高频电子线路(第四章 高频小信号放大器)
- 格式:ppt
- 大小:2.11 MB
- 文档页数:63
1-3 小信号调谐放大器一 .实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐和双调谐放大器的基本工作原理;3.掌握测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响;5.了解放大器动态范围的概念和测量方法。
二 . 实验内容1.采用点测法测量单调谐和双调谐放大器的幅频特性;2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数;3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;4.用示波器观察放大器的动态范围;5.观察集电极负载对放大器幅频特性的影响。
三 .实验步骤1.实验准备在实验箱主板上插装好无线接收与小信号放大模块,插好鼠标接通实验箱上电源开关,此时模块上电源指示灯和运行指示灯闪亮。
2.单调谐回路谐振放大器幅频特性测量测量幅频特性通常有两种方法,即扫频法和点测法。
扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。
点测法采用示波器进行测试,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路谐振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。
(1)扫频法,即用扫频仪直接测量放大器的幅频特性曲线。
利用本实验箱上的扫频仪测试的方法是:用鼠标点击显示屏,选择扫频仪,将显示屏下方的高频信号源(此时为扫频信号源)接入小信号放大的输入端(1P1), 将显示屏下方的“扫频仪”与小信号放大的输出(1P8) 相连。
按动无线接收与小信号放大模块上的编码器(1SS1),选择1K2指示灯闪亮,并旋转编码器(1SS1) 使1K2指示灯长亮,此时小信号放大为单调谐。
显示屏上显示的曲线即为单调谐幅频特性曲线,调整1W1、1W2曲线会有变化。
用扫频仪测出的单调谐放大器幅频特性曲线如下图:图1-5 扫频仪测量的幅频特性(2)点测法,其步骤如下:① 通过鼠标点击显示屏,选择实验项目中“高频原理实验”,然后再选择“小信号调谐放大电路实验”,通过选择“小信号调谐放大”后,显示屏上显示小信号调谐放大器原理电路图。
高频电子技术第四章 高频小信号放大器§4.1 概述低频放大器:工作频率较低,但带宽较宽;高频放大器:工作频率很高(中心频率在几百千赫至几百兆赫以上),但带宽很窄。
故高频放大器一般都是采用选频网络组成谐振放大器或非谐振放大器。
(1)谐振放大器:采用谐振回路(串、并联或耦合回路)作负载的放大器。
它又分为调谐放大器(高频放大器)和频带放大器(中频放大器)。
(2)非调谐放大器:由滤波器和阻容放大器组成的各种窄带、宽带放大器。
高频小信号放大器的主要质量指标:(1)增益:放大器输出电压与输入电压之比;(2)通频带:放大器的电压增益下降到最大值的0.7倍(2/1)时对应的频率范围:3db 带宽; 放大器的电压增益下降到最大值的0.5倍(2/1)时对应的频率范围:6db 带宽; (3)选择性:抑制干扰的能力。
(4)工作稳定性:电路元件参数发生改变时放大器的稳定程度。
(5)噪声系数:噪声系数=输入端信噪比/输出端信噪比,如放大器内部噪声接近于零,则噪声系数接近于1,说明放大器本身引入的噪声很小。
§4.2 晶体管高频小信号等效电路与参数晶体管高频小信号等效电路的两种形式:形式等效电路和物理模拟等效电路。
形式等效电路:将晶体管等效为有源线性四端网络。
优点:分析电路方便,具有普遍意义;缺点:网络参数与频率有关。
物理模拟等效电路:用RLC 元件表示晶体管内部的复杂关系,即每一元件与晶体管内发生的某种物理过程有明显的关系,用这种物理模拟的方法得到的物理等效电路就是混合π等效电路。
优点:各个元件在很宽的频率范围内保持常数;缺点:分析电路不够方便。
4.2.1 形式等效电路(网络参数等效电路)(P91) 一、双口网络压控型伏安关系V AR (y 参数):1V 2端口1和端口2都外接电压源。
端口电流1I 的表示式:sc1212111111211y y )1N ()1()1(I V V I I IV V I ++='''+''+'=++=产生的电流口中所有独立源作用在端只由网络产生的电流单独作用在端口电压源产生的电流单独作用在端口电压源端口电流2I 的表示式: sc21212222y y I V V I ++=其中,,0111112===sc IV V I y 为端口1(输出)短路策动点(输入)导纳;i y,0211211===sc IV V I y 为端口1(输入)短路反向转移导纳;r y0,0122122===sc I VV I y 为端口2(输出)短路正向转移导纳;f y,0222221===sc IV V I y 为端口2(输入)短路策动点(输出)导纳;o y0,01sc121===V V I I 为两端短路时端口1的短路电流; 0,02sc221===V V I I 为两端短路时端口2的短路电流;写成矩阵形式:sc I V Y I +=,即⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡21212221121121sc sc I I V V y y y y I I一个双口网络可以用短路导纳矩阵Y 和短路电流向量scI 来表征,矩阵Y 中的各元素称为y 参数。
实验1高频小信号放大器幅频特性曲线为:带宽:8.0*0.7=5.6Bw1=6.6-6.1=0.5MHz2、观察集电极负载对单调谐回路谐振放大器幅频特性的影响当放大器工作于放大状态下,运用上步点测法测出接通与不接通1R3的幅频特性曲线。
既令2K1置“on”,重复测量并与上步图表中数据作比较。
5.6*0.7=3.92;Bw2=6.65-6.1=0.55MHz3、双调谐回路谐振放大器幅频特性测量(保持输入幅度不变,改变输入信号的频率,测出与频率相对应的双调谐放大器的输出幅度,然后画出频率与幅度的关系曲线,该曲线即为双调谐回路放大器的幅频特性。
)2K2往上拨,接通2C6(80P),2K1置off。
高频信号源输出频率6.3MHZ(用频率计测量),幅度300mv,然后用铆孔线接入双调谐放大器的输入端(IN)。
2K03往下拨,使高频信号送入放大器输入端。
示波器CH1接2TP01,示波器CH2接放大器的输出(2TP02)端。
反复调整2C04、2C11使双调谐放大器输出为最大值,此时回路谐振于6.3MHZ。
按照下表改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度峰——峰值为300mv(示波器CH1监视),从示波器CH2上读出与频率相对应的双调谐放大器的幅度值,并把数据填入下表中。
8*0.7=5.6V;Bw3=6.55-5.5-1.05MHz4、放大器动态范围测量2K1置off,2K2置单调谐,接通2C6.高频信号源输出接双调谐放大器的输入端(IN),调整高频信号源频率为6.3MHz,幅度为100mV。
2K3拨向下方,使高频信号源输出输入放大器输入端。
示波器CH1接2TP01,示波器CH2接放大器的输出(2TP02)端。
按照下表中的输入幅度,改变高频信号源的输出幅度(由CH1监测)。
从示波器CH2读出放大器输出幅度值,并记录实验数据,且计算放大器的电压放大倍数。
5、异常或错误处理:1)预习时没有仔细查阅操作手册,导致用扫频仪测双调谐放大器幅频特性时调不出明显的双峰图像;点测法测时因为没有做预测,对所测数据波动较小误认为测量错误所以重复了许多次,浪费时间;2)调节电容使电路谐振时,电路很容易随电容变化发生失真,要在波形不失真前提下调到最大输出值。
方法1) 稳态法依据:任何复杂的信号都可看成是由许多不同频率、不同幅度的正弦波的叠加。
方法:通过分析或测量宽带放大器对不同频率正弦波的响应,通过分析或测量宽带放大器对不同频率正弦波的响应,得到电路的幅频特得到电路的幅频特性和相频特性,并由此分析出该放大器的一些性能指标。
应用连接图示:2) 暂态法依据:任一信号都可看成由许多起始时间不同、幅度不同的矩形脉冲的叠加。
方法:通过观察矩形脉冲经宽带放大器放大后波形的失真情况,通过观察矩形脉冲经宽带放大器放大后波形的失真情况,来判断该放大器来判断该放大器的相关特性。
的相关特性。
应用连接图示1.2.2 扩展通频带的方法 1、组合电路法、组合电路法放大电路三种组态的特点:放大电路三种组态的特点:共射:Au 大,Ri 、Ro 中,f H 低 共集:共集: Au 小,小, Ri 大,Ro 小,小, f H 高共基:共基: Au 大,大, Ri 小,小, Ro 大,大, f H 较高较高适当组合可得到以下几种常见的组合电路:2、负反馈法、负反馈法引入负反馈课扩展放大器的通频带,引入负反馈课扩展放大器的通频带,而且反馈越深,而且反馈越深,而且反馈越深,通频带扩展得越宽。
通频带扩展得越宽。
通频带扩展得越宽。
但但是,是,引入负反馈容易造成放大器工作的不稳定,引入负反馈容易造成放大器工作的不稳定,引入负反馈容易造成放大器工作的不稳定,甚至出现自激振荡,甚至出现自激振荡,甚至出现自激振荡,这是必须注这是必须注意的问题。
意的问题。
、集成宽带放大器 、集成宽带放大器谐振回路具有选频和滤波作用。
谐振回路具有选频和滤波作用。
w wo RCR w w w )2222)1(C L R X R w w -++Carctg w sV I I R==达到最大值,回路发生谐振。
达到最大值,回路发生谐振。
LC 2LCp()C w w w w w w w s s V 11V)R I C I C R w w+= 1C R wI 下降到I 的12时所对应的频率范围称为谐振回路的通频带,其绝对值(用0电感线圈L 、电容C 、外加信号源相互并联,就构成LC 并联谐振回路。