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点,且PC=BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A.B.5cm C.D.7cm【分析】首先画出圆柱的侧面展开图,根据高BC′=6cm,PC=BC,求出PC′=×6=4cm,在Rt△AC′P中,根据勾股定理求出AP的长.【解答】解:侧面展开图如图所示,∵圆柱的底面周长为6cm,∴AC′=3cm,∵PC′=BC′,∴PC′=×6=4cm,在Rt△ACP中,AP2=AC′2+CP2,∴AP==5.故选:B.二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.(3分)分解因式:8(a2+1)+16a=8(a+1)2.【分析】直接提取公因式8,再利用完全平方公式分解因式得出答案.【解答】解:8(a2+1)+16a=8(a2+1+2a)=8(a+1)2.故答案为:8(a+1)2.14.(3分)一组数据:1,2,1,0,2,a,若它们众数为1,则这组数据的平均数为.【分析】根据众数为1,求出a的值,然后根据平均数的概念求解.【解答】解:∵众数为1,∴a=1,∴平均数为:=.故答案为:.15.(3分)如图,已知矩形ABCD中,AB=8,BC=5π.分别以B,D为圆心,AB 为半径画弧,两弧分别交对角线BD于点E,F,则图中阴影部分的面积为4π.【分析】由题意和图形可得,阴影部分的面积等于△ABD的面积与扇形ABE和扇形DMF的差,而两个扇形的半径相等,所对的圆心角的和等于90°,从而可以把两个扇形合在一起正好是四分之一个圆,然后计算出它们的面积作差,本题得以解决.【解答】解:∵在矩形ABCD中,AB=8,BC=5π,∴∠BAC=90°,∠ABD+∠ADB=90°,BC=AD=5π,∴,∵以B,D为圆心,AB为半径画弧,两弧分别交对角线BD于点E,F,以B,D 为圆心,AB为半径画弧,两弧分别交对角线BD于点E,F,∴S扇形ABE +S扇形DMF=,∴S阴影AEMF=S△ABD﹣S扇形ABE﹣S扇形DMF=20π﹣16π=4π,故答案为:4π.16.(3分)已知抛物线y=x2﹣x﹣1与x轴的一个交点为(a,0),那么代数式a2﹣a+2014的值为2015.【分析】根据二次函数图象上点的坐标特征得到a2﹣a﹣1=0,则a2﹣a=1,然后利用整体代入的方法求代数式a2﹣a+2014的值.【解答】解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(a,0),∴a2﹣a﹣1=0,∴a2﹣a=1,∴a2﹣a+2014=1+2014=2015.故答案为2015.17.(3分)如图,将边长为6的正方形ABCD折叠,使点D落在AB边的中点E 处,折痕为FH,点C落在点Q处,EQ与BC交于点G,则△EBG的周长是12 cm.【分析】根据翻折的性质可得DF=EF,设EF=x,表示出AF,然后利用勾股定理列方程求出x,从而得到AF、EF的长,再求出△AEF和△BGE相似,根据相似三角形对应边成比例列式求出BG、EG,然后根据三角形周长的定义列式计算即可得解.【解答】解:由翻折的性质得,DF=EF,设EF=x,则AF=6﹣x,∵点E是AB的中点,∴AE=BE=×6=3,在Rt△AEF中,AE2+AF2=EF2,即32+(6﹣x)2=x2,解得x=,∴AF=6﹣=,∵∠FEG=∠D=90°,∴∠AEF+∠BEG=90°,∵∠AEF+∠AFE=90°,∴∠AFE=∠BEG,又∵∠A=∠B=90°,∴△AEF∽△BGE,∴==,即==,解得BG=4,EG=5,∴△EBG的周长=3+4+5=12.故答案为:12.18.(3分)如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C 1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=2.【分析】根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值.【解答】解:∵一段抛物线:y=﹣x(x﹣3)(0≤x≤3),∴图象与x轴交点坐标为:(0,0),(3,0),∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.∴C13的解析式与x轴的交点坐标为(36,0),(39,0),且图象在x轴上方,∴C13的解析式为:y13=﹣(x﹣36)(x﹣39),当x=37时,y=﹣(37﹣36)×(37﹣39)=2.故答案为:2.三、解答题(本题共6小题,共66分.解答应写出文字说明、证明过程或推演步骤.)19.(10分)我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)请你求出该班的总人数,并补全频数分布直方图;(2)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.【分析】(1)根据C类有12人,占24%,据此即可求得总人数,然后利用总人数乘以对应的比例即可求得E类的人数;(2)利用列举法即可求解.【解答】解:(1)该班总人数是:12÷24%=50(人),则E类人数是:50×10%=5(人),A类人数为:50﹣(7+12+9+5)=17(人).补全频数分布直方图如下:;(2)画树状图如下:,或列表如下:共有12种等可能的情况,恰好1人选修篮球,1人选修足球的有4种,则概率是:=.20.(10分)如图,根据图中数据完成填空,再按要求答题:sin2A1+sin2B1=1;sin2A2+sin2B2=1;sin2A3+sin2B3=1.(1)观察上述等式,猜想:在Rt△ABC中,∠C=90°,都有sin2A+sin2B=1.(2)如图④,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,利用三角函数的定义和勾股定理,证明你的猜想.(3)已知:∠A+∠B=90°,且sinA=,求sinB.【分析】(1)由前面的结论,即可猜想出:在Rt△ABC中,∠C=90°,都有sin2A+sin2B=1;(2)在Rt△ABC中,∠C=90°.利用锐角三角函数的定义得出sinA=,sinB=,则sin2A+sin2B=,再根据勾股定理得到a2+b2=c2,从而证明sin2A+sin2B=1;(3)利用关系式sin2A+sin2B=1,结合已知条件sinA=,进行求解.【解答】解:(1)由图可知:sin2A1+sin2B1=()2+()2=1;sin2A2+sin2B2=()2+()2=1;sin2A3+sin2B3=()2+()2=1.观察上述等式,可猜想:sin2A+sin2B=1.(2)如图,在Rt△ABC中,∠C=90°.∵sinA=,sinB=,∴sin2A+sin2B=,∵∠C=90°,∴a2+b2=c2,∴sin2A+sin2B=1.(3)∵sinA=,sin2A+sin2B=1,∴sinB==.21.(10分)如图,在平面直角坐标系中,点A,B的坐标分别是(﹣3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C 从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造□PCOD.在线段OP延长线上一动点E,且满足PE=AO.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为秒时,求此时四边形ADEC的周长是多少?【分析】(1)连接CD交AE于F,根据平行四边形的性质得到CF=DP,OF=PF,根据题意得到AF=EF,又CF=DP,根据平行四边形的判定定理证明即可;(2)根据题意计算出OC、OP的长,根据勾股定理求出AC、CE,根据平行四边形的周长公式计算即可.【解答】(1)证明:连接CD交AE于F,∵四边形PCOD是平行四边形,∴CF=DF,OF=PF,∵PE=AO,∴AF=EF,又CF=DF,∴四边形ADEC为平行四边形;(2)解:当点P运动的时间为秒时,OP=,OC=3,则OE=,由勾股定理得,AC==3,CE==,∵四边形ADEC为平行四边形,∴周长为(3+)×2=6+3.22.(10分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【分析】(1)利用原工作时间﹣现工作时间=4这一等量关系列出分式方程求解即可;(2)根据矩形的面积和为56平方米列出一元二次方程求解即可.【解答】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:﹣=4解得:x=2000,经检验,x=2000是原方程的解,答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为a米,根据题意得,(20﹣3a)(8﹣2a)=56解得:a=2或a=(不合题意,舍去).答:人行道的宽为2米.23.(13分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P 是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)连接AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.【分析】(1)当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,直接利用勾股定理求出AC进而得出答案;(2)首先得出四边形APCE是菱形,进而得出CM的长,进而利用锐角三角函数关系得出CP以及EF的长;(3)∠GAE≠∠BGC,只能∠AGE=∠AEG,利用AD∥BC,得出△GAE∽△GBC,进而求出即可.【解答】解:(1)如图1,设⊙O的半径为r,当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,∴BH=AB•cosB=4,∴AH=3,CH=4,∴AC==5,∴此时CP=r=5;(2)如图2,若AP∥CE,APCE为平行四边形,∵CE=CP,∴四边形APCE是菱形,连接AC、EP,则AC⊥EP,∴AM=CM=,由(1)知,AB=AC,则∠ACB=∠B,∴CP=CE==,∴EF=2=;(3)如图3:连接AC,过点C作CN⊥AD于点N,设AQ⊥BC,∵=cosB,AB=5,∴BQ=4,AN=QC=BC﹣BQ=4.∵cosB=,∴∠B<45°,∵∠BCG<90°,∴∠BGC>45°,∴∠BGC>∠B=∠GAE,即∠BGC≠∠GAE,又∵∠AEG=∠BCG≥∠ACB=∠B=∠GAE,∴当∠AEG=∠GAE时,A、E、G重合,则△AGE不存在.即∠AEG≠∠GAE∴只能∠AGE=∠AEG,∵AD∥BC,∴△GAE∽△GBC,∴=,即=,解得:AE=3,EN=AN﹣AE=1,∴CE===.24.(13分)如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.【分析】(1)已知抛物线的顶点坐标,可用顶点式设抛物线的解析式,然后将A点坐标代入其中,即可求出此二次函数的解析式;(2)根据抛物线的解析式,易求得对称轴l的解析式及B、C的坐标,分别求出直线AB、BD、CE的解析式,再求出CE的长,与到抛物线的对称轴的距离相比较即可;(3)过P作y轴的平行线,交AC于Q;易求得直线AC的解析式,可设出P点的坐标,进而可表示出P、Q的纵坐标,也就得出了PQ的长;然后根据三角形面积的计算方法,可得出关于△PAC的面积与P点横坐标的函数关系式,根据所得函数的性质即可求出△PAC的最大面积及对应的P点坐标.【解答】解:(1)设抛物线为y=a(x﹣4)2﹣1,∵抛物线经过点A(0,3),∴3=a(0﹣4)2﹣1,;∴抛物线为;(2)相交.证明:连接CE,则CE⊥BD,当时,x1=2,x2=6.A(0,3),B(2,0),C(6,0),对称轴x=4,∴OB=2,AB==,BC=4,∵AB⊥BD,∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,∴△AOB∽△BEC,∴=,即=,解得CE=,∵>2,故抛物线的对称轴l与⊙C相交.(3)如图,过点P作平行于y轴的直线交AC于点Q;可求出AC的解析式为;设P点的坐标为(m,),则Q点的坐标为(m,);∴PQ=﹣m+3﹣(m2﹣2m+3)=﹣m2+m.=S△PAQ+S△PCQ=×(﹣m2+m)×6∵S△PAC=﹣(m﹣3)2+;∴当m=3时,△PAC的面积最大为;此时,P点的坐标为(3,).赠送初中数学几何模型【模型一】“一线三等角”模型:图形特征:运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
山东省昌邑市2015年初中学业水平考试九年级数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;共120分.考试时间为120分钟.2.答卷前务必将自己的毕业学校、姓名、考点、考场、座号、准考证号等在答题纸上填写清楚.考试结束,试题和答题纸一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B铅笔把答题纸上对应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.第Ⅱ卷的题目必须答在答题纸对应位置处.第Ⅰ卷选择题(共36分)一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.) 1.下面的几何体中,主视图为三角形的是()2.()216的算术平方根是()± C.-4 D.16A.4 B.43.下列图形中,既是轴对称图形,又是中心对称图形的是()4.据统计,某省某年旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()A.10 B.11 C.12 D.135.函数11y x =-中,自变量x 的取值范围在数轴上可表示为( )6.小明记录了一周内每天的最高气温如下表,则这个周内每天最高气温的中位数是( )星期一二 三 四 五 六 日 最高气温(℃) 22242325242221A. 22℃B. 23℃C. 24℃D. 25℃ 7.下列各式计算正确的是( )A. 235+=B. 2222+=C. 32222-=D. 1210652-=- 8.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x ≥ax+4的解集为( )A .x ≥B . x ≤3C .x ≤D . x ≥39.如图,△ABC 内接于半径为5的⊙O ,圆心O 到弦BC 的距离等于3,则∠A 的正切值等于( )A.35B.45C.34D.4310.若方程组23345x y x y -=⎧⎨+=⎩的解是 2.20.4x y =⎧⎨=-⎩,则方程组⎩⎨⎧=-++=--+5)2013(4)2012(33)2013(2)2012(b a b a 的解为( ) A . 2.20.4a b =⎧⎨=-⎩ B .⎩⎨⎧==6.20122.2014b a C .⎩⎨⎧=-=6.20128.2009b a D .⎩⎨⎧==4.20132.2014b a11.已知直线y=kx (k >0)与双曲线y=交于点A (x 1,y 1),B (x 2,y 2)两点,则x 1y 2+x 2y 1的值为( )A.-6B.-9C.0D.912.如图所示,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC = 6cm ,点P 是母线BC 上一点,且PC =23BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是( ) A .(64π+)cm B .5cm C .35cm D .7cm第Ⅱ卷 (非选择题 共84分)注意事项:1. 用蓝黑钢笔或中性黑笔直接答在答题纸相应位置上.2. 答卷前认真思考,勿在答题纸上乱改动.二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.) 13.分解因式:28(1)16a a ++= .14.一组数据:1,2,1,0,2,a ,若它们的众数为1,则这组数据的平均数为 . 15.如图,已知矩形ABCD 中,AB=8,BC=5π.分别以B ,D 为圆心,AB 为半径画弧,两弧分别交对角线BD 于点E ,F ,则图中阴影部分的面积为 . 16.已知抛物线y=x 2﹣x ﹣1与x 轴的一个交点为(m ,0),则代数式m 2﹣m+2014的值为 .17.如图,将边长为6cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH,点C落在点Q处,EQ与BC交于点G,则△EBG的周长是cm.18.如图,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进行下去,直至得C13.若点P(37,m)在第13段抛物线C上,则m = .13三、解答题(本题共6小题,共66分.解答应写出文字说明、证明过程或推演步骤.)19.(本题满分10分)我市某校在推进新课改的过程中,开设的体育选修课有以下几门:A代表篮球,B代表足球,C代表排球,D代表羽毛球,E代表乒乓球,学生可根据自己的爱好选修一门课,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)请你求出该班的总人数,并补全频数分布直方图;(2)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人中恰好1人选修篮球,1人选修足球的概率.20.(本题满分10分)如图所示,图①②③④均为直角三角形.根据图中数据完成(1)填空,并按要求续作(2)(3):(1)sin 2A 1+sin 2B 1= ;sin 2A 2+sin 2B 2= ;sin 2A 3+sin 2B 3= .猜想:在Rt △ABC 中,∠C=90°,都有sin 2A+sin 2B= .(2)如图④,在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,利用锐角三角比的定义和勾股定理,证明你的猜想. (3)已知:∠A+∠B=90°,且sinA=513求sinB . 21.(本题满分10分)如图,在平面直角坐标系中,点A ,B 的坐标分别是(-3,0),(0,6),动点P 从点O 出发,沿x 轴正方向以每秒1个单位的速度运动,同时动点C 从点B 出发,沿射线BO 方向以每秒2个单位的速度运动.以CP ,CO 为邻边构造□PCOD .在线段OP 延长线上一动点E ,且满足PE=AO .(1)当点C 在线段OB 上运动时,求证:四边形ADEC 为平行四边形; (2)当点P 运动的时间为32秒时,求此时四边形ADEC 的周长是多少? 22.(本题满分10分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程. (1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23.(本题满分13分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cos B=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)连结AP,当AP//CE时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1 备用图24.(本题满分13分)如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间.问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.2015年初中学业水平考试数学试题参考答案第Ⅰ卷 选择题 (共36分)一、选择题 (本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CACBBBCADCAB二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.) 13、()281a + 14、7615、4π 16、2015 17、12 18、2 三、解答题(本题共6小题,共66分.解答应写出文字说明、证明过程或推演步骤.) 19、(本题满分10分)解:(1)该班总人数是:12÷24%=50(人),········1分 则E 类人数是:50×10%=5(人),········2分A 类人数为:50﹣(7+12+9+5)=17(人).········3分 补全频数分布直方图如下:·······························5分(2)画树状图如下:或列表如下:······························9分共有12种等可能的情况,恰好1人选修篮球,1人选修足球的有4种, 则概率是:=.·······················10分20.(本题满分10分)解:(1)sin 2A 1+sin 2B 1= 1 ;sin 2A 2+sin 2B 2= 1 ;sin 2A 3+sin 2B 3= 1 .sin 2A+sin 2B= 1 .(每空1分)(2)如图,在Rt △ABC 中,∠C=90°.∵sinA=,sinB=,····································6分∴sin 2A+sin 2B=,··································7分∵∠ADB=90°,∴BD 2+AD 2=AB 2,··········································8分∴sin 2A+cos 2A=1. (3)∵sinA=,sin 2A+sin 2B=1,······················9分∴sinB==.··························10分21.(本题满分10分)(1)提示:利用对角线互相平分的四边形是平行四边形的判定方法,即可得证。
【最新】2019年山东省昌邑市2015年九年级数学学业水平考
试试题青岛版
注意事项:
本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;共120分.考试时间为120分钟.
答卷前务必将自己的毕业学校、姓名、考点、考场、座号、准考证号等在答题纸上填写清楚.考试结束,试题和答题纸一并收回.
3.第Ⅰ卷每题选出答案后,都必须用2B铅笔把答题纸上对应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.第Ⅱ卷的题目必须答在答题纸对应位置处.
第Ⅰ卷选择题(共36分)
一、选择题 (本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.)
1.下面的几何体中,主视图为三角形的是()
2.的算术平方根是(
A .4
B .
C .-4
D .16
3.下列图形中,既是轴对称图形,又是中心对称图形的是( ) 4.据统计,某省某年旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n ,则n 等于( ) A .10 B .11 C .12 D .13 5.函数中,自变量的取值范围在数轴上可表示为( )
6.小明记录了一周内每天的最高气温如下表,则这个周内每天最高气温的中位数是( )
22
A. 22℃
B. 23℃
C. 24℃
D. 25℃
下列各式计算正确的是( ) A. B.
C.。
2015年山东省潍坊市中考数学试卷一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对的3分,选错、不选或选出的答案超出一个均记0分.)1. (3分)(2015?潍坊)在|- 2|, 2°, 2:这四个数中,最大的数是()A . I-2| B. 2°C. 2-1 D ..工考点:实数大小比较;零指数幂;负整数指数幂.分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,首先求出|-2|, 20, 2-1的值是多少,然后根据实数比较大小的方法判断即可.解答:解:-2|=2, 20=1 , 2-1=0.5 ,•.O 5<1<妊<2,二•••在|-2|, 20, 2- j .二这四个数中,最大的数是|- 2|.故选:A .点评:(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数〉0>负实数,两个负实数绝对值大的反而小.(2)此题还考查了负整数指数幕的运算,要熟练掌握,解答此题的关键是要明确:①a-p=・(a旳,p为正整数);②计算负整数指数幕时,一定要根据负整数指数幕a p的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幕的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a^0);② 00詢.2 . (3分)(2015?潍坊)如图所示几何体的左视图是()考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中. 解答:解:从左面看可得矩形中间有一条横着的虚线.故选C.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3. ( 3分)(2015?潍坊)2015年5月17日是第25个全国助残日,今年全国助残日的主题 是关注孤独症儿童,走向美好未来 ”.第二次全国残疾人抽样调查结果显示,我国 0〜6岁精神残疾儿童约为11.1万人.11.1万用科学记数法表示为( )A . 1.11X10B . 11.1 XI0C . 1.11X10D . 1.11X10考点:科学记数法一表示较大的数.分析:科学记数法的表示形式为 a X 0n 的形式,其中1弓a|v 10, n 为整数•确定n 的值时, 要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 当原数绝对值〉1时,n 是正数;当原数的绝对值v 1时,n 是负数.解答:解:将11.1万用科学记数法表示为 1.11 X 05.故选C .点评:此题考查科学记数法的表示方法•科学记数法的表示形式为a X 0n 的形式,其中1弓a|v 10, n 为整数,表示时关键要正确确定a 的值以及n 的值.4. ( 3分)(2015?潍坊)如图汽车标志中不是中心对称图形的是(考点:中心对称图形.分析:根据中心对称图形的概念求解. 解答:解:A 、是中心对称图形.故错误;B 、 不是中心对称图形.故正确;C 、是中心对称图形.故错误;D 、 是中心对称图形.故错误. 故选B .点评:本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心, 旋转180度后与原图重合.:+.「;=.-考点:幕的乘方与积的乘方;合并同类项;约分;二次根式的加减法. 分析:A :根据二次根式的加减法的运算方法判断即可.B :根据合并同类项的方法判断即可.C :根据约分的方法判断即可.D :根据积的乘方的运算方法判断即可.D .(3分)(2015?潍坊)下列运算正确的是()B . 3x 2y — x 2y=3236^3D . (a b ) =a b2=a+bB .解答:解:••血换去翻,•选项A不正确;c 2 2 c 2■/ 3x y - x y=2x y, •选项B不正确;../+以(計b)2•••选项C不正确;2八 3 6^3(a b)=a b ,•选项D正确.故选:D.点评:(1)此题主要考查了幕的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了二次根式的加减法,要熟练掌握,解答此题的关键是要明确二次根式的加减法的步骤:①如果有括号,根据去括号法则去掉括号. ② 把不是最简二次根式的二次根式进行化简. ③ 合并被开方数相同的二次根式.(3)此题还考查了合并同类项,以及约分的方法的应用,要熟练掌握.「塚> -16. (3分)(2015?潍坊)不等式组 .. 的所有整数解的和是()A . 2 B. 3 C. 5 D . 6考点:一元一次不等式组的整数解.分析:先求出不等式组的解集,再求出不等式组的整数解,最后求出答案即可.解答:肋门愛①牛:[-3i+9>0②•••解不等式①得;x>- £,解不等式②得;x <3,• •不等式组的解集为-—;< x<3,•不等式组的整数解为0, 1, 2, 3,0+1+2+3=6 ,故选D .点评:本题考查了解一元一次不等式组,求不等式组的整数解的应用,解此题的关键是求出不等式组的解集,难度适中.7. (3分)(2015?潍坊)如图,AB是O O的弦,AO的延长线交过点B的O O的切线于点C,如果/ ABO=20 °则/ C的度数是()C . 45°D . 20°考点:切线的性质.分析:由BC是O O的切线,OB是O O的半径,得到/ OBC=90。
数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前山东省潍坊市2015年初中毕业学业水平考试数学 .............................................................. 1 山东省潍坊2015年初中毕业学业水平考试数学答案解析 .. (5)山东省潍坊市2015年初中毕业学业水平考试数学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在012,2,|2|--,最大的数是( ) A .|2|-B .02C .12- D2.如图所示几何体的左视图是( )ABCD3.2015年5月17日是第25个全国助残日.今年全国助残日的主题是“关注孤独症儿童,走向美好未来”.第二次全国残疾人抽样调查结果显示,我国0~6岁精神残疾儿童约为11.1万人.11.1万用科学记数法表示为( ) A .41.1110⨯B .411.110⨯C .51.1110⨯D .61.1110⨯ 4.下列汽车标志中不是中心对称图形的是( )AB C D 5.下列运算正确的是( )A=B .2233x y x y -=C .22a b a b a b+=++D .2363()a b a b = 6.不等式组21,39x x -⎧⎨-+⎩>≥0的所有整数解的和是( ) A .2B .3C .5D .67.如图,AB 是O 的弦,AO 的延长线交过点B 的O 的切线于点C ,如果20ABO =∠,则C ∠的度数是( )A .70B .50C .45D .208.01()k -有意义,则一次函数()11y k x k =-+-的图象可能是 ( )ABCD9.如图,在ABC △中,AD 平分BAC ∠,按如下步骤作图:第一步,分别以点,A D 为圆心,以大于12AD 的长为半径在AD 两侧作弧,交于两点,M N ;第二步,连接MN ,分别交,AB AC 于点,E F ; 第三步,连接,DE DF .若6BD =,4AF =,3CD =,则BE 的长是( ) A .2B .4C .6D .810.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上.水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm ,水的最大深度是2cm ,则杯底有水部分的面毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页) 数学试卷 第4页(共24页)积是( ) A.216(πcm 3-B.216(πcm 3-C.28(πcm 3-D.24(πcm 3-11.如图,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是 ( )A2B2cmC2 D2 12.已知二次函数22y ax bx c =+++的图象如图所示,顶点为()1,0-,下列结论:①0abc <; ②240b ac -=; ③2a >; ④420a b c -+>. 其中正确结论的个数是( )A .1B .2C .3D .4第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上) 13.植树节时,九年级一班6个小组的植树棵数分别是:5,7,3,,6,4x .已知这组数据的众数是5,则该组数据的平均数是 .14.如图,等腰梯形ABCD 中,AD BC ∥,50BC =,20AB =,60B =∠,则AD = .15.因式分解:276ax ax a -+= .16.观光塔是潍坊市区的标志性建筑.为测量其高度,如图,一人先在附近一楼房的底端A 点处观测观光塔顶端C 处的仰角是60,然后爬到该楼房顶端B 点处观测观光塔底部D 处的俯角是30,已知楼房高AB 约是45m ,根据以上观测数据可求观光塔的高CD 是 m .17.如图,正ABC △的边长为2,以BC 边上的高1AB 为边作正11AB C △,ABC △与11AB C △公共部分的面积记为1S ;再以正11AB C △边11B C 上的高2AB 为边作正22AB C △,11AB C △与22AB C △公共部分的面积记为2S ;……,以此类推,则n S =(用含n 的式子表示).18.正比例函数1(0)y mx m =>的图象与反比例函数2(0)ky k x=≠的图象交于点4(),A n 和点B ,AM y ⊥轴,垂足为M ,若AMB △的面积为8,则满足12y y >的实数x 的取值范围是 .三、解答题(本大题共6小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分9分)为提高饮水质量,越来越多的居民开始选购家用净水器.一商场抓住商机,从厂家购进了,A B 两种型号家用净水器共160台,A 型号家用净水器进价是150元/台,B 型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求,A B 两种型号家用净水器各购进了多少台;(2)为使每台B 型号家用净水器的毛利润是A 型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A 型号家用净水器的售价至少是多少元.(注:毛利润=售价-进价)20.(本小题满分10分)某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n ,并按以下规定分为四档:当3n <时,为“偏少”;当35n ≤<时,为“一般”;当58n ≤<时,为“良好”;当8n ≥时,为“优秀”.将调查结果统计后绘制成如下不数学试卷 第5页(共24页) 数学试卷 第6页(共24页)请根据以上信息回答下列问题: (1)分别求出统计表中的,x y 的值;(2)估计该校九年级400名学生中为“优秀”档次的人数;(3)从被调查的“优秀”档次的学生中随机抽取2名学生介绍读书体会,请用列表或画树状图的方法求抽取的2名学生中有1名阅读本数为9的概率.21.(本小题满分10分)如图,在ABC △中,AB AC =,以AC 为直径的O 交BC 于点D ,交AB 于点E .过点D 作DF AB ⊥,垂足为F ,连接DE . (1)求证:直线DF 与O 相切; (2)若7AE =,6BC =,求AC 的长.22.(本小题满分11分)“低碳生活,绿色出行”的理念正逐渐被人们所接受,越来越多的人选择骑自行车上下班.王叔叔某天骑自行车上班从家出发到单位过程中行进速度v (米/分钟)随时间t (分钟)变化的函数图象大致如图所示,图象由三条线段,OA AB 和BC 组成.设线段OC 上有一动点0(),T t ,直线l 过点T 且与横轴垂直,梯形OABC 在直线l 左侧部分的面积即为t 分钟内王叔叔行进的路程s (米).(1)①当2t =分钟时,速度v = 米/分钟,路程s = 米; ②当15t =分钟时,速度v = 米/分钟,路程s = 米.(2)当03t ≤≤和315t <≤时,分别求出路程s (米)关于时间t (分钟)的函数解析式; (3)求王叔叔该天上班从家出发行进了750米时所用的时间t .23.(本小题满分12分)如图1,点O 是正方形ABCD 两对角线的交点.分别延长OD 到点,G OC 到点E ,使2OG OD =,2OE OC =,然后以,OG OE 为邻边作正方形OEFG ,连接,AG DE .(1)求证:DE AG ⊥;(2)正方形ABCD 固定,将正方形OEFG 绕点O 逆时针旋转α角()0360α<<得到正方形OE F G ''',如图2.①在旋转过程中,当OAG '∠是直角时,求α的度数;②若正方形ABCD 的边长为1,在旋转过程中,求AF '长的最大值和此时α的度数,直接写出结果不必说明理由.24.(本小题满分14分)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。
2015年山东省潍坊市中考数学试卷一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对的3分,选错、不选或选出的答案超出一个均记0分.)1.(3分)(2015•潍坊)在|﹣2|,20,2﹣1,这四个数中,最大的数是()A.|﹣2| B.20C.2﹣1D.2.(3分)(2015•潍坊)如图所示几何体的左视图是()A.B.C.D.3.(3分)(2015•潍坊)2015年5月17日是第25个全国助残日,今年全国助残日的主题是“关注孤独症儿童,走向美好未来”.第二次全国残疾人抽样调查结果显示,我国0~6岁精神残疾儿童约为11.1万人.11.1万用科学记数法表示为()A.x k 1.11×104B.11.1×104C.1.11×105D.1.11×1064.(3分)(2015•潍坊)如图汽车标志中不是中心对称图形的是()A.B.C.D.5.(3分)(2015•潍坊)下列运算正确的是()A.+=B.3x2y﹣x2y=3D.(a2b)3=a6b3C.=a+b6.(3分)(2015•潍坊)不等式组的所有整数解的和是()A.2B.3C.5D.67.(3分)(2015•潍坊)如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=20°,则∠C的度数是()A.70°B.50°C.45°D.20°8.(3分)(2015•潍坊)若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A.B.C.D.9.(3分)(2015•潍坊)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D 为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2B.4C.6D.810.(3分)(2015•潍坊)将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水部分的面积是()A.(π﹣4)cm2B.(π﹣8)cm2C.(π﹣4)cm2D.(π﹣2)cm211.(3分)(2015•潍坊)如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.cm2B.cm2C.cm2D.cm212.(3分)(2015•潍坊)已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc <0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(本大题共6小题,每小题3分,共18分,只要求填写最后结果.)13.(3分)(2015•潍坊)“植树节”时,九年级一班6个小组的植树棵数分别是:5,7,3,x,6,4.已知这组数据的众数是5,则该组数据的平均数是.14.(3分)(2015•潍坊)如图,等腰梯形ABCD中,AD∥BC,BC=50,AB=20,∠B=60°,则AD=.15.(3分)(2015•潍坊)因式分解:ax2﹣7ax+6a=.16.(3分)(2015•潍坊)观光塔是潍坊市区的标志性建筑,为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°.已知楼房高AB约是45m,根据以上观测数据可求观光塔的高CD是m.17.(3分)(2015•潍坊)如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,则S n=.(用含n的式子表示)18.(3分)(2015•潍坊)正比例函数y1=mx(m>0)的图象与反比例函数y2=(k≠0)的图象交于点A(n,4)和点B,AM⊥y轴,垂足为M.若△AMB的面积为8,则满足y1>y2的实数x的取值范围是.三、解答题(本大题共6小题,共66分.解答要写出必要的文字说明、证明过程或演算步骤.)19.(9分)(2015•潍坊)为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)20.(10分)(2015•潍坊)某校了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:阅读本数n(本)1 2 3 4 5 6 7 8 9人数(名) 1 2 6 7 12 x 7 y 1请根据以上信息回答下列问题:(1)分别求出统计表中的x、y的值;(2)估计该校九年级400名学生中为“优秀”档次的人数;(3)从被调查的“优秀”档次的学生中随机抽取2名学生介绍读书体会,请用列表或画树状图的方法求抽取的2名学生中有1名阅读本数为9的概率.21.(10分)(2015•潍坊)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.22.(11分)(2015•潍坊)“低碳生活,绿色出行”的理念正逐渐被人们所接受,越来越多的人选择骑自行车上下班.王叔叔某天骑自行车上班从家出发到单位过程中行进速度v(米/分钟)随时间t(分钟)变化的函数图象大致如图所示,图象由三条线段OA、AB和BC组成.设线段OC上有一动点T(t,0),直线l左侧部分的面积即为t分钟内王叔叔行进的路程s(米).(1)①当t=2分钟时,速度v=200米/分钟,路程s=200米;②当t=15分钟时,速度v=300米/分钟,路程s=4050米.(2)当0≤t≤3和3<t≤15时,分别求出路程s(米)关于时间t(分钟)的函数解析式;(3)求王叔叔该天上班从家出发行进了750米时所用的时间t.23.(12分)(2015•潍坊)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.24.(14分)(2015•潍坊)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.2015年山东省潍坊市中考数学试卷一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对的3分,选错、不选或选出的答案超出一个均记0分.)1.考点:实数大小比较;零指数幂;负整数指数幂.分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,首先求出|﹣2|,20,2﹣1的值是多少,然后根据实数比较大小的方法判断即可.解答:解:|﹣2|=2,20=1,2﹣1=0.5,∵,∴,∴在|﹣2|,20,2﹣1,这四个数中,最大的数是|﹣2|.故选:A.点评:(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.2.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解答:解:从左面看可得矩形中间有一条横着的虚线.故选C.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将11.1万用科学记数法表示为1.11×105.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.考点:中心对称图形.分析:根据中心对称图形的概念求解.解答:解:A、是中心对称图形.故错误;B、不是中心对称图形.故正确;C、是中心对称图形.故错误;D、是中心对称图形.故错误.故选B.点评:本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.考点:幂的乘方与积的乘方;合并同类项;约分;二次根式的加减法.分析:A:根据二次根式的加减法的运算方法判断即可.B:根据合并同类项的方法判断即可.C:根据约分的方法判断即可.D:根据积的乘方的运算方法判断即可.解答:解:∵,∴选项A不正确;∵3x2y﹣x2y=2x2y,∴选项B不正确;∵,∴选项C不正确;∵(a2b)3=a6b3,∴选项D正确.故选:D.点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了二次根式的加减法,要熟练掌握,解答此题的关键是要明确二次根式的加减法的步骤:①如果有括号,根据去括号法则去掉括号.②把不是最简二次根式的二次根式进行化简.③合并被开方数相同的二次根式.(3)此题还考查了合并同类项,以及约分的方法的应用,要熟练掌握.6.考点:一元一次不等式组的整数解.分析:先求出不等式组的解集,再求出不等式组的整数解,最后求出答案即可.解答:解:∵解不等式①得;x>﹣,解不等式②得;x≤3,∴不等式组的解集为﹣<x≤3,∴不等式组的整数解为0,1,2,3,0+1+2+3=6,故选D.点评:本题考查了解一元一次不等式组,求不等式组的整数解的应用,解此题的关键是求出不等式组的解集,难度适中.7.考点:切线的性质.分析:由BC是⊙O的切线,OB是⊙O的半径,得到∠OBC=90°,根据等腰三角形的性质得到∠A=∠ABO=20°,由外角的性质得到∠BOC=40°,即可求得∠C=50°.解答:解:∵BC是⊙O的切线,OB是⊙O的半径,∴∠OBC=90°,∵OA=OB,∴∠A=∠ABO=20°,∴∠BOC=40°,∴∠C=50°.故选B.点评:本题考查了本题考查了切线的性质,等腰三角形的性质,掌握定理是解题的关键.8.考点:一次函数图象与系数的关系;零指数幂;二次根式有意义的条件.分析:首先根据二次根式中的被开方数是非负数,以及a0=1(a≠0),判断出k的取值范围,然后判断出k﹣1、1﹣k的正负,再根据一次函数的图象与系数的关系,判断出一次函数y=(k﹣1)x+1﹣k的图象可能是哪个即可.解答:解:∵式子+(k﹣1)0有意义,∴解得k>1,∴k﹣1>0,1﹣k<0,∴一次函数y=(k﹣1)x+1﹣k的图象可能是:.故选:A.点评:(1)此题主要考查了一次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数是非负数.9.平行线分线段成比例;菱形的判定与性质;作图—基本作图.考点:分析:根据已知得出MN是线段AD的垂直平分线,推出AE=DE,AF=DF,求出DE∥AC,DF∥AE,得出四边形AEDF是菱形,根据菱形的性质得出AE=DE=DF=AF,根据平行线分线段成比例定理得出=,代入求出即可.解答:解:∵根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是菱形,∴AE=DE=DF=AF,∵AF=4,∴AE=DE=DF=AF=4,∵DE∥AC,∴=,∵BD=6,AE=4,CD=3,∴=,∴BE=8,故选D.点评:本题考查了平行线分线段成比例定理,菱形的性质和判定,线段垂直平分线性质,等腰三角形的性质的应用,能根据定理四边形AEDF是菱形是解此题的关键,注意:一组平行线截两条直线,所截得的对应线段成比例.10.考点:垂径定理的应用;扇形面积的计算.分析:作OD⊥AB于C,交小⊙O于D,则CD=2,由垂径定理可知AC=CB,利用正弦函数求得∠OAC=30°,进而求得∠AOC=120°,利用勾股定理即可求出AB的值,从而利用S扇形﹣S△AOB求得杯底有水部分的面积.解答:解:作OD⊥AB于C,交小⊙O于D,则CD=2,AC=BC,∵OA=OD=4,CD=2,∴OC=2,在RT△AOC中,sin∠OAC==,∴∠OAC=30°,∴∠AOC=120°,AC==2,∴AB=4,∴杯底有水部分的面积=S扇形﹣S△AOB=﹣××2=(π﹣4)cm2故选A.点评:本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.11.考点:二次函数的应用;展开图折叠成几何体;等边三角形的性质.分析:如图,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.连结AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD=x,则AO=2x,由勾股定理就可以求出AD=x,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质就可以求出结论.解答:解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD=x,∴DE=6﹣2x,∴纸盒侧面积=3x(6﹣2x)=﹣6x2+18x,=﹣6(x﹣)2+,∴当x=时,纸盒侧面积最大为.故选C.点评:本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,矩形的面积公式的运用,二次函数的性质的运用,解答时表示出纸盒的侧面积是关键.12.考点:二次函数图象与系数的关系.分析:①首先根据抛物线开口向上,可得a>0;然后根据对称轴在y轴左边,可得b>0;最后根据抛物线与y轴的交点在x轴的上方,可得c>0,据此判断出abc>0即可.②根据二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,可得△=0,即b2﹣4ac=0.③首先根据对称轴x=﹣=﹣1,可得b=2a,然后根据b2﹣4ac=0,确定出a的取值范围即可.④根据对称轴是x=﹣1,而且x=0时,y>2,可得x=﹣2时,y>2,据此判断即可.解答:解:∵抛物线开口向上,∴a>0,∵对称轴在y轴左边,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c+2>2,∴c>0,∴abc>0,∴结论①不正确;∵二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,∴△=0,即b2﹣4ac=0,∴结论②正确;∵对称轴x=﹣=﹣1,∴b=2a,∵b2﹣4ac=0,∴4a2﹣4ac=0,∴a=c,∵c>0,∴a>0,∴结论③不正确;∵对称轴是x=﹣1,而且x=0时,y>2,∴x=﹣2时,y>2,∴4a﹣2b+c+2>2,∴4a﹣2b+c>0.∴结论④正确.综上,可得正确结论的个数是2个:②④.故选:B.点评:此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).二、填空题(本大题共6小题,每小题3分,共18分,只要求填写最后结果.)13.。
山东省昌邑市2015年初中学业水平考试九年级数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;共120分.考试时间为120分钟.2.答卷前务必将自己的毕业学校、姓名、考点、考场、座号、准考证号等在答题纸上填写清楚.考试结束,试题和答题纸一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B铅笔把答题纸上对应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.第Ⅱ卷的题目必须答在答题纸对应位置处.第Ⅰ卷选择题(共36分)一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.) 1.下面的几何体中,主视图为三角形的是()2.()216的算术平方根是()± C.-4 D.16A.4 B.43.下列图形中,既是轴对称图形,又是中心对称图形的是()4.据统计,某省某年旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()A.10 B.11 C.12 D.135.函数11y x =-中,自变量x 的取值范围在数轴上可表示为( )6.小明记录了一周内每天的最高气温如下表,则这个周内每天最高气温的中位数是( )星期一二 三 四 五 六 日 最高气温(℃) 22242325242221A. 22℃B. 23℃C. 24℃D. 25℃ 7.下列各式计算正确的是( )A. 235+=B. 2222+=C. 32222-=D. 1210652-=- 8.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x ≥ax+4的解集为( )A .x ≥B . x ≤3C .x ≤D . x ≥39.如图,△ABC 内接于半径为5的⊙O ,圆心O 到弦BC 的距离等于3,则∠A 的正切值等于( )A.35B.45C.34D.4310.若方程组23345x y x y -=⎧⎨+=⎩的解是 2.20.4x y =⎧⎨=-⎩,则方程组⎩⎨⎧=-++=--+5)2013(4)2012(33)2013(2)2012(b a b a 的解为( ) A . 2.20.4a b =⎧⎨=-⎩ B .⎩⎨⎧==6.20122.2014b a C .⎩⎨⎧=-=6.20128.2009b a D .⎩⎨⎧==4.20132.2014b a11.已知直线y=kx (k >0)与双曲线y=交于点A (x 1,y 1),B (x 2,y 2)两点,则x 1y 2+x 2y 1的值为( )A.-6B.-9C.0D.912.如图所示,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC = 6cm ,点P 是母线BC 上一点,且PC =23BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是( ) A .(64π+)cm B .5cm C .35cm D .7cm第Ⅱ卷 (非选择题 共84分)注意事项:1. 用蓝黑钢笔或中性黑笔直接答在答题纸相应位置上.2. 答卷前认真思考,勿在答题纸上乱改动.二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.) 13.分解因式:28(1)16a a ++= .14.一组数据:1,2,1,0,2,a ,若它们的众数为1,则这组数据的平均数为 . 15.如图,已知矩形ABCD 中,AB=8,BC=5π.分别以B ,D 为圆心,AB 为半径画弧,两弧分别交对角线BD 于点E ,F ,则图中阴影部分的面积为 . 16.已知抛物线y=x 2﹣x ﹣1与x 轴的一个交点为(m ,0),则代数式m 2﹣m+2014的值为 .17.如图,将边长为6cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH,点C落在点Q处,EQ与BC交于点G,则△EBG的周长是cm.18.如图,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进行下去,直至得C13.若点P(37,m)在第13段抛物线C上,则m = .13三、解答题(本题共6小题,共66分.解答应写出文字说明、证明过程或推演步骤.)19.(本题满分10分)我市某校在推进新课改的过程中,开设的体育选修课有以下几门:A代表篮球,B代表足球,C代表排球,D代表羽毛球,E代表乒乓球,学生可根据自己的爱好选修一门课,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)请你求出该班的总人数,并补全频数分布直方图;(2)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人中恰好1人选修篮球,1人选修足球的概率.20.(本题满分10分)如图所示,图①②③④均为直角三角形.根据图中数据完成(1)填空,并按要求续作(2)(3):(1)sin 2A 1+sin 2B 1= ;sin 2A 2+sin 2B 2= ;sin 2A 3+sin 2B 3= .猜想:在Rt △ABC 中,∠C=90°,都有sin 2A+sin 2B= .(2)如图④,在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,利用锐角三角比的定义和勾股定理,证明你的猜想. (3)已知:∠A+∠B=90°,且sinA=513求sinB . 21.(本题满分10分)如图,在平面直角坐标系中,点A ,B 的坐标分别是(-3,0),(0,6),动点P 从点O 出发,沿x 轴正方向以每秒1个单位的速度运动,同时动点C 从点B 出发,沿射线BO 方向以每秒2个单位的速度运动.以CP ,CO 为邻边构造□PCOD .在线段OP 延长线上一动点E ,且满足PE=AO .(1)当点C 在线段OB 上运动时,求证:四边形ADEC 为平行四边形; (2)当点P 运动的时间为32秒时,求此时四边形ADEC 的周长是多少? 22.(本题满分10分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程. (1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23.(本题满分13分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cos B=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)连结AP,当AP//CE时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1 备用图24.(本题满分13分)如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间.问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.2015年初中学业水平考试数学试题参考答案第Ⅰ卷 选择题 (共36分)一、选择题 (本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CACBBBCADCAB二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.) 13、()281a + 14、7615、4π 16、2015 17、12 18、2 三、解答题(本题共6小题,共66分.解答应写出文字说明、证明过程或推演步骤.) 19、(本题满分10分)解:(1)该班总人数是:12÷24%=50(人),········1分 则E 类人数是:50×10%=5(人),········2分A 类人数为:50﹣(7+12+9+5)=17(人).········3分 补全频数分布直方图如下:·······························5分(2)画树状图如下:或列表如下:······························9分共有12种等可能的情况,恰好1人选修篮球,1人选修足球的有4种, 则概率是:=.·······················10分20.(本题满分10分)解:(1)sin 2A 1+sin 2B 1= 1 ;sin 2A 2+sin 2B 2= 1 ;sin 2A 3+sin 2B 3= 1 .sin 2A+sin 2B= 1 .(每空1分)(2)如图,在Rt △ABC 中,∠C=90°.∵sinA=,sinB=,····································6分∴sin 2A+sin 2B=,··································7分∵∠ADB=90°,∴BD 2+AD 2=AB 2,··········································8分∴sin 2A+cos 2A=1. (3)∵sinA=,sin 2A+sin 2B=1,······················9分∴sinB==.··························10分21.(本题满分10分)(1)提示:利用对角线互相平分的四边形是平行四边形的判定方法,即可得证。
2015年山东潍坊市初中毕业统一学业考试数 学 试 题一、选择题(本大题共8小题,每小题3分,共24分) 1.的绝对值是 ( )(A )3 (B ) (C ) (D )2.在长春市“暖房子工程”实施过程中,某工程队做了面积为632000的外墙保暖,632000这个数用科学记数法表示为 ( ) (A ) (B ) (C ) (D ) 3.计算的结果是 ( ) (A ) (B ) (C ) (D )4.图中的两个圆柱体底面半径相同而高度不同,关于这两个圆柱体的视图说法正确的是 ( )(A )主视图相同 (B )俯视图相同 (C )左视图相同 (D )主视图、俯视图、左视图都相同 5.方程的根的情况是 ( ) (A )有两个相等的实数根 (B )只有一个实数根 (C )没有实数根 (D )有两个不相等的实数根BO BCDA第4题 第5题 第6题 第7题6.如图,在中,过点作若则的大小为 ( )(A ) (B ) (C ) (D ) 7.如图,四边形内接于,若四边形是平行四边形,则的大小为 ( ) (A ) (B ) (C ) (D )8.如图,在平面直角坐标系中,点在直线上.连结将线段绕点顺时针旋转,点的对应点恰好落在直线上,则的值为 ( ) (A ) (B ) (C ) (D ) 二、填空题(本大题共6小题,每小题3分,共18分) 9.比较大小: .(填“>”,“<”或“=”) 10.不等式的解集为 .11.如图,为的切线,为切点,是与的交点,若则的长为 (结果保留) .BOEAD CB第11题 第12题 第13题 第14题12.如图,在平面直角坐标系中,点在函数的图象上,过点分别作轴、轴的垂线,垂足分别为,取线段的中点,连结并延长交轴于点,则的面积为 .13.如图,点在正方形的边上,若的面积为则线段的长为 .14.如图,在平面直角坐标系中,点在抛物线上运动,过点作轴于点,以为对角线作矩形连结则对角线的最小值为 .三、解答题(本大题共10小题,共78分) 15.先化简,再求值:其中.16.在一个不透明的袋子里装有3张卡片,卡片上面分别标有字母,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并摇匀,再从盒子中随机抽出一张卡片记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.17.为了美化环境,某地政府计划对辖区内60km 2的土地进行绿化,为了尽快完成任务,实际平均每月的绿化面积是原计划的1.5倍,结果提前2个月完成任务,求原计划平均每月的绿化面积.18.如图,是外角的平分线,交于点交于点,交于点交于点,求证:四边形是菱形.F EC B DG A19.如图,海上两岛分别位于岛的正东和正北方向,一艘船从岛出发,以18海里/时的速度向正北方向航行2小时到达岛,此时测得岛在岛的南偏东,求两岛之间的距离.(结果精确到0.1海里)【参考数据:sin 430.68cos430.73tan 430.93︒=︒=︒=,,】B20.在“世界家庭日”前夕,某校团委随机抽取了名本校学生,对“世界家庭日”当天所喜欢的家庭活动方式进行问卷调查,问卷中的家庭活动方式包括:A .在家里聚餐; B. 去影院看电影; C .到公园游玩 D .进行其他活动.每位学生在问卷调查时都按要求只选择了其中一种喜欢的活动方式,该校团委收回全部调查问卷后,将收集到的数据整理并绘制成如下的统计图.根据统计图提供的信息,解答下列问题: (1)求的值;(2)四种方式中最受学生喜欢的方式为 (用A 、B 、C 、D 作答);选择该种方式的学生人数占被调查的学生人数的百分比为 ;(3)根据统计结果,估计该校1800名学生中喜欢C 方式的学生比喜欢B 方式的学生多的人数.n 名学生喜欢的家庭活动21.甲、乙两台机器共同加工一批零件,在加工过程中两台机器均改变了一次工作效率,从工作开始到加工完这批零件两台机器恰好同时工作6小时,甲、乙两台机器各自加工的零件的个数(个)与加工时间(时)之间的函数图象分别为折线与折线,如图所示. (1)求甲机器改变工作效率前每小时加工零件的个数; (2)求乙机器改变工作效率后与之间的函数关系式; (3)求这批零件的总个数.乙甲)y22.在矩形中,已知,在边上取点,使,连结,过点作,与边或其延长线交于点. 猜想:如图①,当点在边上时,线段与的大小关系为.探究:如图②,当点在边的延长线上时,与边交于点.判断线段与的大小关系,并加以证明.应用:如图②,若利用探究得到的结论,求线段的长.图① 图②23.如图,在等边中,于点,点在边上运动,过点作与边交于点,连结,以为邻边作□,设□与重叠部分图形的面积为,线段的长为(1)求线段的长(用含的代数式表示);(2)当四边形为菱形时,求的值;(3)求与之间的函数关系式;(4)设点关于直线的对称点为点,当线段的垂直平分线与直线相交时,设其交点为,当点与点位于直线同侧(不包括点在直线上)时,直接写出的取值范围.24.如图,在平面直角坐标系中,抛物线与轴交于两点,与轴交于点,且点的坐标为点在这条抛物线上,且不与两点重合,过点作轴的垂线与射线交于点,以为边作使点在点的下方,且设线段的长度为,点的横坐标为.(1)求这条抛物线所对应的函数表达式;(2)求与之间的函数关系式;(3)当的边被轴平分时,求的值;(4)以为边作等腰直角三角形,当时,直接写出点落在的边上时的值.。
潍坊地区2014—2015学年度第一学期期末学业质量评估九年级数学试题2015.1注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页,为选择题,共36分.第Ⅱ卷2页,为非选择题,共84分.全卷满分120分,考试时间120分钟.2.答卷前,务必将答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应的位置,答在本试卷上一律无效.第Ⅰ卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,多选、不选、错选均记零分.)1. 下列说法中正确的是()A. 平分弦的直径垂直于弦,并且平分弦所对的两条弧;B. 圆是轴对称图形,每一条直径都是它的对称轴;C. 弦的垂直平分线过圆心;D. 相等的圆心角所对的弧也相等.2. 如图,A、B、P是⊙O上的三点,∠APB=40°,则弧AB的度数为()A.50°B.80°C.280°D.80°或280°3. 如图,在直径为AB的半圆O上有一动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()4. 下列命题中的假命题是()A. 正方形的半径等于正方形的边心距的2倍;B . 三角形任意两边的垂直平分线的交点是三角形的外心;C . 用反证法证明命题“三角形中至少有一个内角不小于60°”时,第一步应该“假设每一个内角都小于60°”;D . 过三点能且只能作一个圆.5. 如图,⊙O 的半径是4,点P 是弦AB 延长线上的一点,连接OP ,若OP =6,∠APO =30°,则弦AB 的长为( )A .BC .5D .526. 如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,BC =3,AC =6,则CD 的长为( )A .1B .2C .23 D .25 7. 下列方程中:①x 2-2x -1=0, ②2x 2-7x +2=0, ③x 2-x +1=0 两根互为倒数有( ) A . 0个 B . 1个 C . 2个 D . 3个8. 一次函数y 1=3x +3与y 2=-2x +8在同一直角坐标系内的交点坐标为(1,6).则当y 1>y 2时,x 的取值范围是( )A . x ≥1B . x =1C . x <1D . x >19. 在△ABC C 的度数是( ) A . 45° B . 60° C . 75° D . 105°10. 如图,热气球的探测器显示,从热气球A 看一栋高楼顶部B 的仰角为30°,看这栋高楼底部C 的俯角为60°,热气球A 与高楼的水平距离为120m ,这栋高楼BC 的高度为( )A .B . mC .)1201 m D .)1201+m11. 已知反比例函数y =xk的图像经过点P (-1,2),则这个函数图像位于( )A .第二、三象限B .第一、三象限C .第三、四象限D .第二、四象限12. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论: ①abc <0;②b >a +c ;③2a -b =0;④b 2-4ac <0.其中正确的结论个数是( ) A .1个 B .2个 C .3个 D .4个第Ⅱ卷二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题3分,满分18分)13. 已知一元二次方程ax 2+bx +c =0的两根为x 1=2,x 2=-3,则二次三项式ax 2+bx +c可分解因式为 .14. ⊙O 的半径为10cm ,AB ,CD 是⊙O 的两条弦,且AB ∥CD ,AB =16cm ,CD =12cm .则AB 与CD 之间的距离是 cm .15. 如图所示,△ABC 中,E 、F 、D 分别是边AB 、AC 、BC 上的点,且满足12AE AF EB FC ==,则△EFD 与△ABC 的面积比为 . 16. 如图,M 是Rt △ABC 的斜边BC 上异于B 、C 的一定点,过M 点作直线MN 截△ABC 交AC 于点N ,使截得的△CMN 与△ABC 相似. 已知AB =6,AC =8,CM =4,则CN = .17. 一个足球从地面上被踢出,它距地面高度y (米)可以用二次函数x x y 6.199.42+-=刻画,其中x (秒)表示足球被踢出后经过的时间. 则足球被踢出后到离开地面达到最高点所用的时间是 秒. 18. 在△ABC 中,AB =AC =5,tanB =34.若⊙O 的半径为10,且⊙O 经过点B 、C ,那么线段OA 的长等于 .三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤. 共66分)19. (本题满分10分)市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?20. (本题满分10分)如图,晚上小明站在路灯P的底下观察自己的影子时发现,当他站在F点的位置时,在地面上的影子为BF,小明向前走2米到D点时,在地面上的影子为AD,若AB=4米,∠PBF=60°,∠PAB=30°,通过计算,求出小明的身高.(结果保留根号).如图,四边形ABCD内接于⊙O,BC是直径,∠BAD=120°,AB=AD.(1)求证:四边形ABCD是等腰梯形;(2)已知AC=6,求阴影部分的面积.22. (本题满分11分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE 上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD AF,求sinB的值.已知关于x 的一元二次方程()2kx 4k 1x 3k 30-+++=. (1)试说明:无论k 取何值,方程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5. 当△ABC 是等腰三角形时,求k 的值.AB是⊙O的直径,AD与⊙O相交,点C是⊙O上一点,经过点C的直线交AD于点E.⑴如图1 ,若AC平分∠BAD,CE⊥AD于点E,求证:CE是⊙O的切线;⑵如图2,若CE是⊙O的切线,CE⊥AD于点E,AC是∠BAD的平分线吗?说明理由;⑶如图3,若CE是⊙O的切线,AC平分∠BAD,AB=8,AC=6,求AE的长度.试题答案及评分标准一、选择题(每小题选对得3分,满分36分. 多选、不选、错选均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 CBBDACBDCADB二、填空题(每小题3分,满分18分)13. a (x -2)(x +3) 14. 214或 15. 2:9 16. 1655或17.2 18. 3或5 三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤.共66分) 19. (本题满分10分)解:解:(1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………6分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………10分20. (本题满分10分)解:设小明的身高为x 米,则CD =EF =x 米. 在Rt △ACD 中,∠ADC =90°,tan ∠CAD =ADCD,即tan 30°=x /AD ,AD =3x --2分 在Rt △BEF 中,∠BFE =90°,tan ∠EBF =EF /BF ,即tan 60°=x /BF ,BF =x 33---4分 由题意得DF =2,∴BD =DF -BF =2-x 33,∵AB =AD +BD =4,∴3x +2-x 33=4 --8分 即x =3.答:小明的身高为3米.--------------10分21. (本题满分11分)⑴证明:∵∠BAD=120°,AB=AD∴∠ABD=∠ADB=30°∴弧AB和弧AD的度数都等于60°又∵BC是直径∴弧CD的度数也是60°------2分∴AB=CD且∠CAD=∠ACB=30°∴BC∥AD∴四边形ABCD是等腰梯形. --------------5分⑵∵BC是直径∴∠BAC=90°∵∠ACB=30°,AC=6∴cos30ACBC===R=∵弧AB和弧AD的度数都等于60°∴∠BOD=120°-----6分连接OA交BD于点E,则OA⊥BD在Rt△BOE中:0sin30OE OB=⋅=0cos330BE OB=⋅=,BD=2BE=6-----------------8分∴162BOD BODS S S=-=⨯阴影扇形π--------------11分22. (本题满分11分)⑴证明:∵∠AFE=∠B,∠AFE与∠AFD互补,∠B与∠C互补∴∠AFD=∠C-----------------2分∵AD∥BC∴∠ADF=∠DEC------------4分∴△ADF∽△DEC-----------------5分⑵解:∵△ADF∽△DEC∴AD AF DE CD==解得:DE=12 -----------------7分∵AE⊥BC, AD∥BC∴AE⊥AD∴6AE===---9分在Rt△ABE中,63sin84AEBAB===---------------11分23. (本题满分12分)解:⑴△=()()243341k k k -++ =2216181212k k k k ++--=2441k k -+ =()221k -≥0 ----------------4分∴无论k 取何值,方程总有两个实数根. ---------------5分 ⑵若AB =AC 则方程()2kx 4k 1x 3k 30-+++=有两个相等的实数根 此时△=0,即: ()221k -=0 解得:12k =当12k =时,AB =AC =3,此时AB 、AC 、BC 满足三边关系. ----8分 若BC =5为△ABC 的一腰,则方程()2kx 4k 1x 3k 30-+++=有一根是5,将5x =代入方程()2kx 4k 1x 3k 30-+++=解得:14k = 当14k =时,解得方程两根为5和3,此时AB 、AC 、BC 满足三边关系. ----11分 综上:当△ABC 是等腰三角形时,k 的值为1124或. ----------12分24. (本题满分12分) ⑴证明:连接OC∵OA =OC ∴∠OAC =∠OCA ∵AC 平分∠BAD ∴∠OCA =∠CAD ∴OC ∥AD∵CE ⊥AD ∴CE ⊥OC ----------3分又OC 是半径 ∴CE 是⊙O 的切线。
2015年山东省潍坊市中考数学试卷一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对的3分,选错、不选或选出的答案超出一个均记0分.)1.在|﹣2|,02,12-,2这四个数中,最大的数是( ) A . |﹣2| B . 02 C . 12- D .22.如图所示几何体的左视图是( )A .B .C .D .3.2015年5月17日是第25个全国助残日,今年全国助残日的主题是“关注孤独症儿童,走向美好未来”.第二次全国残疾人抽样调查结果显示,我国0~6岁精神残疾儿童约为11.1万人.11.1万用科学记数法表示为( ) A . 1.11×410B . 11.1×410C . 1.11×510D . 1.11×6104.如图汽车标志中不是中心对称图形的是( )A .B .C .D .5.下列运算正确的是( ) A . 532=+B . 3y x 2﹣y x 2=3C . ba b a ++22=a+b D . 3632)(b a b a =6.不等式组的所有整数解的和是( ) A . 2 B . 3C . 5D . 67.如图,AB 是⊙O 的弦,AO 的延长线交过点B 的⊙O 的切线于点C ,如果∠ABO=20°,则∠C 的度数是( )A . 70°B . 50°C . 45°D . 20°8.若式子0)1(1-+-k k 有意义,则一次函数y=(k ﹣1)x+1﹣k 的图象可能是( )A .B .C .D .9.如图,在△ABC 中,AD 平分∠BAC ,按如下步骤作图: 第一步,分别以点A 、D 为圆心,以大于21AD 的长为半径在AD 两侧作弧,交于两点M 、N ;第二步,连接MN 分别交AB 、AC 于点E 、F ; 第三步,连接DE 、DF .若BD=6,AF=4,CD=3,则BE 的长是( )A . 2B . 4C . 6D . 810.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm ,水的最大深度是2cm ,则杯底有水部分的面积是( )A . (316π﹣43)cm 2B . (316π﹣83)cm 2C . (38π﹣43)cm 2 D .(34π﹣23)cm 211.如图,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )A . 3cm 2B .233cm 2C .293cm 2D .2273 cm 212.已知二次函数y=a 2x +bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc <0;②2b ﹣4ac=0;③a >2;④4a ﹣2b+c >0.其中正确结论的个数是( )A . 1B . 2C . 3D . 4二、填空题(本大题共6小题,每小题3分,共18分,只要求填写最后结果.)13.“植树节”时,九年级一班6个小组的植树棵数分别是:5,7,3,x ,6,4.已知这组数据的众数是5,则该组数据的平均数是 . 14.如图,等腰梯形ABCD 中,AD ∥BC ,BC=50,AB=20,∠B=60°,则AD= .15.因式分解:ax 2﹣7ax+6a= .16.观光塔是潍坊市区的标志性建筑,为测量其高度,如图,一人先在附近一楼房的底端A 点处观测观光塔顶端C 处的仰角是60°,然后爬到该楼房顶端B 点处观测观光塔底部D 处的俯角是30°.已知楼房高AB 约是45m ,根据以上观测数据可求观光塔的高CD 是 m .17.如图,正△ABC 的边长为2,以BC 边上的高AB 1为边作正△AB 1C 1,△ABC 与△AB 1C 1公共部分的面积记为S 1;再以正△AB 1C 1边B 1C 1上的高AB 2为边作正△AB 2C 2,△AB 1C 1与△AB 2C 2公共部分的面积记为S 2;…,以此类推,则S n = .(用含n 的式子表示)18.正比例函数1y =mx (m >0)的图象与反比例函数2y =xk(k≠0)的图象交于点A (n ,4)和点B ,AM ⊥y 轴,垂足为M .若△AMB 的面积为8,则满足1y >2y 的实数x 的取值范围是 .三、解答题(本大题共6小题,共66分.解答要写出必要的文字说明、证明过程或演算步骤.) 19.为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A 、B 两种型号家用净水器共160台,A 型号家用净水器进价是150元/台,B 型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元. (1)求A 、B 两种型号家用净水器各购进了多少台;(2)为使每台B 型号家用净水器的毛利润是A 型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A 型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)20.某校了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:阅读本数n(本) 1 2 3 4 5 6 7 8 9人数(名) 1 2 6 7 12 x 7 y 1请根据以上信息回答下列问题:(1)分别求出统计表中的x、y的值;(2)估计该校九年级400名学生中为“优秀”档次的人数;(3)从被调查的“优秀”档次的学生中随机抽取2名学生介绍读书体会,请用列表或画树状图的方法求抽取的2名学生中有1名阅读本数为9的概率.21.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.22.“低碳生活,绿色出行”的理念正逐渐被人们所接受,越来越多的人选择骑自行车上下班.王叔叔某天骑自行车上班从家出发到单位过程中行进速度v(米/分钟)随时间t(分钟)变化的函数图象大致如图所示,图象由三条线段OA、AB和BC组成.设线段OC上有一动点T(t,0),直线l左侧部分的面积即为t分钟内王叔叔行进的路程s(米).(1)①当t=2分钟时,速度v=米/分钟,路程s=米;②当t=15分钟时,速度v=米/分钟,路程s=米.(2)当0≤t≤3和3<t≤15时,分别求出路程s(米)关于时间t(分钟)的函数解析式;(3)求王叔叔该天上班从家出发行进了750米时所用的时间t.23.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.24.如图,在平面直角坐标系中,抛物线y=m2x﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.2015年山东省潍坊市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对的3分,选错、不选或选出的答案超出一个均记0分.)2 =0.5,1.A 解析:|﹣2|=2,02=1,1∵2215.0-<<<, ∴222201-<<<-,∴在|﹣2|,02,12-,2这四个数中,最大的数是|﹣2|.故选:A .点评: (1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①pa-=(a ≠0,p 为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数. (3)此题还考查了零指数幂的运算,要熟练掌握.2.C 解析:从左面看可得矩形中间有一条横着的虚线. 故选C .点评: 本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.C 解析:将11.1万用科学记数法表示为1.11×510. 故选C .点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a ×n10的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.B 解析:A 、是中心对称图形.故错误; B 、不是中心对称图形.故正确; C 、是中心对称图形.故错误; D 、是中心对称图形.故错误. 故选B .点评: 本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.D 解析:∵532≠+,∴选项A 不正确; ∵3y x 2﹣y x 2=2y x 2, ∴选项B 不正确;∵ba b a ++22≠a+b ,∴选项C 不正确; ∵3632)(b a b a =,∴选项D 正确. 故选:D .点评: (1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①mnnm aa =)((m ,n 是正整数);②nn n b a ab =)((n 是正整数).(2)此题还考查了二次根式的加减法,要熟练掌握,解答此题的关键是要明确二次根式的加减法的步骤:①如果有括号,根据去括号法则去掉括号.②把不是最简二次根式的二次根式进行化简.③合并被开方数相同的二次根式.(3)此题还考查了合并同类项,以及约分的方法的应用,要熟练掌握.6.D 解析:⎩⎨⎧≥+②①>093-1-2x x∵解不等式①得;x >﹣21, 解不等式②得;x ≤3, ∴不等式组的解集为﹣21<x ≤3, ∴不等式组的整数解为0,1,2,3, 0+1+2+3=6, 故选D .点评: 本题考查了解一元一次不等式组,求不等式组的整数解的应用,解此题的关键是求出不等式组的解集,难度适中.7.B 解析:∵BC 是⊙O 的切线,OB 是⊙O 的半径, ∴∠OBC=90°, ∵OA=OB ,∴∠A=∠ABO=20°, ∴∠BOC=40°, ∴∠C=50°. 故选B .点评: 本题考查了本题考查了切线的性质,等腰三角形的性质,掌握定理是解题的关键.8.A 解析:∵式子0)1(1-+-k k 有意义,∴解得k >1,∴k ﹣1>0,1﹣k <0,∴一次函数y=(k ﹣1)x+1﹣k 的图象可能是:.故选:A .点评: (1)此题主要考查了一次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:当b >0时,(0,b )在y 轴的正半轴上,直线与y 轴交于正半轴;当b <0时,(0,b )在y 轴的负半轴,直线与y 轴交于负半轴.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①0a =1(a ≠0);②00≠1.(3)此题还考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数是非负数.9.D 解析:∵根据作法可知:MN 是线段AD 的垂直平分线, ∴AE=DE ,AF=DF , ∴∠EAD=∠EDA , ∵AD 平分∠BAC , ∴∠BAD=∠CAD , ∴∠EDA=∠CAD , ∴DE ∥AC , 同理DF ∥AE ,∴四边形AEDF 是菱形, ∴AE=DE=DF=AF , ∵AF=4,∴AE=DE=DF=AF=4, ∵DE ∥AC , ∴AEBECD BD =, ∵BD=6,AE=4,CD=3, ∴436BE =, ∴BE=8, 故选D .点评: 本题考查了平行线分线段成比例定理,菱形的性质和判定,线段垂直平分线性质,等腰三角形的性质的应用,能根据定理四边形AEDF 是菱形是解此题的关键,注意:一组平行线截两条直线,所截得的对应线段成比例.10.A 解析:作OD ⊥AB 于C ,交小⊙O 于D ,则CD=2,AC=BC , ∵OA=OD=4,CD=2,∴OC=2,在RT △AOC 中,sin ∠OAC=21=OA OC , ∴∠OAC=30°, ∴∠AOC=120°, AC=22OC OA -=23, ∴AB=43,∴杯底有水部分的面积=AOB △扇形S ﹣S =36041202⨯π﹣21×43×2=(316π﹣43)c 2m故选A .点评: 本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.11.C 解析:∵△ABC 为等边三角形, ∴∠A=∠B=∠C=60°,AB=BC=AC . ∵筝形ADOK ≌筝形BEPF ≌筝形AGQH , ∴AD=BE=BF=CG=CH=AK . ∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK ,四边形ODEP 、四边形PFGQ 、四边形QHKO 都为矩形. ∴∠ADO=∠AKO=90°. 连结AO ,在Rt △AOD 和Rt △AOK 中,,∴Rt △AOD ≌Rt △AOK (HL ). ∴∠OAD=∠OAK=30°.设OD=x ,则AO=2x ,由勾股定理就可以求出AD=3x , ∴DE=6﹣23x ,∴纸盒侧面积=3x (6﹣23x )=﹣632x +18x ,=﹣63239)23(2+-x∴当x=23时,纸盒侧面积最大为239. 故选C .点评: 本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,矩形的面积公式的运用,二次函数的性质的运用,解答时表示出纸盒的侧面积是关键.12.B 解析:∵抛物线开口向上, ∴a >0,∵对称轴在y 轴左边, ∴b >0,∵抛物线与y 轴的交点在x 轴的上方, ∴c+2>2, ∴c >0, ∴abc >0,∴结论①不正确;∵二次函数y=a 2x +bx+c+2的图象与x 轴只有一个交点, ∴△=0, 即2b ﹣4ac=0, ∴结论②正确;∵对称轴x=﹣ab2=﹣1, ∴b=2a , ∵2b ﹣4ac=0, ∴42a ﹣4ac=0, ∴a=c , ∵c >0, ∴a >0,∴结论③不正确;∵对称轴是x=﹣1,而且x=0时,y>2,∴x=﹣2时,y>2,∴4a﹣2b+c+2>2,∴4a﹣2b+c>0.∴结论④正确.综上,可得正确结论的个数是2个:②④.故选:B.点评:此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).二、填空题(本大题共6小题,每小题3分,共18分,只要求填写最后结果.)13.5 解析:∵这组数据的众数是5,∴x=5,则平均数为:6465375+++++=5.故答案为:5.点评:本题考查了众数和平均数的知识,一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.14.30 解析:过点A作AE∥CD交BC于点E,∵AD∥BC,∴四边形AECD是平行四边形,∴AE=CD=AB=20,AD=EC,∵∠B=60°,∴BE=AB=AE=20,∴AD=BC﹣CE=50﹣20=30.故答案为:30点评:此题考查了等腰梯形的性质、平行四边形的判定与性质以及等边三角形的性质.解题的关键是注意平移梯形的一腰是梯形题目中常见的辅助线.15.a(x﹣1)(x﹣6)解析:原式=a(2x﹣7x+6)=a(x﹣1)(x﹣6),故答案为:a(x﹣1)(x﹣6)点评:此题考查了因式分解﹣十字相乘法,以及提取公因式法,熟练掌握因式分解的方法是解本题的关键.16.135 解析:∵爬到该楼房顶端B 点处观测观光塔底部D 处的俯角是30°, ∴∠ADB=30°, 在Rt △ABD 中, tan30°=ADAB, 解得,3345=AD , ∴AD=453,∵在一楼房的底端A 点处观测观光塔顶端C 处的仰角是60°,∴在Rt △ACD 中,CD=AD •tan60°=453×3=135米.故答案为135米.点评: 本题考查了解直角三角形的应用﹣﹣仰角、俯角问题,要求学生能借助仰角、俯角构造直角三角形并解直角三角形. 17.n)43(23⨯ 解析:∵等边三角形ABC 的边长为2,A 1B ⊥BC , ∴B 1B =1,AB=2,根据勾股定理得:A 1B =3, ∴121)43(23)3(4321⨯=⨯⨯=S ; ∵等边三角形A 1B 1C 的边长为,A 2B ⊥1B 1C , ∴1B 2B =23,A 1B =3, 根据勾股定理得:A 2B =23, ∴222)43(23)23(4321⨯=⨯⨯=S ; 依此类推,nn S )43(23⨯=.故答案为:n)43(23⨯. 点评: 此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.18.﹣2<x <0或x >2 解析:∵正比例函数1y =mx (m >0)的图象与反比例函数2y =xk (k ≠0)的图象交于点A (n ,4)和点B , ∴B (﹣n ,﹣4).∵△AMB 的面积为8, ∴21×4n ×2=8, 解得n=2, ∴A (2,4),B (﹣2,﹣4).由图形可知,当﹣2<x <0或x >2时,正比例函数1y =mx (m >0)的图象在反比例函数2y =xk(k ≠0)图象的上方,即1y >2y . 故答案为﹣2<x <0或x >2.点评: 本题考查了一次函数和反比例函数的交点问题,三角形的面积,反比例函数的对称性,体现了数形结合的思想.三、解答题(本大题共6小题,共66分.解答要写出必要的文字说明、证明过程或演算步骤.)19.解析:(1)设A 种型号家用净水器购进了x 台,B 种型号家用净水器购进了y 台,根据“购进了A 、B 两种型号家用净水器共160台,购进两种型号的家用净水器共用去36000元.”列出方程组解答即可;(2)设每台A 型号家用净水器的毛利润是a 元,则每台B 型号家用净水器的毛利润是2a 元,根据保证售完这160台家用净水器的毛利润不低于11000元,列出不等式解答即可. 解:(1)设A 种型号家用净水器购进了x 台,B 种型号家用净水器购进了y 台,由题意得,解得⎩⎨⎧==60100y x .答:A 种型号家用净水器购进了100台,B 种型号家用净水器购进了60台.(2)设每台A 型号家用净水器的毛利润是a 元,则每台B 型号家用净水器的毛利润是2a元,由题意得100a+60×2a ≥11000, 解得a ≥50,150+50=200(元).答:每台A 型号家用净水器的售价至少是200元. 点评: 此题考查一元一次不等式组的实际运用,二元一次方程组的实际运用,找出题目蕴含的数量关系与不等关系是解决问题的关键.20.解析:(1)首先求得总分数,然后即可求得x 和y 的值; (2)首先求得样本中的优秀率,然后用样本估计总体即可;(3)列表将所有等可能的结果列举出来,然后利用概率公式求解即可. 解:(1)由表可知被调查学生中“一般”档次的有13人,所占比例是26%,所以共调查的学生数是13÷26%=50,则调查学生中“良好”档次的人数为50×60%=30, ∴x=30﹣(12+7)=11,y=50﹣(1+2+6+7+12+11+7+1)=3.(2)由样本数据可知“优秀”档次所占的百分比为5013+=8%, ∴,估计九年级400名学生中为优秀档次的人数为400×8%=32;(3)用A 、B 、C 表示阅读本数是8的学生,用D 表示阅读9本的学生,列表得到: A B C D A AB AC AD B BA BC BD C CA CB CD D DA DB DC由列表可知,共12种等可能的结果,其中所抽取的2名学生中有1名阅读本数为9的有6种,所以抽取的2名学生中有1名阅读本数为9的概率为21126=; 点评: 考查了列表与树状图法求概率、用样本估计总体及扇形统计图的知识,解题的关键是能够通过列表将所有等可能的结果列举出来,难度不大.21.解析:(1)连接OD ,利用AB=AC ,OD=OC ,证得OD ∥AD ,易证DF ⊥OD ,故DF 为⊙O 的切线;(2)证得△BED ∽△BCA ,求得BE ,利用AC=AB=AE+BE 求得答案即可. 解:(1)证明:如图,∵AB=AC , ∴∠B=∠C , ∵OD=OC , ∴∠ODC=∠C , ∴∠ODC=∠B , ∴OD ∥AB , ∵DF ⊥AB , ∴OD ⊥DF ,∵点D 在⊙O 上,∴直线DF 与⊙O 相切;(2)解:∵四边形ACDE 是⊙O 的内接四边形, ∴∠AED+∠ACD=180°, ∵∠AED+∠BED=180°, ∴∠BED=∠ACD , ∵∠B=∠B ,∴△BED ∽△BCA , ∴BCBEAB BD =, ∵OD ∥AB ,AO=CO , ∴BD=CD=21BC=3, 又∵AE=7, ∴673BEBE =+, ∴BE=2,∴AC=AB=AE+BE=7+2=9.点评: 此题考查切线的判定,三角形相似的判定与性质,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.22.解析:(1)①根据图象得出直线OA 的解析式,代入t=2解答即可; ②根据图象得出t=15时的速度,并计算其路程即可;(2)利用待定系数法得出0≤t ≤3和3<t ≤15时的解析式即可; (3)根据当3<t ≤15时的解析式,将y=750代入解答即可. 解:(1)①直线OA 的解析式为:y=3300t=100t , 把t=2代入可得:y=200; 路程S=21×2×200=200, 故答案为:200;200;②当t=15时,速度为定值=300,路程=21×3×200+(15-3)×300=4050, 故答案为:300;4050;(2)①当0≤t ≤3,设直线OA 的解析式为:y=kt ,由图象可知点A (3,300),解得:k=100,则解析式为:y=100t ;设l 与OA 的交点为P ,则P (t ,100t ), ∴s=1t 21POT ••=△S , ②当3<t ≤15时,设l 与AB 的交点为Q ,则Q (t ,300), ∴S=450300300t 3-t 21OAQT -=⨯+=t S )(梯形,(3)∵当0≤t ≤3,S 最大=50×9=450, ∵750>50,∴当3<t ≤15时,450<S ≤4050, 则令750=300t ﹣450, 解得:t=4.故王叔叔该天上班从家出发行进了750米时所用的时间4分钟. 点评: 此题考查一次函数的应用,关键是根据图象进行分析,同时利用待定系数法得出解析式.23.解析:(1)延长ED 交交AG 于点H ,易证△AOG ≌△DOE ,得到∠AGO=∠DEO ,然后运用等量代换证明∠AHE=90°即可;(2)①在旋转过程中,∠OAG ′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG ′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG ′=90°时,α=150°; ②当旋转到A 、O 、F ′在一条直线上时,AF ′的长最大,AF ′=AO+OF ′=22+2,此时α=315°. 解:(1)如图1,延长ED 交AG 于点H , ∵点O 是正方形ABCD 两对角线的交点, ∴OA=OD ,OA ⊥OD , ∵OG=OE ,在△AOG 和△DOE 中,,∴△AOG ≌△DOE , ∴∠AGO=∠DEO ,∵∠AGO+∠GAO=90°, ∴∠AGO+∠DEO=90°, ∴∠AHE=90°, 即DE ⊥AG ;(2)①在旋转过程中,∠OAG ′成为直角有两种情况: (Ⅰ)α由0°增大到90°过程中,当∠OAG ′=90°时, ∵OA=OD=21OG=21OG ′,∴在Rt △OAG ′中,sin ∠AG ′O=21='G O OA , ∴∠AG ′O=30°,∵OA ⊥OD ,OA ⊥AG ′, ∴OD ∥AG ′,∴∠DOG ′=∠AG ′O=30°, 即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG ′=90°时, 同理可求∠BOG ′=30°, ∴α=180°﹣30°=150°.综上所述,当∠OAG ′=90°时,α=30°或150°.②如图3,当旋转到A 、O 、F ′在一条直线上时,AF ′的长最大, ∵正方形ABCD 的边长为1, ∴OA=OD=OC=OB=22, ∵OG=2OD , ∴OG ′=OG=2, ∴OF ′=2, ∴AF ′=AO+OF ′=22+2, ∵∠COE ′=45°, ∴此时α=315°.点评: 本题主要考查了正方形的性质、全等三角形的判定与性质、锐角三角函数、旋转变换的性质的综合运用,有一定的综合性,分类讨论当∠OAG ′是直角时,求α的度数是本题的难点.24.解析:(1)认真审题,直接根据题意列出方程组,求出B ,C 两点的坐标,进而可求出抛物线的解析式;(2)分0<t <6时和6≤t ≤8时两种情况进行讨论,据此即可求出三角形的最大值; (3)分2<t ≤6时和t >6时两种情况进行讨论,再根据三角形相似的条件,即可得解. 解:(1)由题意知21x 、x 是方程m 2x ﹣8mx+4m+2=0的两根,∴21x +x =8, 由⎩⎨⎧=-=+482121x x x x解得:⎩⎨⎧==6221x x∴B (2,0)、C (6,0)则4m ﹣16m+4m+2=0, 解得:m=41, ∴该抛物线解析式为:y=32412+-x x ; (2)可求得A (0,3)设直线AC 的解析式为:y=kx+b , ∵∴⎪⎩⎪⎨⎧=-=321b k ∴直线AC 的解析式为:y=﹣21x+3, 要构成△APC ,显然t ≠6,分两种情况讨论:①当0<t <6时,设直线l 与AC 交点为F ,则:F (t ,﹣21t+3), ∵P (t ,32412+-t t ),∴PF=t t 23412+-, ∴CPF △APF △APC △S +S =S=21(t t 23412+-)×t+21(t t 23412+-)×(6-t ) =21(t t 23412+-)×6=427)3(432+--t 此时最大值为:427,②当6≤t ≤8时,设直线l 与AC 交点为M ,则:M (t ,﹣21t+3), ∵P (t ,32412+-t t ),∴PM=t t 23412-, ∴CPF △APF △APC △S -S =S =21(t t 23412-)×t-21(t t 23412-)×(t-6)=t t 29432- =427)3(432--t , 当t=8时,取最大值,最大值为:12,综上可知,当0<t ≤8时,△APC 面积的最大值为12;(3)如图,连接AB ,则△AOB 中,∠AOB=90°,AO=3,BO=2,Q (t ,3),P (t ,32412+-t t ), ①当2<t ≤6时,AQ=t ,PQ=t t 2412+-,若:△AOB ∽△AQP ,则:PQBQAQ AO =, 即:tt t 241232+-=, ∴t=0(舍),或t=316,若△AOB ∽△PQA ,则:AQOBPQ AO =, 即:tt t 224132=+-, ∴t=0(舍)或t=2(舍), ②当t >6时,AQ ′=t ,PQ ′=t t 2412-, 若:△AOB ∽△AQP ,则:Q P OBQ A AO ''=', 即:t t t 241232-=, ∴t=0(舍),或t=332,若△AOB ∽△PQA ,则:Q A OBQ P AO '='', 即:tt t 241322-=, ∴t=0(舍)或t=14,∴t=316或t=332或t=14.点评: 本题主要考查了抛物线解析式的求法,以及利用配方法等知识点求最值的问题,还考查了三角形相似的问题,是一道二次函数与几何问题结合紧密的题目,要注意认真总结.。
2015年山东省潍坊市昌邑市九年级学业水平考试数学试卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.)1.下面的几何体中,主视图为三角形的是()A.B.C.D.2.()2的算术平方根是()A.4 B.±4 C.﹣4 D.163.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C. D.4.据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n,则n等于()A.10 B.11 C.12 D.135.函数y=的自变量x的取值范围在数轴上可表示为()A.B.C.D.6.小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是()A.22℃ B.23℃ C.24℃ D.25℃7.下列各式计算正确的是()A.+= B.2+=2C.3﹣=2D.=﹣8.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A .x ≥B .x ≤3C .x ≤D .x ≥39.如图,△ABC 内接于半径为5的⊙O ,圆心O 到弦BC 的距离等于3,则∠A 的正切值等于( )A .B .C .D .10.若方程组的解是,则方程组的解为( )A .B .C .D .11.已知直线y=kx (k >0)与双曲线y=交于点A (x 1,y 1),B (x 2,y 2)两点,则x 1y 2+x 2y 1的值为( )A .﹣6B .﹣9C .0D .912.如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点,且PC=BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是( )A .B .5cmC .D .7cm二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.分解因式:8(a2+1)+16a=.14.一组数据:1,2,1,0,2,a,若它们众数为1,则这组数据的平均数为.15.如图,已知矩形ABCD中,AB=8,BC=5π.分别以B,D为圆心,AB为半径画弧,两弧分别交对角线BD于点E,F,则图中阴影部分的面积为.16.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(a,0),那么代数式a2﹣a+2014的值为.17.如图,将边长为6cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C 落在Q处,EQ与BC交于点G,则△EBG的周长是cm.18.如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=.三、解答题(本题共6小题,共66分.解答应写出文字说明、证明过程或推演步骤.)19.我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)请你求出该班的总人数,并补全频数分布直方图;(2)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.20.如图,根据图中数据完成填空,再按要求答题:sin2A1+sin2B1=;sin2A2+sin2B2=;sin2A3+sin2B3=.(1)观察上述等式,猜想:在Rt△ABC中,∠C=90°,都有sin2A+sin2B=.(2)如图④,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,利用三角函数的定义和勾股定理,证明你的猜想.(3)已知:∠A+∠B=90°,且sinA=,求sinB.21.如图,在平面直角坐标系中,点A,B的坐标分别是(﹣3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造□PCOD.在线段OP延长线上一动点E,且满足PE=AO.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为秒时,求此时四边形ADEC的周长是多少?22.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23.如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP 为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)连接AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.24.如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC 的面积最大?并求出此时P点的坐标和△PAC的最大面积.2015年山东省潍坊市昌邑市九年级学业水平考试数学试卷参考答案与试题解析一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.)1.下面的几何体中,主视图为三角形的是()A.B.C.D.【考点】简单几何体的三视图.【专题】常规题型.【分析】主视图是从几何体的正面看所得到的图形,根据主视图所看的方向,写出每个图形的主视图及可选出答案.【解答】解:A、主视图是长方形,故A选项错误;B、主视图是长方形,故B选项错误;C、主视图是三角形,故C选项正确;D、主视图是正方形,中间还有一条线,故D选项错误;故选:C.【点评】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.2.()2的算术平方根是()A.4 B.±4 C.﹣4 D.16【考点】算术平方根.【分析】根据算术平方根定义求出即可.【解答】解:()2的算术平方根是4,故选A【点评】本题考查了算术平方根的应用,关键是根据算术平方根定义解答.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既是轴对称图形,也是中心对称图形,符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选:A.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n,则n等于()A.10 B.11 C.12 D.13【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3875.5亿=3875 5000 0000=3.8755×1011,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.函数y=的自变量x的取值范围在数轴上可表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;函数自变量的取值范围.【专题】计算题.【分析】函数y=有意义,则分母必须满足,解得出x的取值范围,在数轴上表示出即可;【解答】解:∵函数y=有意义,∴分母必须满足,解得,,∴x>1;故选B.【点评】本题考查了函数自变量的取值范围及在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画).在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是()A.22℃ B.23℃ C.24℃ D.25℃【考点】中位数.【专题】图表型.【分析】将数据从小到大排列,根据中位数的定义求解即可.【解答】解:将数据从小到大排列为:21,22,22,23,24,24,25,中位数是23.故选:B.【点评】本题考查了中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.下列各式计算正确的是()A.+= B.2+=2C.3﹣=2D.=﹣【考点】二次根式的加减法.【分析】根据二次根式的加减法则对各选项进行逐一分析即可.【解答】解:A 、与不是同类项,不能合并,故本选项错误;B 、2与不是同类项,不能合并,故本选项错误;C 、3﹣=(3﹣1)=2,故本选项正确;D 、与不是同类项,不能合并,故本选项错误.故选C .【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.8.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x ≥ax+4的解集为( )A .x ≥B .x ≤3C .x ≤D .x ≥3 【考点】一次函数与一元一次不等式.【分析】将点A (m ,3)代入y=2x 得到A 的坐标,再根据图形得到不等式的解集. 【解答】解:将点A (m ,3)代入y=2x 得,2m=3,解得,m=,∴点A 的坐标为(,3),∴由图可知,不等式2x ≥ax+4的解集为x ≥. 故选:A .【点评】本题考查了一次函数与一元一次不等式,要注意数形结合,直接从图中得到结论.9.如图,△ABC 内接于半径为5的⊙O ,圆心O 到弦BC 的距离等于3,则∠A 的正切值等于( )A .B .C .D .【考点】垂径定理;圆周角定理;解直角三角形. 【专题】几何图形问题.【分析】过点O 作OD ⊥BC ,垂足为D ,根据圆周角定理可得出∠BOD=∠A ,再根据勾股定理可求得BD=4,从而得出∠A 的正切值.【解答】解:过点O 作OD ⊥BC ,垂足为D , ∵OB=5,OD=3, ∴BD=4,∵∠A=∠BOC , ∴∠A=∠BOD ,∴tanA=tan ∠BOD==,故选:D .【点评】本题考查了垂径定理、圆周角定理以及解直角三角形,要熟练掌握这几个知识点.10.若方程组的解是,则方程组的解为( )A .B .C .D .【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】根据已知方程组的解,确定出所求方程组的解即可.【解答】解:由题意得:所求方程组的解为,解得:,故选C【点评】此题考查了二元一次方程组的解,弄清已知方程组与所求方程组的共同特征是解本题的关键.11.已知直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为()A.﹣6 B.﹣9 C.0 D.9【考点】反比例函数图象的对称性.【专题】探究型.【分析】先根据点A(x1,y1),B(x2,y2)是双曲线y=上的点可得出x1•y1=x2•y2=3,再根据直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点可得出x1=﹣x2,y1=﹣y2,再把此关系代入所求代数式进行计算即可.【解答】解:∵点A(x1,y1),B(x2,y2)是双曲线y=上的点∴x1•y1=x2•y2=3①,∵直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点,∴x1=﹣x2,y1=﹣y2②,∴原式=﹣x1y1﹣x2y2=﹣3﹣3=﹣6.故选:A.【点评】本题考查的是反比例函数的对称性,根据反比例函数的图象关于原点对称得出x1=﹣x2,y1=﹣y2是解答此题的关键.12.如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点,且PC=BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A.B.5cm C.D.7cm【考点】平面展开-最短路径问题.【分析】首先画出圆柱的侧面展开图,根据高BC′=6cm,PC=BC,求出PC′=×6=4cm,在Rt△AC′P 中,根据勾股定理求出AP的长.【解答】解:侧面展开图如图所示,∵圆柱的底面周长为6cm,∴AC′=3cm,∵PC′=BC′,∴PC′=×6=4cm,在Rt△ACP中,AP2=AC′2+CP2,∴AP==5.故选B.【点评】此题主要考查了平面展开图,以及勾股定理的应用,做题的关键是画出圆柱的侧面展开图.二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.分解因式:8(a2+1)+16a=8(a+1)2.【考点】提公因式法与公式法的综合运用.【分析】直接提取公因式8,再利用完全平方公式分解因式得出答案.【解答】解:8(a2+1)+16a=8(a2+1+2a)=8(a+1)2.故答案为:8(a+1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.14.一组数据:1,2,1,0,2,a,若它们众数为1,则这组数据的平均数为.【考点】众数;算术平均数.【分析】根据众数为1,求出a的值,然后根据平均数的概念求解.【解答】解:∵众数为1,∴a=1,∴平均数为:=.故答案为:.【点评】本题考查了众数和平均数的知识:一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.15.如图,已知矩形ABCD中,AB=8,BC=5π.分别以B,D为圆心,AB为半径画弧,两弧分别交对角线BD于点E,F,则图中阴影部分的面积为4π.【考点】扇形面积的计算.【专题】推理填空题.【分析】由题意和图形可得,阴影部分的面积等于△ABD的面积与扇形ABE和扇形DMF的差,而两个扇形的半径相等,所对的圆心角的和等于90°,从而可以把两个扇形合在一起正好是四分之一个圆,然后计算出它们的面积作差,本题得以解决.【解答】解:∵在矩形ABCD中,AB=8,BC=5π,∴∠BAC=90°,∠ABD+∠ADB=90°,BC=AD=5π,∴,∵以B ,D 为圆心,AB 为半径画弧,两弧分别交对角线BD 于点E ,F ,以B ,D 为圆心,AB 为半径画弧,两弧分别交对角线BD 于点E ,F ,∴S 扇形ABE +S 扇形DMF =,∴S 阴影AEMF =S △ABD ﹣S 扇形ABE ﹣S 扇形DMF =20π﹣16π=4π, 故答案为:4π.【点评】本题考查扇形面积的计算,解题的关键是明确题意,利用数形结合和转化的数学思想,来解答本题.16.已知抛物线y=x 2﹣x ﹣1与x 轴的一个交点为(a ,0),那么代数式a 2﹣a+2014的值为 2015 . 【考点】二次函数图象上点的坐标特征. 【专题】计算题.【分析】根据二次函数图象上点的坐标特征得到a 2﹣a ﹣1=0,则a 2﹣a=1,然后利用整体代入的方法求代数式a 2﹣a+2014的值.【解答】解:∵抛物线y=x 2﹣x ﹣1与x 轴的一个交点为(a ,0), ∴a 2﹣a ﹣1=0, ∴a 2﹣a=1,∴a 2﹣a+2014=1+2014=2015. 故答案为2015.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.会利用整体代入的方法计算.17.如图,将边长为6cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH ,点C 落在Q 处,EQ 与BC 交于点G ,则△EBG 的周长是 12 cm .【考点】翻折变换(折叠问题).【分析】设AF=x,则DF=6﹣x,由折叠的性质可知:EF=DF=6﹣x,在Rt△AFE,由勾股定理可求得:x=,然后再证明△FAE∽△EBG,从而可求得BG=4,接下来在Rt△EBG中,由勾股定理可知:EG=5,从而可求得△EBG的周长为12cm.【解答】解:设AF=x,则DF=6﹣x,由折叠的性质可知:EF=DF=6﹣x.在Rt△AFE,由勾股定理可知:EF2=AF2+AE2,即(6﹣x)2=x2+32,解得:x=.∵∠FEG=90°,∴∠AEF+∠BEG=90°.又∵∠BEG+∠BGE=90°,∴∠AEF=∠BGE.又∵∠EAF=∠EBG,∴△FAE∽△EBG.∴,即.∴BG=4.在Rt△EBG中,由勾股定理可知:EG===5.所以△EBG的周长=3+4+5=12cm.【点评】本题主要考查的是折叠的性质、勾股定理、相似三角形的综合应用,利用勾股定理求得AF 的长是解题的关键.18.如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=2.【考点】二次函数图象与几何变换.【专题】压轴题.【分析】根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值.【解答】解:∵一段抛物线:y=﹣x(x﹣3)(0≤x≤3),∴图象与x轴交点坐标为:(0,0),(3,0),∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.∴C13的解析式与x轴的交点坐标为(36,0),(39,0),且图象在x轴上方,∴C13的解析式为:y13=﹣(x﹣36)(x﹣39),当x=37时,y=﹣(37﹣36)×(37﹣39)=2.故答案为:2.【点评】此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.三、解答题(本题共6小题,共66分.解答应写出文字说明、证明过程或推演步骤.)19.我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)请你求出该班的总人数,并补全频数分布直方图;(2)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.【考点】频数(率)分布直方图;扇形统计图;列表法与树状图法.【专题】图表型.【分析】(1)根据C类有12人,占24%,据此即可求得总人数,然后利用总人数乘以对应的比例即可求得E类的人数;(2)利用列举法即可求解.【解答】解:(1)该班总人数是:12÷24%=50(人),则E类人数是:50×10%=5(人),A类人数为:50﹣(7+12+9+5)=17(人).补全频数分布直方图如下:;(2)画树状图如下:,或列表如下:共有12种等可能的情况,恰好1人选修篮球,1人选修足球的有4种,则概率是:=.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.如图,根据图中数据完成填空,再按要求答题:sin2A1+sin2B1=1;sin2A2+sin2B2=1;sin2A3+sin2B3=1.(1)观察上述等式,猜想:在Rt△ABC中,∠C=90°,都有sin2A+sin2B=1.(2)如图④,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,利用三角函数的定义和勾股定理,证明你的猜想.(3)已知:∠A+∠B=90°,且sinA=,求sinB.【考点】勾股定理;互余两角三角函数的关系;解直角三角形.【专题】几何综合题;规律型.【分析】(1)由前面的结论,即可猜想出:在Rt△ABC中,∠C=90°,都有sin2A+sin2B=1;(2)在Rt△ABC中,∠C=90°.利用锐角三角函数的定义得出sinA=,sinB=,则sin2A+sin2B=,再根据勾股定理得到a2+b2=c2,从而证明sin2A+sin2B=1;(3)利用关系式sin2A+sin2B=1,结合已知条件sinA=,进行求解.【解答】解:(1)由图可知:sin2A1+sin2B1=()2+()2=1;sin2A2+sin2B2=()2+()2=1;sin2A3+sin2B3=()2+()2=1.观察上述等式,可猜想:sin2A+sin2B=1.(2)如图,在Rt△ABC中,∠C=90°.∵sinA=,sinB=,∴sin2A+sin2B=,∵∠C=90°,∴a2+b2=c2,∴sin2A+sin2B=1.(3)∵sinA=,sin2A+sin2B=1,∴sinB==.【点评】本题考查了在直角三角形中互余两角三角函数的关系,勾股定理,锐角三角函数的定义,比较简单.21.如图,在平面直角坐标系中,点A,B的坐标分别是(﹣3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造□PCOD.在线段OP延长线上一动点E,且满足PE=AO.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为秒时,求此时四边形ADEC的周长是多少?【考点】平行四边形的判定与性质;勾股定理的应用.【分析】(1)连接CD交AE于F,根据平行四边形的性质得到CF=DP,OF=PF,根据题意得到AF=EF,又CF=DP,根据平行四边形的判定定理证明即可;(2)根据题意计算出OC、OP的长,根据勾股定理求出AC、CE,根据平行四边形的周长公式计算即可.【解答】(1)证明:连接CD交AE于F,∵四边形PCOD是平行四边形,∴CF=DP,OF=PF,∵PE=AO,∴AF=EF,又CF=DP,∴四边形ADEC为平行四边形;(2)解:当点P运动的时间为秒时,OP=,OC=3,则OE=,由勾股定理得,AC==3,CE==,∵四边形ADEC为平行四边形,∴周长为(3+)×2=6+.【点评】本题考查的是平行四边形的性质和判定、勾股定理的应用,掌握对角线互相平分的四边形是平行四边形是解题的关键,注意坐标与图形的关系的应用.22.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【考点】一元二次方程的应用;分式方程的应用.【专题】行程问题.【分析】(1)利用原工作时间﹣现工作时间=4这一等量关系列出分式方程求解即可;(2)根据矩形的面积和为56平方米列出一元二次方程求解即可.【解答】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:﹣=4解得:x=2000,经检验,x=2000是原方程的解,答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为a米,根据题意得,(20﹣3a)(8﹣2a)=56解得:a=2或a=(不合题意,舍去).答:人行道的宽为2米.【点评】本题考查了分式方程及一元二次方程的应用,解分式方程时一定要检验.23.如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP 为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)连接AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.【考点】圆的综合题.【专题】压轴题.【分析】(1)当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,直接利用勾股定理求出AC进而得出答案;(2)首先得出四边形APCE是菱形,进而得出CM的长,进而利用锐角三角函数关系得出CP以及EF的长;(3)∠GAE≠∠BGC,只能∠AGE=∠AEG,利用AD∥BC,得出△GAE∽△GBC,进而求出即可.【解答】解:(1)如图1,设⊙O的半径为r,当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,∴BH=AB•cosB=4,∴AH=3,CH=4,∴AC==5,∴此时CP=r=5;(2)如图2,若AP∥CE,APCE为平行四边形,∵CE=CP,∴四边形APCE是菱形,连接AC、EP,则AC⊥EP,∴AM=CM=,由(1)知,AB=AC,则∠ACB=∠B,∴CP=CE==,∴EF=2=;(3)如图3:连接AC,过点C作CN⊥AD于点N,设AQ⊥BC,∵=cosB,AB=5,∴BQ=4,AN=QC=BC﹣BQ=4.∵cosB=,∴∠B<45°,∵∠BCG<90°,∴∠BGC>45°,∴∠BGC>∠B=∠GAE,即∠BGC≠∠GAE,又∵∠AEG=∠BCG≥∠ACB=∠B=∠GAE,∴当∠AEG=∠GAE时,A、E、G重合,则△AGE不存在.即∠AEG≠∠GAE∴只能∠AGE=∠AEG,∵AD∥BC,∴△GAE∽△GBC,∴=,即=,解得:AE=3,EN=AN﹣AE=1,∴CE===.【点评】此题主要考查了相似三角形的判定与性质以及勾股定理以及锐角三角函数关系等知识,利用分类讨论得出△AGE是等腰三角形时只能∠AGE=∠AEG进而求出是解题关键.24.如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC 的面积最大?并求出此时P点的坐标和△PAC的最大面积.【考点】二次函数综合题.【专题】压轴题.【分析】(1)已知抛物线的顶点坐标,可用顶点式设抛物线的解析式,然后将A点坐标代入其中,即可求出此二次函数的解析式;(2)根据抛物线的解析式,易求得对称轴l的解析式及B、C的坐标,分别求出直线AB、BD、CE 的解析式,再求出CE的长,与到抛物线的对称轴的距离相比较即可;(3)过P作y轴的平行线,交AC于Q;易求得直线AC的解析式,可设出P点的坐标,进而可表示出P、Q的纵坐标,也就得出了PQ的长;然后根据三角形面积的计算方法,可得出关于△PAC的面积与P点横坐标的函数关系式,根据所得函数的性质即可求出△PAC的最大面积及对应的P点坐标.【解答】解:(1)设抛物线为y=a(x﹣4)2﹣1,∵抛物线经过点A(0,3),∴3=a(0﹣4)2﹣1,;∴抛物线为;(2)相交.证明:连接CE,则CE⊥BD,当时,x1=2,x2=6.A(0,3),B(2,0),C(6,0),对称轴x=4,∴OB=2,AB==,BC=4,∵AB⊥BD,∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,∴△AOB∽△BEC,∴=,即=,解得CE=,∵>2,故抛物线的对称轴l与⊙C相交.(3)如图,过点P作平行于y轴的直线交AC于点Q;可求出AC的解析式为;设P点的坐标为(m,),则Q点的坐标为(m,);∴PQ=﹣m+3﹣(m2﹣2m+3)=﹣m2+m.∵S△PAC=S△PAQ+S△PCQ=×(﹣m2+m)×6=﹣(m﹣3)2+;∴当m=3时,△PAC的面积最大为;此时,P点的坐标为(3,).【点评】此题考查了二次函数解析式的确定、相似三角形的判定和性质、直线与圆的位置关系、图形面积的求法等知识.。