八年级数学上册第十三章《实数》教案(第一部分)
- 格式:doc
- 大小:353.50 KB
- 文档页数:12
算术平方根(教案说明)一、教材分析1、教材内容人教版义务教育课程标准实验教材数学八年级上册第十三章《实数》第一节《平方根》第一课时:算术平方根。
2、在教材中的地位与作用本课教材所处位置是本章的第一节,主要介绍算术平方根的概念和求法,由于实际中所求问题的答案往往是正数的情况,因此先学习算术平方根,让学生看到算术平方根与实际的联系,在学习算术平方根的基础上再学习平方根。
学生对数的认识要由有理数范围扩大到实数范围,而本课是学习无理数的前提,是学习实数的衔接与过渡,并且是以后学习实数运算的基础,所以本节内容既是对前面所学知识的深化和发展,也是今后学习根式运算、用直接开平方法、公式法解一元二次方程等的重要依据。
二、教学目标根据本教材的结构和内容分析,结合着八年级学生他们的认知结构及其心理特征,依据新课标“知、过、情”三个维度,我制定了以下的教学目标:1、知识与技能目标:让学生理解和掌握算术平方根的概念,会用根号表示正数的算术平方根,了解算术平方根的非负性;了解开方与乘方互为逆运算,会用平方运算求一个非负数的算术平方根。
2、过程与方法目标:让学生经历从实际例子归纳出算术平方根的概念,建立初步的数感和符号感,发展抽象思维。
3、情感与价值观目标:让学生体验数学与生活息息相关,从生活中来,到生活中去;体验数学的作用与价值,建立自信心,提高学习热情,使人人学到有用的数学。
三、教学的重点、难点和关键教学重点: 算术平方根的概念。
教学难点: 算术平方根的计算和运用。
教学关键:求算术平方根运算要靠它的逆运算平方来进行。
四、学情分析:学生已掌握一些完全平方数,能说出一些完全平方数是哪些有理数的平方,同时对乘方运算也有一定的认识。
这对求一些简单数的算术平方根没问题,但对于一些复杂的问题,学生要用到逆向思维去解决还是很困难,因此,要引导学生深刻理解算术平方根的概念及求法。
五、教学方法和手段:(1)根据教材内容结合学生的认知特点,采用“先学后教,当堂训练”的教学方式。
八年级数学第二章《实数》教案(1)北师大版教学过程一、创设情境,导入新课师:用课件出示下列内容:你能独立完成吗?1. _________和_________统称为有理数,如__________________,_________等都是有理数。
2.无理数是_________的小数,如_________,_________,_________等都是无理数。
3.把下列各数分别填入相应的集合内:,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)生:独立思考并完成。
二、师生互动探究互动一、在实数概念基础上对实数进行不同分类师:上面的一系列数,它们都可以填进这两个圆中,你认为我们学过的数字,有没有不属于上面两种类型的呢?生:没有。
师:那么这节课的课题是实数,那么我们就把这两种类型就叫实数。
即有理数和无理数统称为实数。
生:也就是说实数可分为有理数和无理数。
师:对!你说的太对啦!实数从定义可分为有理数和无理数。
无理数和有理数一样,也有正负之分,那么按正负分实数还可以怎样分类?生:实数按正负分还可以分为正实数和负实数。
师:正数和负数能构成实数吗?还有别的数吗?生:还有0.师:所以实数还可以怎么分?生:实数可以分为正实数、0、负实数。
师:很好,在这里要特别提示大家分类可以有不同的方法,但要按同一标准不重不漏。
互动二、了解实数范围内相反数、倒数、绝对值的意义:师:-2的相反数是什么?生:(齐声)2师:的相反数是什么?生: 是-师:实数a的相反数是什么?生:思考并讨论后回答是-a。
师:同学们回答的非常好,-2的倒数是什么?生:是-。
师:的倒数是什么?生:思考回答。
师:实数a的倒数是什么?生:是。
师:-2的绝对值是什么?生:是2师:的绝对值是什么?生:是师:实数a的绝对值是什么?生:思考、交流,然后回答。
是|a|师:通过以上问题我们可以得哪些结论?生:在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。
13.3实数(一)教学课题13.3实数(一)年级学科八年级(上)数学 教学 第1 课型 新授课 主备教师 使用教师教学目标了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;教学重点与难点重点:实数的意义和实数的分类难点:体会数轴上的点与实数是一一对应的 教学准备及手段多媒体教学 探究式教学教 学 过 程动态修改部分 ㈠创设情景,导入新课 略㈡合作交流,解读探究探究 使用计算器计算,把下列有理数写成小数的形式,你有什么发现?3 , 35- ,478 ,911 ,119 ,59我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即 3 3.0= ,30.65-=- ,47 5.8758= ,90.8111= ,111.29= ,50.59= 归纳 任何一个有理数都可以写成有限小数或无限循环小数的形式。
反过来,任何有限小数或无限循环小数也都是有理数观察 通过前面的探讨和学习,我们知道,很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫无理数, 3.14159265π=也是无理数 结论 有理数和无理数统称为实数试一试 把实数分类⎧⎧⎫⎨⎬⎪⎨⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数像有理数一样,无理数也有正负之分。
例如2,33,π是正无理数,2-,33-,π-是负无理数。
由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数我们知道,每个有理数都可以用数轴上的点来表示。
无理数是否也可以用数轴上的点来表示呢?探究 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O ′,点O ′的坐标是多少?总结 1、事实上,每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有些表示有理数,有些表示无理数当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数1、 与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大讨论 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?总结 数a 的相反数是a -,这里a 表示任意一个实数。
初中数学实数教案模板一、教学目标1. 知识与技能:使学生了解实数的定义和性质,能够运用实数解决一些简单的问题。
2. 过程与方法:通过学生自主探究、合作交流,培养学生推理、概括的能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的耐心和自信心。
二、教学重点与难点1. 重点:实数的定义和性质。
2. 难点:实数的运算和应用。
三、教学过程1. 复习提问:复习有关有理数的相关知识,提问学生有理数的运算规则。
2. 引入新课:讲解实数的定义和性质,通过实例让学生理解实数的概念。
3. 自主探究:让学生自主探究实数的性质,如加法、减法、乘法、除法的运算规则。
4. 合作交流:学生分组讨论,分享自己探究的结果,教师给予指导和点评。
5. 巩固练习:给出一些练习题,让学生运用实数的知识解决问题,教师及时给予反馈和讲解。
6. 课堂小结:让学生总结实数的定义和性质,以及运算规则。
7. 课后作业:布置一些相关的作业题,让学生巩固所学知识。
四、教学策略1. 情境教学:通过生活实例引入实数的概念,让学生感受数学与实际的联系。
2. 启发式教学:引导学生自主探究实数的性质,培养学生的推理能力。
3. 合作学习:鼓励学生分组讨论,培养学生的合作意识和沟通能力。
4. 及时反馈:教师在学生练习时及时给予反馈,帮助学生纠正错误,提高正确率。
五、教学评价1. 课堂参与度:观察学生在课堂上的积极参与情况,提问和回答问题的积极性。
2. 作业完成情况:检查学生作业的完成质量,包括答案的正确性和解题过程的清晰度。
3. 自主学习能力:评价学生在自主探究过程中的表现,如独立思考、解决问题的能力。
4. 合作交流能力:评价学生在合作交流中的表现,如沟通、协调、合作的能力。
六、教学资源1. 教材:使用符合课程标准的数学教材,提供丰富的学习材料。
2. 课件:制作多媒体课件,生动展示实数的定义和性质。
3. 练习题:准备一些实数相关的练习题,包括基础题和拓展题。
新人教版八年级上册第13章实数第2节第1课时立方根的概念精品教案教学目标知识技能:理解立方根的概念,能够用根号表示一个数的立方根.能用类比平方根的方法学习立方根,及开立方运算,并区分立方根与平方根的不同.数学思考:会运用熟悉的知识解决新问题是数学的重要思想.解决问题:用类比的方法探寻出立方根的运算及表示方法,•并能自我总结出平方根与立方根的异同.情感态度:发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确的处理.教学重点:立方根的概念,能够用根号表示一个数的立方根.并能利用立方运算求一个数的立方根.教学难点:灵活运用立方运算求一个数的立方根.教学内容:课本第77至78页.教学过程设计活动一.复习回顾,导入新课1.什么叫平方根?如何用符号表示数a(≥0)的平方根?(如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.非负数a的平方根 .)是:a2.什么叫算术平方根?如何用符号表示数a(≥0)的算术平方根?(如果一个非负数x的平方等于a,即x2=a,那么这个非负数x叫做a的算术平方根.非负数a3.正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(正数的有两个平方根,它们互为相反数.0的平方根是0.负数没有平方根.) 这是我们前面已学过的知识.活动二.解决问题,概念探究.1.问题:要制作一种容积为27m3的正方体形状的包装箱,这种包装箱的边长应该是多少?解:设这种包装箱的边长为x m则x3=27这就是要求一个数,使它的立方等于27∵33=27∴x=3答:这种包装箱的边长应为3 m象这样要求出问题中的X的值,就是我们今天要研究的课题—立方根2.定义:一般地,如果一个数X的立方等于a,这个数X就叫做a的立方根(也叫做三次方根).用式子表示,如果X3 =a,那么X叫做a的立方根.如上述问题中,由于33=27 ,所以把3叫做27的立方根.求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求.活动三.探究思考,总结规律.1.探究.根据立方根的意义填空,正数、0和负数的立方根各有什么特点?∵ 23=8, ∴ 8的立方根是( )∵ ( )3=-8, ∴ -8的立方根是( )∵ ( )3=0.125, ∴ 0.125的立方根是( )∵ ( )3=-0.125,∴ -0.125的立方根是( )∵ ( )3=827, ∴ 827的立方根是( ) ∵ ( )3=-827, ∴ -827的立方根是( ) ∵ ( )3=0, ∴ 0的立方根是( )2.归纳.通过上述探究我们得到立方根的性质:(1).正数的立方根是一个正数.(2).负数的立方根是一个负数.(3).零的立方根是零.记住:每一个数都只有一个立方根.3.说一说.数的平方根和数的立方根的定义和性质有没有什么不同?(1)平方根的定义:如果一个数的平方等于a,那么这个数叫做a 的平方根.立方根的定义:如果一个数的立方等于a,那么这个数叫做a 的立方根.(2)平方根的性质:①正数有两个平方根,这两个平方根互为相反数.②0的平方根还是0. ③负数没有平方根.立方根的性质:①正数的立方根还是正数.②0的立方根还是0.③负数的立方根还是负数.4.判断下列说法是否正确,并说明理由:(1)278的立方根是32± . (2)负数没有立方根. (3)4的平方根是2.(4)-8的立方根是-2. (5)立方根是它本身的数只有0.(6)互为相反数的数的立方根也互为相反数.5.大家记得a 的平方根怎样表示吧?类似的请同学们想一想a 的立方根怎样表示?一个x 数的立方等于a,则a 的立方根(即x 3=a 则x 为a 的立方根.),读作“三次根号a ”. 其中a 为被开方数,3为根指数,且根指数为3不能省略,8的立方根,-8的立方根, 根指数为3不能省略.6.议一议,你会区别下列的数吗?a a ± 3aa 表示非负数a 的算术平方根.a ±表示非负数a 的平方根或a 的二次方根.3a 表示数a 的立方根或a 的三次方根.活动四.自主探究,总结规律1.探究.2.由此可归纳出其规律3.立方根的性质:(1)正数的立方根还是正数.(2)0的立方根还是0.(3)负数的立方根还是负数活动五.知识应用,例题解析.1.例题:求下列各式的值:解:35 活动六.知识巩固,课堂练习.1.课本第79页小练习.2.补充题.①求下列各数的立方根:①0 ②8 ③-64 ④解:; ;④∵;∴75②你能求出下列各式中的未知数x 吗?(1)x 3=343(2)(x -1)3=125 (3)3x -2 (4)32-x =4 活动七.知识梳理,课堂总结.这节课学习了立方根的概念和性质,立方根的表示方法以及如何求一个数的立方根. 活动八.知识反馈,作业布置.1.课本第80至81页第1,3,5,8题.2.补充题.①某数的立方根等于它本身,这个数是多少?②某金属冶炼厂将27个大小相同的立方体钢铁在炉火中熔化后浇铸成一个长方体钢铁,此长方体的长,宽,高分别为160cm,80cm 和40cm,求原来立方体钢铁的边长.③有一边长为6cm 的正方体的容器中盛满水,将这些水倒入另一正方体容器时,•还需再加水127cm 3才满,求另一正方体容器的棱长.④设1995x 3=1996y 3=1997z 3,xyz>0,求111x y z++的值.参考答案1.这个数为0,±12.803cm 3.7cm 4.令1995x 3=1996y 3=1997z 3=k,k ≠0,则1995=3k x ,1996=3k y ,1997=3k z ,+即111x y z ++. 而x>0,y>0,z>0,所以得到:111x y z ++=1.。
第 十 三 章 《实 数》 教 案是互为逆运算的关系,会用计算器求一些正数的算术平方根示一个数的平方根分算术平方根与平方根第1课时一、创设情景,导入新课请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为252dm 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少dm ?如果这块画布的面积是212dm ?这个问题实际上是已知一个正数的平方,求这个正数的问题(引入新课)二、合作交流,解读探究讨论:1、什么样的运算是平方运算? 2、你还记得1~20之间整数的平方吗? 自主探索:让学生独立看书,自学教材总结:一般地,如果一个正数x 的平方为a ,即2x a =,那么正数x 叫做a 的算术平方根,记为a ,读作根号a ,其中a 叫做被开方数。
另外:0的算术平方根是0 探究:怎样用两个面积为1的正方形拼成一个面积为2的大正方形把两个小正方形沿对角剪开,将所得的四个直角形拼在一起,就的到一个面积为2的大正方形。
设大正方形的边长为x ,则22x =; 由算术平方根的意义,2x =即大正方形的边长为2。
讨论:2有多大呢?思考:你能举些象2这样的无限不循环小数吗?三、应用迁移,巩固提高例1 求下列各数的算术平方根⑴100 ⑵4964 ⑶0.0001 ⑷0 ⑸124点拨:由一个数的算术平方根的定义出发来解决问题思考:-4有算术平方根吗?备选例题:要使代数式23x -有意义,则x 的取值范围是( )A. 2x ≠B. 2x ≥C. 2x >D. 2x ≤四、总结反思,拓展升华小结:1、算术平方根的定义和性质; 2、用计算器求一个正数的算术平方根拓展:已知21a -的算术平方根是3,31a b +-的算术平方根是4,c 是13的整数部分,求2a b c +-的算术平方根五、课堂跟踪反馈1、 非负数a 的算术平方根表示为___,225的算术平方根是____,0的算术平方根是____2、 1612181___,____,_____2581==-= 3、 16的算术平方根是_____, 0.64-的算术平方根____4、 若x 是49的算术平方根,则x =( )A. 7B. -7C. 49D.-495、 若47x -=,则x 的算术平方根是( ) A. 49 B. 53 C.7 D 53.6、 若()2130x y x y z -+++++=,求,,x y z 的值。
§13.3实数(1)2013年7月3日教学目标:(1)了解无理数和实数的概念和实数的分类,知道实数和数轴上的点一一对应关系 .(2)让学生感知无理数的存在,经历数系从有理数扩展到实数的过程 .通过无理数的引入,培养从特殊到一般、具体到抽象的逻辑思维能力 .(3)渗透数形结合及分类的思想,体验数系的扩展源于实际,又服务于实际的辩证关系 . 教学重点:理解无理数、实数的意义和实数的分类 . 教学难点:正确理解无理数的意义 . (一)导入新课在小学时候,我们认识了一个非常特殊的数:圆周率π,它约等于3.14,你还能说出它后面的数字吗?比一比,看谁记住最多 .目前π值已准确到上千亿位,π是一个怎样的数呢?是有理数吗? 整数 如:-3,0 ,5… 有理数分数 如:41,32-…π肯定不是整数,那么它一个分数吗?请同学们将下列的小数形式:5= ,41= ,32-= ,71= . 引导发现:任何有理数写成小数的形式,一定是有限小数或者无限小数,因此可以说π不是有理数,它是一个无限不循环小数,我们知道,很多数的平方根和立方根都是无限不循环小数,如2,我们把无限不循环小数又叫无理数 .我们把有理数和无理数统称为实数,这就是今天我们将要学习的内容——实数 . (二)新知探究探究1:数的扩张与分类⎧⎧⎫⎨⎬⎪⎨⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数像有理数一样,无理数也有正负之分 .233π是正无理数,2-33-π-是负无理数 .由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数探究2 实数与数轴的对应关系(1)我们在学习有理数时,认识了数轴,什么叫数轴?(2)我们知道,每个有理数都可以用数轴上的点来表示,反过来,数轴上的有的点都表示有理数吗?无理数是否也可以用数轴上的点来表示呢?(3)如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O ′,点O ′的坐标是多少?(4)在前面的学习中,我们还知道边长为1的正方形的对角线长为2,在数轴上表示2的点(画图) .事实上,数轴上数,不仅表示有理数的点,还有表示无理数的点,当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数 . (三)范例讲解例1 下列说法正确吗?请说明理由 .(1)3.14是无理数; (2)无限小数都是无理数; (3)无理数都是无限小数; (4)带根号的数都是无理数; 例2把下列各数分别填入相应的集合里: π31-,1322-,7,327,0.1010010001…,0.5,36.0-,39,924,16 实数集{ …}, 无理数集{ …}, 有理数集{ …}, 分数集{ …}, 负无理数集{ …} . (四)知能训练1、请将数轴上的各点与下列实数对应起来:2,-1.5,5,π ,32、如图,在数轴上点A 和点B 之间表示整数的点有个,分别是 .(五)总结反思1、无理数、实数的意义及实数的分类.2、实数与数轴的对应关系 .13.1 算术平方根教学过程平方根(3)教学案教学目标:1、掌握平方根的概念,明确平方根和算术平方根之间的联系和区别.2、能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系. 教学重点:平方根的概念和求数的平方根。
海南省万宁市思源实验学校八年级数学上册第十三章第3节《实数》第一课时教案新人教版三、教学过程(一)创设情境,导入新课师:前面我们学习了平方根和立方根,本节课我们学习实数(板书课题:10.3实数). (二)尝试指导,讲授新课师:什么是实数呢?这得从有理数说起.初一的时候,我们学过有理数,什么是有理数呢?(板书:有理数)有理数包括整数和分数(板书:、整数、分数).师:谁能说出几个整数?生:……(多让几位同学说,要引导学生说出正整数、0、负整数)师:谁能说出几个分数?生:……(多让几位同学说,要引导学生说出正分数和负分数)师:在小学的时候,我们已经知道,分数可以化为小数.怎么把分数化为小数呢?只要用分子除以分母就可以了.(师出示下面的式子)3-=547=82-=3911=师:大家自己动手把这些分数化为小数. (生计算,师巡视)师:(指准35-=)35-化为小数等于什么?生:-0.6.(多让几位同学回答,然后师板书:-0.6)师:(指准478=)478化为小数等于什么?生:5.875.(多让几位同学回答,然后师板书:5.875)师:(指准23-=)23-化为小数等于什么?生:-0.66666….(多让几位同学回答,然后师板书:-0.66666…)师:(指准板书)23-化为小数等于什么呢?等于-0.66666666点点点,点点点表示后面还有无限多个6.师:(指准911=)911化为小数等于什么?生:0.81818181….(多让几位同学回答,然后师板书:0.81818181…)师:(指准板书)911化为小数等于什么呢?等于0.81818181点点点,点点点表示后面还有无限多个81.师:(指准板书)很容易看得出来,这两个小数和这两个小数是不一样的.(指-0.6和6.875)这两个小数是什么小数?(稍停)有限小数(板书:有限小数,并连线).(指-0.66666…和0.81818181…)这两个小数是什么小数?(稍停)无限循环小数(板书:无限循环小数,并连线)师:(指-0.6和6.875)这两个小数为什么叫做有限小数?看到没有-0.6小数点后面只有一个数字,5.875小数点后面只有三个数字,因为小数点后面的数字只有有限个,所以叫做有限小数.师:(指-0.66666…和0.81818181…)而-0.66666点点点和0.81818181点点点,它们小数点后面的数字有无限多个,所以它们是无限小数.那为什么还把它们叫成是无限循环小数呢?循环是什么意思?循环的意思是重复.(指-0.66666…)这个小数无限重复6,所以它是无限循环小数.(指-0.81818181…)这个小数无限重复81,所以它也是无限循环小数.师:不知道大家有没有听过这样一个故事,说山上有座庙,庙里有两个喇嘛,大喇嘛在给小喇嘛讲故事,讲什么故事呢?说山上有座庙,庙里有两个喇嘛,大喇嘛在给小喇嘛讲故事,讲什么故事呢?说山上有座庙,庙里有两个喇嘛,大喇嘛在给小喇嘛讲故事,讲什么故事呢?大家可以想像,这个故事是永远讲不完的.为什么讲不完呢?因为这个故事无限重复,无限循环.这个故事很像我们所说的无限循环小数.师:(指板书)从这个分数化为小数的情况,我们可以猜出一个结论,什么结论谁来说?生:……(多让几位同学说)师:是这样一个结论:任何一个分数都可以化成有限小数或无限循环小数.也就是说,分数要么是有限小数,要么是无限循环小数(板书:(有限小数或无限循环小数)).师:上面我们所讨论的是有理数,什么是有理数?(指准板书)有理数就是整数和分数.换一种说法也可以这样说,有理数就是整数、有限小数和无限循环小数.师:那么,除了有理数还有没有别的数?(稍停)有,有别的数.在前面的学习中,实际上我们已经接触过不是有理数的数.譬如2(板书:2).2等于多少?2等于1.41421356点点点(板书:=1.41421356…).大家思考思考:为什么2不是有理数呢?(稍停片刻)哪位同学能回答这个具有挑战性的问题?生:……(多让几位同学回答)师:(指准板书)2不是有理数,为什么呢?首先我们可以肯定,2不是整数,也不是有限小数,2是一个无限小数.2等于1.41421356点点点,点点点表示后面还有无限多个数字,所以2是一个无限小数.其次我们可以肯定2不是无限循环小数,2是无限不循环小数(板书:无限不循环小数).1.41421356这一串数字中,没有像0.818181那样出现不断重复的情况,所以1.41421356点点点是无限循环小数.2不是整数,不是有限小数,也不是无限循环小数,所以2不是有理数.师:22是什么数呢?2是无理数(板书:无理数).2无理数这么一个例子,哪位同学知道什么样的数是无理数? 生:……(多让几位同学回答)师:什么样的数是无理数?无限不循环小数就是无理数(板书:(无限不循环小数)). 师:(边讲边板书:3,5-,32,37,π)3,5-,32,37,圆周率π这些数都是无限不循环小数(连线),所以这些数也都是无理数.无理数还有很多很多,和有理数一样,无理数也有无数多了. 师:知道了什么是有理数,什么是无理数,现在我们可以揭晓什么是实数的答案了.什么是实数?(板书:实数)实数包括有理数和无理数(板书: ),(指准板书)35-,478,23-,911这些有理数是实数,3,5-,32,37,π这些无理数也是实数,有理数和无理数统称实数.(上面关于实数分类的板书如下图)(三)试探练习,回授调节1.填空:在0.25,2.3333…,-2.2360679…,-7.646,3.14159265…,-0.3656565…这些小数中, 有限小数是 ;无限循环小数是 ;无限不循环小数是 .2.填空:在-19,3.878787…,π2616,1.41432767-,34-这些数中, 分数(有限小数或无限循环小数)无理数(无限不循环小数)实数有理数整数有理数是 ; 无理数是 ;3.判断对错:对的画“√”,错的画“×”.(1)无理数都是无限小数. ( )(2)无限小数都是无理数. ( )(3)25是无理数. ( ) (4)15是无理数. ( )(5)带根号的数都是无理数. ( )(6)有理数都是实数. ( )4.完成下面实数分类:5.选做题:你找到了数字1.01001000100001…的规律了吗?这个数是有理数还是无理数?(四)归纳小结,布置作业师:本节课我们学习了实数的概念,(指准板书)什么是实数?实数包括有理数和无理数.有理数是我们以前学过的,无理数是这学期才接触到的.什么是无理数?像2,3,5 ,32,37,π这些无限不循环小数就是无理数.有了无理数,数的范围就从有理数扩大到实数.(作业:P 86习题2.)四、板书设计10.3实数 整数有理数实数正无理数正有理数负实数0实数正实数13.3实数(第2课时)一、教学目标1.知道每一个实数都可以用数轴上的一个点来表示,数轴上的每一个点都表示一个实数.2.知道一个实数相反数、绝对值的概念,会求一个实数的相反数和绝对值.二、教学重点和难点1.重点:实数与数轴上的点一一对应,求一个实数的相反数和绝对值.2.难点:实数与数轴上的点一一对应.三、教学过程(一)基本训练,巩固旧知1.填空:无限不循环小数叫做 ,有理数和 统称实数.2.判断对错:对的画“√”,错的画“×”.(1)79是有理数. ( ) (2). ( ). ( )(4)π是无理数. ( )(5)3.14159265是无理数. ( )(6)0.131313…是无理数. ( )(二)创设情境,导入新课师:上节课我们学习了什么是实数.什么是实数呢?(出示下图)师:(指准图)初一的时候,我们学过有理数,有理数包括整数和分数.这学期我们学习了一种新的数,什么数?无理数.无限不循环小数就是无理数.无理数的出现,使数的范围扩大了.看到没有?有理数是这么大的一个范围,无理数是这么大的一个范围,实数是这么大的一个范围.有理数和无理数合在一起统称实数.师:大家还记不记得,初一的时候我们学过不少有关有理数的结论,这些结论当时是针对有理数说的,现在数的范围扩大到了实数,这些结论还成立吗?我们一起来看一看. (三)尝试指导,讲授新课(师出示结论1和数轴)结论1:每个有理数都可以用数轴上的点来表示.5师:(指结论1)我们知道,每个有理数都可以用数轴上的点来表示,那每个无理数也可以用数轴上的点来表示吗?答案是肯定的,每个无理数也可以用数轴上的点来表示.譬如2,2≈1.414(板书:2≈1.414),所以,(边讲边描点,并标2)2就在1.5稍靠左的那一点.又譬如-π≈-3.14(板书:-π≈-3.14),所以,(边讲边描点,并标-π)-π就在-3稍靠左的那一点.师:每个有理数、每个无理数都可以用数轴上的点来表示,这说明每个实数都可以用数轴上的点来表示(边讲边把结论1中的“有理”改为“实”).师:(指准数轴)数轴是由密密麻麻的点组成的,可以想象,数轴上的每一个点,要么表示的是有理数,要么表示的是无理数.也就是说,数轴上的每一个点都表示一个实数(板书:反过来,数轴的每一个点都表示一个实数).师:请大家把这个结论读两遍.(生读)师:读了两遍有什么感觉?可能有同学会说:“这个结论读起来有点像绕口令,怎么感觉上半句话和下半句话的意思是一样的?”上半句话是,每个实数都可以用数轴上的点来表示;下半句话是,数轴的每一个点都表示一个实数.上半句话和下半句话的意思一样吗?不一样.比方说,我们班每个同学都坐在电影院的一个座位上,反过来,电影院的每一个座位上都坐着我们班的一个同学.仔细听仔细体会,上半句话和下半句话的意思是不一样的.(四)试探练习,回授调 实数节3.判断对错:对的画“√”,错的画“×”.(1)所有的有理数都可以用数轴上的点表示. ( )(2)数轴上所有的点都表示有理数. ( )(3)所有的实数都可以用数轴上的点表示. ( )(4)数轴上所有的点都表示实数. ( )4.如图,(1)表示2.5的点是 ; (2)表示5-的点是 ;(3)表示3的点是 ;(4)表示-5的点是 ; (5)表示π的点是 .(五)尝试指导,讲授新课师:初一的时候,我们学过相反数和绝对值,谁还记得什么是相反数?什么是绝对值? 生:…… 师:只有符号不同的两个数叫做互为相反数.(指准数轴上表示-4的点)数轴上表示-4的点与原点的距离叫做-4的绝对值,一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值.师:初一的时候,相反数和绝对值都是相对有理数说的,现在数的范围扩大了,对实数来说,也一样有相反数和绝对值.3333数)3333)333-=3.师:关于相反数和绝对值我们有下面的结论.(师出示结论2和结论3)结论2:数a 的相反数是-a.E D C B A ● ● ● ● ● 0 1 2 3 4 5- 1 - 2 - 3 - 4 - 5结论3:一个正数的绝对值是它本身;一个负数绝对值是它的相反数;0的绝对值是0. 师:请大家把这两个结论读一遍.(生读)师:两这个结论对有理数来说是成立的,对实数来说也同样成立.下面我们利用这两个结论来做一个例题.(师出示下面的例题)例 填空: (1)5-的相反数是 ; (2)5-5的相反数是 ; (3)3的绝对值是 ,即3= ; (4)364-的绝对值是 ,即364-= ;(5)2-2的绝对值是 ,即22-= .(六)试探练习,回授调节5.填空:(1)2的相反数是 ,2的绝对值是 ;(2)-π的相反数是 ,-π的绝对值是(3)0的相反数是 ,0的绝对值是 .6.填空:(1)327-的绝对值是 ,即327-= ;(2)1.8-3的绝对值是 ,即1.83-= ;(4)364-的绝对值是 ,即364-= ;(5)3-π的绝对值是 ,即3π-= .7.填空:(1)一个数的绝对值是7,这个数是 ;(2)一个数的绝对值是32-,这个数是 .(七)归纳小结,布置作业师:本节课我们学习了实数的三个结论,大家把这三个结论读一遍.(生读)(作业:P 86练习1.2,P 86习题1.3.)四、板书设计 13.3实数3与-3互为相反数 例3=3,3 =3结论2……结论3……结论1……数轴图13.3实数(第3课时)一、教学目标1.会利用结论比较两个实数的大小.2.会利用运算律进行简单的实数运算,会取无理数的近似值进行计算.二、教学重点和难点1.重点:比较实数大小,进行简单的实数运算.2.难点:比较实数大小.三、教学过程(一)基本训练,巩固旧知1.填空:每一个实数都可以用数轴上的一个 来表示,反过来,数轴上的每一个点都表示一个 .2.填空:(1)7的相反数是 ,绝对值是 ;(2)-7的相反数是 ,绝对值是 ;7的相反数是 ,绝对值是 ;(4)7的相反数是 ,绝对值是 ;(5)77的相反数是 ,绝对值是 ;实数无理数有理数(6)7-7的相反数是 ,绝对值是 .(二)创设情境,导入新课师:初一的时候,我们学过有理数的很多结论,现在数的范围从有理数扩大到了实数,原来对有理数来说成立的结论,对实数来说还成立吗?基本上都成立.譬如,“一个负数的绝对值是它的相反数”,对有理数来说是对的,对实数来说还是对的.所以,有关实数的很多结论我们可以直接从有理数那里搬过来.上节课我们从有理数那里搬来了三个实数的结论,本节课我们还要从有理数那里搬几个结论来,首先我们来看两个实数如何比较大小.(三)尝试指导,讲授新课(师出示下图)师:(指准数轴)学习有理数的时候,我们讲过这样一个事实,数轴上右边的数总比左边的数大.譬如,4在3的右边,4>3;-1在-4的右边,-1>-4,等等.数的范围从有理数扩大到实数,数轴上右边的数还是比左边的数大吗?(稍停)对实数来说,数轴上右边的数还是比左边的数大.根据这一事实,我们得出比较两个实数大小的结论.(师出示结论4)结论4:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小. 师:请大家把这个结论读一遍(生读).师:这个结论跟两个有理数比较大小的结论是一样的,它是直接从有理数那儿搬过来的.下面我们就利用这个结论来比较两个实数的大小. 例 比较下列各组数的大小:(1)524; (2)56 (3)3 1.8.解:24≈4.9,因为5>4.9,所以524. 5 2.26 2.4, 因为2.2<2.456-4532(3)3≈1.7, 因为1.7<1.8,所以-3>-1.8.(四)试探练习,回授调节3.填“>”或“<”: (1)3 10; (2)π 3.142; (3)-8 -7;(4)-2 -1.42; (5)29 4513; (6)2- 3-. 4.判断对错:对的画“√”,错的画“×”. (1)有最小的正有理数. ( ) (2)没有最小的整数. ( )(3)没有最小的有理数. ( )(4)没有最小的无理数. ( )(5)没有最小的实数. ( )(6)有绝对值最小的实数. ( )(五)尝试指导,讲授新课师:我们知道有理数可以进行加、减、乘、除、乘方运算,同样,实数也可以进行加、减、乘、除、乘方运算,除了这些运算,实数可以进行开平方、开立方运算.实数之间怎么进行运算呢?有理数的运算法则和运算性质可以搬到实数的运算中来,也就是说,有理数怎么进行运算,实数就怎么进行运算.(师出示结论5)结论5:有理数的运算法则和运算性质,在进行实数运算时仍然成立.师:大家把结论5默读一遍.(生默读)师:譬如,有理数的运算有交换律、结合律、分配律,同样实数的运算也具有这些运算性质.下面我们就来做几道实数计算题.(师出不例2)例2 计算下列各式的值:(1)32)2+- (2)33+ 解:(1)(32)2+-32233+=(3+2)3=53.(2)3323((2)题板演时,要指出运用了分配律)(师出示例3)例3 计算:(1)5+π(精确到0.01); (2)32.(精确到0.1).解:(1)5+π≈2.236+3.142≈5.38;(2)32≈1.73×1.41≈2.4.(教学时需要指出,结果如果要求精确到0.01,那么运算过程中取近似值要精确到0.001)(六)试探练习,回授调节5.计算:-+.(1)22-32; (2)2322====(七)归纳小结,布置作业师:上节课我们学习了实数的三个结论,这节课我们又学习了实数的另外两个结论,实数的这五个结论是怎么得来的?基本上都是从有理数那里搬过来的.有理数可以在数轴上用点表示,实数也可以在数轴上用点表示;有理数有相反数、绝对值,实数也有相反数、绝对值;有理数怎么比较大小,实数也怎么比较大小;有理数怎么运算,实数也怎么运算. (作业:P87习题4.5.6.)四、板书设计数轴图例1 例2结论4:……结论5:……例3。
第十三章实数平方根(1)教学目标:1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。
教学重点:算术平方根的概念。
教学难点:根据算术平方根的概念正确求出非负数的算术平方根。
教学过程一、情境导入请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他dm的正方形画布,画上自己的得意之作参加比赛,这块正方形画布想裁出一块面积为25212dm?这个问题实际上是已知一个正数的的边长应取多少dm?如果这块画布的面积是2平方,求这个正数的问题?这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.二、导入新课:1、提出问题:(书P68页的问题)你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)这个问题相当于在等式扩=25中求出正数x的值.一般地,如果一个正数x的平方等于a,即2x=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为a,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.也就是,在等式2x=a (x≥0)中,规定x =a.12=124说出124的算术平方根是多少吗?并用等式表 2、试一试:你能根据等式:2示出来.3、想一想:下列式子表示什么意思?你能求出它们的值吗?建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如25表示25的算术平方根。
4、例1 求下列各数的算术平方根:(1)100;(2)1;(3)6449;(4)0.0001 三、练习P69练习 1、2四、探究:(课本第69页)怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?方法1:课本中的方法,略;方法2:可还有其他方法,鼓励学生探究。
问题:这个大正方形的边长应该是多少呢? 大正方形的边长是2,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗? 建议学生观察图形感受2的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.五、小结:1、这节课学习了什么呢?2、算术平方根的具体意义是怎么样的?3、怎样求一个正数的算术平方根六、课外作业:P75习题14.1活动第1、2、3题平方根(2)教学目标:1、会用计算器求一个数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律.2、能用夹值法求一个数的算术平方根的近似值.3、体验“无限不循环小数”的含义,感受存在着不同于有理数的一类新数。
教学重点:夹值法及估计一个(无理)数的大小。
教学难点:夹值法及估计一个(无理)数的大小的思想。
教学过程一、情境导入我们已经知道:正数x满足2x=a,则称x是a的算术平方根.当a恰是一个数的平方数时,我们已经能求出它的算术平方根了,例如,16=4;但当a不是一个数的平方数时,它的算术平方根又该怎祥求呢?例如课本第161页的大正方形的边长2等于多少呢?二、导入新课:1、问题:2究竟有多大?让学生思考讨论并估计大概有多大.由直观可知招大于1而小于2,那么了2是1点几呢?(接下来由试验可得到平方数最接近2的1位小数是1.4,而平方数大于2且最接近的1位小数是1.5,2大于1.4而小于1.5......关于2是一个“无限不循环小数”要向学生详细说明.为无理数的概念的提出打下基础.2、(提出问题):你对正数a的算术平方根a的结果有怎样的认识呢?a的结果有两种情:当a是完全平方数时,a是一个有限数;当a不是一个完全平方数时,a是一个无限不循环小数。
3、例2 用计算器求下列各式的值:(1)3136(2)2(精确到0.001)注意计算器的用法,指出计算器上显示的也只是近似值,但我们可以利用计算器方便地求出一个正数的算术平方根的近似值.例3(课本P71-72).要注意学生是否弄清了题意;然后分析解题思路:能否裁出符合要求的纸片,就是要比较两个图形的边长,而由题意,易知正方形的边长是20 cm ,所以只需求出长方形的边长,设长方形的长和宽分别是3xcm 和2xcm,求得长方形的长为350cm 后,接下来的问题是比较350和20的大小,这是个难点。
三、练习:课本P72的练习 1、2四、小结:1、利用计算器可以求出任意正数的算术平方根的近似值.2、被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢?3、怎样的数是无限不循环小数?五、作业课本:P75-76习题14.1 第5、6、9、10题;平方根(3)教学目标:1、掌握平方根的概念,明确平方根和算术平方根之间的联系和区别.2、能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系. 教学重点:平方根的概念和求数的平方根。
教学难点:平方根和算术平方根的联系与区别教学过程一、情境导入如果一个数的平方等于9,这个数是多少?讨论:这样的数有两个,它们是3和-3.注意()932=-中括号的作用.又如:2542=x ,则x 等于多少呢? 二、新课: 1、平方根的概念:如果一个数的平方等于a ,那么这个数就叫做a 的平方根.即:如果2x =a ,那么x 叫做a 的平方根.求一个数的平方根的运算,叫做开平方.例如:±3的平方等于9,9的平方根是±3,所以平方与开平方互为逆运算.2、观察:课本P73的图14.1-2.图14.1-2中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.并根据这个关系说出1,4,9的平方根.例4 求下列各数的平方根。
(1) 100 (2) 169 (3) 0.25 (注意书写格式)3、按照平方根的概念,请同学们思考并讨论下列问题:正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?一个是正数有两个平方根,即正数进行开平方运算有两个结果,一个是负数没有平方根,即负数不能进行开平方运算,符号:正数a 的算术平方根可用a 表示;正数a 的负的平方根可用-a 表示.例5 求下列各式的值。
(1)144, (2)-81.0, (3)196121± (4)256,()256 归纳:平方根和算术平方根两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。
三、练习课本P75 练习1、2、3四、小结:1、什么叫做一个数的平方根?2、正数、0、负数的平方根有什么规律?3、怎样求出一个数的平方根?数a 的平方怎样表示?五、作业P75-76习题14.1第3、4、7、8、14、12题。
平方根(练习课)教学目的:通过练习,使学生对平方根的知识能灵活地运用并得到巩固。
教学重点:灵活地运用平方根的知识解决问题。
.教学难点:灵活地运用平方根的知识解决问题。
教具准备:小黑板教学过程一、填空题1.(-0。
7)2的平方根是( )A .-0.7 B.±0.7 C.0.7 D.0.492.若 -3a =387,则a 的值是( ) A.87 B.-87 C.±87 D.-512343 3.有下列说法: 其中正确的说法的个数是( )(1) 无理数就是开方开不尽的数. (2) 无理数就是无限不循环小数.(3) 无理数包括正无理数,零,负无理数.(4) 无理数都可以用数轴上的点来表示.A.1B.2C.3D.44.若2a =25,b =3,则a+b=( )A.-8B.±8C.±2D. ±8或±2答案:1.C 2.B 3.B 4.D二.填空题5.在,中14,25,0,14.3,161,2,3,12,25----π其中_________________是整数,______________是无理数,____________________是有理数. 6.25-的相反数是____________,绝对值是_________________.7.在数轴上表示3-的点离原点的距离是________________.8.若x x -+E 有意义,则=+1x ___________.9.若1.1001.102=,则=±0201.1___________.10.若一个数的立方根就是它本身,则这个数是____________.三.解答题.14.计算.(1)3125.0-- (2) 04.0102532-+(精确到0.01)(3)41083-+ (4))15)(110(+-(保留三个有效数字)12.求下列各式中的X.(1) X 2=17 (2) 0491212=-X14. 写出所有符合下列条件的数(1) 大于17-小于11的所有整数;(2) 绝对值小于18的所有整数.立方根(1)教学目标:1、了解立方根的概念,初步学会用根号表示一个数的立方根.2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.3、让学生体会一个数的立方根的惟一性.4、分清一个数的立方根与平方根的区别。
教学重点:立方根的概念和求法。
教学难点:立方根与平方根的区别。
教学过程一、情境导入:问题:要制作一种容积为27 m3的正方体形状的包装箱,这种包装箱的边长应该是多少? 设这种包装箱的边长为x m,则3x =27这就是求一个数,使它的立方等于27.因为33=27, 所以x=3. 即这种包装箱的边长应为3 m二、新课:1、归纳 :如果一个数的立方等于a ,这个数叫做a 的立方根(也叫做三次方根),即如果3x a =,那么x 叫做a 的立方根2、探究: 根据立方根的意义填空,看看正数、0、负数的立方根各有什么特点? 因为328=,所以8的立方根是( 2 )因为()30.50.125=,所以0.125的立方根是( 0.5 )因为()300=,所以8的立方根是( 0 )因为()328-=-,所以8的立方根是( 2- ) 因为328327⎛⎫-=- ⎪⎝⎭,所以8的立方根是( 23- )一个数a 的立方根,读作:“三次根号a ”,其中a 叫被开方数,3叫根指数,表示273=表示27-的3=-.3、探究: ____,____,== =____,____==利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即)0a =>。
4、 例 求下列各式的值:(1)364; (2)27-; (3)327102 (4)310001-; (5)64±; (6)64 三、练习: 课本P79练习1、2、3四、小结:1.立方根和开立方的定义.2.正数、0、负数的立方根的特征.3.立方根与平方根的异同.五、作业: P80习题14.2第1、3、5、6题立方根(2)教学目标:1、使学生进一步理解立方根的概念,并能熟练地进行求一个数的立方根的运算.2、能用有理数估计一个无理数的大致范围,使学生形成估算的意识,培养学生的估算能力。