FOR SCINTILLATION CAMERAS
- 格式:pdf
- 大小:804.82 KB
- 文档页数:5
光学显微镜英语作文Title: The Marvels of the Optical Microscope。
The optical microscope, a marvel of scientific ingenuity, has revolutionized our understanding of the microscopic world. Its development, spanning centuries, represents a fusion of optical principles, engineering prowess, and scientific curiosity. In this essay, we delve into the intricate workings of the optical microscope, its historical significance, contemporary applications, and the profound impact it has had on various fields of study.Historical Evolution:The origins of the optical microscope can be traced back to the late 16th century, with the pioneering work of Dutch spectacle makers such as Hans Jansen and his son Zacharias. Their invention of the compound microscope laid the foundation for subsequent advancements in microscopy. However, it was Antony van Leeuwenhoek, a Dutch tradesmanand amateur scientist, who made significant strides in improving the design and magnification capabilities of the microscope. His observations of microorganisms through simple microscopes opened new frontiers in biology and medicine.Throughout the following centuries, the optical microscope underwent numerous refinements and enhancements, propelled by the contributions of notable scientists and inventors. The development of achromatic lenses in the 18th century by John Dollond mitigated color aberrations, vastly improving image clarity. In the 19th century, the introduction of the condenser and objective lenses with higher numerical apertures further enhanced resolution and contrast, enabling the visualization of finer details.Working Principles:At its core, the optical microscope operates on the principles of optics and magnification. Light from a source, typically an adjustable condenser, passes through the specimen mounted on a slide. The objective lens, positionedbeneath the specimen, magnifies the image formed by the transmitted light. This magnified image is then further enlarged by the eyepiece, allowing for visual observationor photographic documentation.Key factors influencing the performance of an optical microscope include magnification, resolution, and contrast. Magnification refers to the degree of enlargement of the specimen, while resolution determines the level of detail that can be discerned. Contrast, on the other hand, influences the clarity and visibility of structures within the specimen. By optimizing these parameters, researchers can obtain clear and detailed images for analysis.Contemporary Applications:The optical microscope remains an indispensable tool in various scientific disciplines, including biology, medicine, materials science, and forensics. In biology, itfacilitates the study of cellular structures, tissues, and microorganisms, elucidating fundamental processes of life. Medical professionals rely on microscopes for the diagnosisof diseases, analysis of blood samples, and examination of pathological tissues.In materials science, optical microscopy enables the characterization of materials at the microstructural level, aiding in the development of new materials and quality control processes. Forensic scientists utilize microscopes to examine trace evidence such as fibers, hairs, and fingerprints, assisting in criminal investigations andlegal proceedings.Impact and Future Prospects:The impact of the optical microscope on scientific advancement cannot be overstated. It has played a pivotal role in unraveling the mysteries of the microscopic realm, leading to groundbreaking discoveries and technological innovations. From the elucidation of cell biology to the development of life-saving medical treatments, its contributions are immeasurable.Looking ahead, advancements in microscopy technologycontinue to push the boundaries of what is possible. Emerging techniques such as confocal microscopy, fluorescence microscopy, and super-resolution microscopy offer unprecedented capabilities for imaging and analysis at the nanoscale. These advancements hold promise for further insights into complex biological processes, the development of novel therapeutics, and the exploration of new frontiers in science and technology.In conclusion, the optical microscope stands as a testament to human curiosity, ingenuity, and the relentless pursuit of knowledge. From its humble beginnings to its contemporary applications, it remains a cornerstone of scientific inquiry and discovery. As we venture into the future, the optical microscope will undoubtedly remain an indispensable tool in our quest to unlock the mysteries of the microscopic world.。
第23卷第1期2017年3月分析测试技术与仪器ANALYSIS AND TESTING TECHNOLOGY AND INSTRUMENTSVolume 23Number 1㊀㊀㊀㊀Mar.2017ʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏ分析测试经验介绍(055~057)收稿日期:2016-10-10;㊀修订日期:2016-11-28.作者简介:李爽(1984-),女,工程师,硕士研究生,主要从事生物电镜技术研究,E -mail:lishuang1984@ 通信作者:李艳茹(1974-),女,副教授,博士研究生,主要从事肝脏肿瘤病理研究,E -mail:liyr@.透射电子显微镜侧插式CCD 相机数字图片放大倍数的解析李㊀爽,崔新明,董㊀超,李艳茹(吉林大学病理生物学教育部重点实验室,吉林长春130021)摘要:针对数字化透射电子显微镜与传统透射电子显微镜在观察记录系统上存在的差异,通过比较分析数字化透射电子显微镜侧插式电荷耦合器件(CCD)相机采集的图像㊁操作界面View 视窗观察到的图像与电镜示数放大倍数之间的差异,详细地分析了数字化透射电子显微镜侧插式CCD 相机采集的数字图片的放大倍数发生变化的原因.可以帮助应用电镜的广大教师及科研工作者更加快速㊁直观地掌握数字图片确切的放大倍数,更有利于结果的分析.关键词:透射电子显微镜;侧插式电荷耦合器件相机;数字化图像;放大倍数中图分类号:O657.3文献标志码:B文章编号:1006-3757(2017)01-0055-03DOI :10.16495/j.1006-3757.2017.01.011Magnification Analysis of Digital Image of Side -line Charge Coupled Device Camera of Transmission Electron MicroscopeLI Shuang,CUI Xin -ming,DONG Chao,LI Yan -ru(Key Laboratory of Pathobiology ,Ministry of Education ,Jilin University ,Changchun 130021,China )Abstract :According to the differences between digital transmission electron microscopy with conventional transmission electron microscope in observing and recording a system,we analysed the reasons for the change of magnification of the picture collected by digital transmission electron microscope through the comparison of the differences between the images collected by digital transmission electron microscopy with side -line charge coupled device(CCD)cameras,images observedby the interface view window and electron microscope in magnification.This study enables the teachers and researchers to grasp the exact magnification digital pictures more quickly and intuitively to analyze the results.Key words :transmission electron microscope;side -line CCD camera;digital image;magnification㊀㊀随着人类社会信息化㊁电子化㊁网络化的高速发展,信息的数字化已成为信息传送㊁处理和存储的最有效方法.在电子显微镜领域,数字化图像也取得了长足的进展.传统透射电子显微镜的观察记录系统包括荧光屏和照相机,获取图像的方式是将胶片放在荧光屏位置通过荧光板感光成像,因此胶片上图像的放大倍数与荧光屏上的图像放大倍数一致.现代数字化透射电子显微镜观察记录系统是将带有图像信息的透射电子,通过电光转换装置转换成光信号后传送到电荷耦合器件(CCD)上进行图像采集.然后,通过图像采集卡传送到计算机上,用户可根据需要进行图像的后处理[1].因此,CCD 采集到的数字化图像的放大倍数会由于CCD 相机的插入方式不同而与荧光屏上的图像放大倍数(即电镜软分析测试技术与仪器第23卷件信息栏内显示的放大倍数,也就是电镜荧光屏上投射图像的原始放大倍数)有所差异.CCD相机主要有底插式和侧插式两种.由于通过成像系统获得的光源由上至下呈逐渐发散状态,光学图像信号亦呈放大趋势.底插式CCD相机安装在电镜荧光屏的下方底部接口处,接收到的图像的放大倍数会比传统胶片成像放大倍数大很多.侧插式CCD相机安装在电镜35mm接口处,因其收集图像信号的位置在荧光屏上方,所以得到图像信息实际放大倍数会比传统胶片成像放大倍数小.理论上,我们以胶片的原始放大倍数为1,底插式CCD相机所在底部接口处放大倍数为1.1到1.5,侧插式CCD相机所在35mm接口处的放大倍数为0.2到0.3[2],具体放大倍数因透镜不同存在差异,如图1所示.图1㊀透射电子显微镜示意图Fig.1㊀Diagram of transmission electron microscope1㊀数字化透射电子显微镜配置侧插式CCD相机所采集数字图像的放大倍数1.1㊀侧插式CCD相机采集的图像信息放大倍数与电镜示数放大倍数的比较因为本实验室主要观察生物样品,要求观察视野大,故选用了侧插式的CCD相机.通过像素计算,查找Gatan相机提供软件工具栏 File Globalinfor CCD 中像素大小,pixel size(μm)数值显示7.4+i7.4 .右键单击单张观察图像 Imagedisplay infor image infor pixel size(μm) ,查找该图片放大倍数下像素大小,通过像素之间计算可以得出CCD采集到数字图像信号的放大倍数.例如,电镜放大倍数示数为1700时,按照像素值计算 7.4/0.014ʈ528 ,依次类推.统计结果如表1所列.表1㊀CCD相机放大倍数与电镜示数对照表Table1㊀Comparison table of CCD camera magnification and electron microscope display CCD像素大小/μm图片像素大小/μm电镜示数CCD图像放大倍数7.4+i7.40.014ˑ0.01417005287.4+i7.40.0091ˑ0.009125508137.4+i7.40.0055ˑ0.0055420013457.4+i7.40.0039ˑ0.0039600018977.4+i7.40.0028ˑ0.0028820026427.4+i7.40.0024ˑ0.00249900308365第1期李爽,等:透射电子显微镜侧插式CCD相机数字图片放大倍数的解析㊀㊀统计结果显示,侧插式CCD相机所采集的图像信号放大倍数低于电镜显示放大倍数.1.2㊀侧插式CCD相机操作界面View视窗观察到的图像放大倍数与电镜示数放大倍数的比较通过侧插式CCD相机获得的数字化图片上均附有标尺.使用标尺计算,可以用Gatan CCD软件工具栏内提供的Cal line工具,测量图片上标尺的准确长度 L ,除以标尺在图片中标识的长度 Z ,即可计算出获得View视窗内显示图片的放大倍数 N=L/Z .以本实验室正在使用的设备DELL液晶显示器(P2214Hb)设置Full CCD模式为例,View视窗观察图片放大倍数的测量计算统计结果如表2所列.表2㊀View视窗放大倍数与电镜示数对照表Table2㊀Comparison table of view window magnificationand electron microscope display电镜示数Z/μm L/cm View视窗图像1700107.47400 25505 5.611200 420059.418800 60002 5.326500 820027.336500 990028.643000㊀㊀统计结果显示,侧插式CCD相机应用中View 视窗观察到的实际图像放大倍数高于电镜示数放大倍数.2㊀电镜用户如何获得数字图片确切的放大倍数,直观了解观察结构的大小数字图片的放大倍数会因为播放设备的不同而存在差异.根据上述统计结果显示,侧插式CCD相机收集到的图像信号比原始荧光屏放大倍数小,但是在view视窗内观察到的图片的放大倍数却大于原始荧光屏上观察到的放大倍数.这是因为显示器对于CCD收集到的图像信号具有放大作用的,而其放大系数的多少与显示器大小有关.因此,每张数字图片上的标尺就成为衡量图片放大倍数的标准.由于在透射电子显微镜使用过程中,受加速电压㊁电流稳定性及样品质量等诸多因素的影响,其标尺标识的放大倍率会产生一定的偏差.因此,需要定期使用可溯源的标准物质对透射电子显微镜的放大倍率进行校准[3].如果电镜用户想要获得数字图片的确切放大倍数,可以通过两种方法实现:一是除了通过标尺计算法获得数字图片的实际放大倍数;二是根据表2的统计结果,电镜示数与View视窗图像放大倍率之比大约为1ʒ4.4.因此,可以将电镜实时显示放大倍数乘以4.4即可得到数字图片的实际放大倍数.第一种方法更加精确,第二种方法更加快速㊁简单.3㊀结论本实验室自使用TECNAI SPIRIT型透射电子显微镜以来,获得的数字图片结果均有明确标尺,实时精确标识图片放大倍率的改变.通过标尺简单计算即可获得图片准确放大倍数.同时,通过CCD相机软件工具的简单操作计算即可直观了解观察具体结构的长度㊁面积等量化数值.为观察者在观察中及时得到实时放大倍数,也可通过电镜示数乘以4.4的方法粗略计算.数字化透射电子显微镜能够为用户提供简单㊁快捷㊁准确的数字化图片,不但大大提高了电镜的使用效率,也为广大教师和科研工作者提供了更好的服务.参考文献:[1]㊀龚丹,曾立波,张宏波,等.透射电镜CCD数字图像系统的研制[J].分析测试技术与仪器,2005,11(2):133-136.[2]㊀刘冰川,曲利娟,刘庆宏.透射电子显微镜成像方式综述[J].医疗设备信息,2007,22(9):43-46. [3]㊀国凯.透射电子显微镜放大倍率校准的研究[J].山东化工,2014,6(43):93-95.75。
医用伽玛照相机的工作原理The working principle of a medical gamma camera is based on the detection of gamma rays emitted by a radioactive tracer injected into the body. 医用伽玛照相机的工作原理是基于检测注入体内的放射性示踪剂所发出的伽玛射线。
This radioactive tracer is designed to accumulatein specific organs or tissues, allowing the gamma camera to capture images of these areas. 这种放射性示踪剂设计用于在特定器官或组织中积聚,使伽玛照相机能够拍摄这些区域的图像。
When the tracer undergoes radioactive decay, it emits gamma rays, which are then detected by the gamma camera's crystal detectors. 当示踪剂经历放射性衰变时,它会发出伽玛射线,然后这些射线会被伽玛照相机的晶体探测器所检测到。
This detection process allows the gamma camera to create a 3D image of the distribution of the tracer within the body. 这种检测过程使伽玛照相机能够创建出示踪剂在体内分布的三维图像。
In addition to its role in diagnostic imaging, medical gamma cameras are also used for tracking the progress of certain diseases and evaluating the effectiveness of treatments. 除了在诊断成像中的作用外,医用伽玛照相机还用于跟踪某些疾病的进展,评估治疗的有效性。
3B SCIENTIFIC ®PHYSICS1Binokulares Mikroskop, Modell 500 LED mit Polarisations-einrichtung 1013146Bedienungsanleitung07/13 ALF1 Okular2 Tubus3 Schlitz zur Aufnahme desAnalysators4 Revolver mit Objektiven5 Objektführer6 Objekttisch7 Kondensor mit Irisblendeund Filterhalter 8 Beleuchtung9 Beleuchtungsregler 10 Netzschalter11 Koaxialtrieb des Objektti-sches12 Grob- und Feintrieb mitFeststellbremse13 Feststellschraube für Ob-jekttisch 14 Stativ15 Feststellschraube für Mikro-skopkopf1. Sicherheitshinweise•Elektrischer Anschluss des Mikroskops darf nur an geerdeten Steckdosen erfolgen.2. Beschreibung, technische Daten Das binokulare Mikroskop ermöglicht die zwei-dimensionale Betrachtung von Objekten (dünne Schnitte von Pflanzen- oder Tieren) in 40- bis 1500-facher Vergrößerung. Es ist mit einer Pola-risationseinrichtung bestückt.Stativ: Robustes Ganzmetallstativ, Stativarm fest mit Fuß verbunden; Fokussierung über beidseitig am Stativ angebrachte koaxiale Stell-knöpfe für Fein- und Grobtrieb mit Kugellager und Feststellbremse; einstellbarer Anschlag zum Schutz der Objektträger und Objektive. Fokussierbereich: 15 mm; Einteilung der Feinfo-kussierung: 0,002 mmTubus: Binokularer Siedentopf-Kopf, Schräg-einblick 30°, Kopf um 360° drehbar, Augenab-stand zwischen 54 mm und 75 mm einstellbar, Dioptrienausgleich ±5 für beide OkularePolarisationseinrichtung: Polarisator und Ana-lysatorOkular: Weitfeld-Okularpaare WF 10x 18 mm und WF 15x 13 mmObjektive: Invers geneigter Objektivrevolver mit 4 DIN plan achromatischen Objektiven 4x / 0,10, 10x / 0,25, 40x / 0,65, 100x / 1,25 (Ölimmersion) Vergrößerung: 40x – 1500xObjekttisch: x-y-Kreuztisch, 155 x 145 mm 2, mit Objektführer und koaxialen Stellknöpfen senk-recht zum Objekttisch, Stellbereich 50 x 76 mm 2Beleuchtung: Im Fuß integrierte, regelbare LED-Beleuchtung; universale Spannungsver-sorgung 85 V bis 265 V, 50/60 HzKondensor: Abbe Kondensor N.A.1,25 mit Iris-blende, Filterhalter und Blaufilter, fokussierbar über ein ZahnstangengetriebeAbmessungen: ca. 306 x 190 x 407 mm³ Masse: ca. 6,6 kg3. Auspacken und ZusammenbauDas Mikroskop wird in einem Karton aus Styro-por geliefert.•Nach Entfernen des Klebebands den Behäl-ter vorsichtig öffnen. Dabei darauf achten, dass keine der optischen Teile (Objektive und Okulare) herausfallen.•Um Kondensation auf den optischen Be-standteilen zu vermeiden, das Mikroskop solange in der Verpackung belassen, bis es die Raumtemperatur angenommen hat. •Das Mikroskop mit beiden Händen (eine Hand am Stativarm und eine am Fuß) ent-nehmen und auf eine ebene Fläche stellen. •Die Objektive sind separat in Döschen ver-packt. Sie werden in der Reihenfolge vom Objektiv mit dem kleinsten bis zum Objektivmit dem größten Vergrößerungsfaktor im Uhrzeigersinn hinten beginnend in die Öff-nungen der Revolverplatte geschraubt. •Anschließend den Mikroskopkopf auf das Stativ setzen und mit der Feststellschraube fixieren. Okulare in den Tubus einsetzen.4. Bedienung4.1 Allgemeine Hinweise•Das Mikroskop auf einen ebenen Tisch stel-len.•Das zu betrachtende Objekt in die Mitte des Objekttisches platzieren und in der Objekt-führung festklemmen.•Netzkabel anschließen und Beleuchtung anschalten.•Objektträger so in den Strahlengang schie-ben, dass das Objekt vom Strahlengang deutlich durchstrahlt wird.•Augenabstand einstellen bis nur ein Licht-kreissichtbar ist.•Diopterstärke den Augen anpassen.•Zur Erreichung eines hohen Kontrasts Hin-tergrundbeleuchtung mittels der Irisblende und der regelbaren Beleuchtung einstellen. •Das Objektiv mit der kleinsten Vergrößerung in den Strahlengang drehen. Ein Klick-Ton zeigt die richtige Stellung an.Hinweis: Es ist am besten mit der kleinsten Vergrößerung zu beginnen, um zuerst größere Strukturdetails zu erkennen. Der Übergang zu einer stärkeren Vergrößerung zur Betrachtung feinerer Details erfolgt durch Drehen des Revol-vers bis zum gewünschten Objektiv. Bei Ver-wendung des Objektivs 100x muss Öl auf den Objektträger gegeben werden.Die Stärke der Vergrößerung ergibt sich aus dem Produkt des Vergrößerungsfaktors des Okulars und des Objektivs.•Mit der Feststellbremse geeignete Span-nung des Fokusiersystems einstellen.•Mit dem Triebknopf für Grobtrieb das un-scharf abgebildete Präparat scharf stellen, dabei darauf achten, dass das Objektiv den Objektträger nicht berührt. (Beschädigungs-gefahr)•Anschließend mittels Feintrieb die Bildschär-fe nachregeln.•Zur Benutzung von Farbfiltern Filterhalter ausschwenken und Farbfilter einlegen. •Mittels des Koaxialtriebs des Kreuztisches lässt sich das zu betrachtende Objekt auf die gewünschte Stelle schieben.•Nach Gebrauch sofort die Beleuchtung aus-schalten.•Das Mikroskop mit keinen Flüssigkeiten in Kontakt kommen lassen.•Das Mikroskop keinen mechanischen Belas-tungen aussetzen.•Optische Teile des Mikroskops nicht mit den Fingern berühren.•Bei Beschädigungen oder Fehlern das Mik-roskop nicht selbst reparieren.4.2 Verwendung der Polarisationseinrich-tung•Analysator in den Schlitz am Objektivrevol-ver einsetzen.•Polarisator auf die Lichtaustrittsöffnung der Beleuchtungseinrichtung auflegen.•Durch Drehen des Polarisators Polarisator und Analysator in gekreuzte Stellung brin-gen, so dass man einen schwarzen Hinter-grund erhält.Doppelbrechende Strukturen sollten auf dem dunklen Hintergrund nun hell aufleuchten. Ist dies nicht der Fall so könnte die Möglichkeit bestehen, dass die Schwingungsrichtung des Objektes identisch mit der Polarisationsrichung ist. Durch Drehen der Filter oder des Präparates selbst kann getestet werden, ob dies der Fall ist.23B Scientific GmbH • Rudorffweg 8 • 21031 Hamburg • Deutschland • Technische Änderungen vorbehalten © Copyright 2013 3B Scientific GmbHDoppelbrechende Strukturen leuchten nach jeder 90° Drehung hell auf und erscheinen da-zwischen dunkel. Isotrope, nicht doppelbre-chende Strukturen hingegen bleiben in jeder Position dunkel.4.3 Sicherungswechsel• Stromversorgung ausschalten und unbe-dingt Netzstecker ziehen.• Sicherungshalter an der Rückseite des Mik-roskops mit einem flachen Gegenstand (z.B. Schraubenzieher) herausschrauben.• Sicherung ersetzen und Halter wieder ein-schrauben.5. Aufbewahrung, Reinigung, Entsorgung• Das Mikroskop an einem sauberen, trocke-nen und staubfreien Platz aufbewahren.• Bei Nicht-Benutzung das Mikroskop immer mit der Staubschutzhülle abdecken.•Das Mikroskop keinen Temperaturen unter 0°C und über 40°C sowie keiner relativen Luftfeuchtigkeit über 85% aussetzen.• Vor Pflege- und Wartungsarbeiten ist immer der Netzstecker zu ziehen.•Zur Reinigung des Mikroskops keine ag-gressiven Reiniger oder Lösungsmittel ver-wenden.• Objektive und Okulare zum Reinigen nicht auseinander nehmen.•Bei starker Verschmutzung das Mikroskop mit einem weichen Tuch und ein wenig Ethanol reinigen.• Die optischen Bestandteile mit einem wei-chen Linsentuch reinigen.• Die Verpackung ist bei den örtlichen Recyc-lingstellen zu entsorgen. •Sofern das Gerät selbstverschrottet werden soll, so gehört dieses nicht in den normalen Hausmüll. Es sind die lokalen Vor-schriften zur Entsorgung von Elektroschrott einzu-halten.。
NEWTON 7.0 - BIO Bioluminescence & Fluorescence Imgaging TEL: +1 (519) 914 5495 ***************** FAX: +1 (226) 884 5502 WHOLE PLANT IMAGINGSMART IMAGING SYSTEMFLUORESCENCE & BIOLUMINESCENCEAPPS STUDIO APPLICATION LIBRARYUltimate sensitivity with the widest f/0.70 lens apertureThe NEWTON 7.0 system combines high sensitivity with advanced plant imaging features and user-friendly time-saving operation.The NEWTON 7.0 proprietary optics have been specifically developed for macro imaging with high light collection capacity, incorporating a unique combination of high numerical aperture and long working distance. Bright fluorescence observation can be performed in a rapid scanning mode that shortens exposure times and minimizes specimen damage. Observation is thus possible even with slight body movement. The fast lens is also ideal for luminescence applications requiring longer exposure time.The NEWTON 7.0 includes our revolutionary Apps Studio approach to imaging. The Apps Studio is an innovative library of applications which contains more than 40 different protocols for a wide variety of targeted and easily activated fluorescent probes and reporters. The Apps Studio contains the excitation and the emission spectra of the main fluorophores used in modern molecular biology laboratory. It also suggestsThe advent of novel fluorescent probes has increased the demands on in-vivo fluorescence imaging systems to be able to deftly handle a variety of simultaneous signals. Our dual magnetron filter technology ensures transmission above 90% and very narrow band cutting - meaning improved spectral separation and increasedsensitivity. Our detection spectral range goes from 400to 900nm, making the NEWTON 7.0 ideal for GFP, YFP or IR applications. With the NEWTON 7.0 optical imaging system, you can image bioluminescent reporters like firefly luciferase and rapidly quantify the signal. The system allows you to visualize infections in whole plants and leaves, compare plant virology, regulate plants growth or observe the stress tolerance.A large number of dyes and stains can be used such as GFP, YFP, Pro-Q Emerald 300, Sypro-Ruby, FITC, DAPI,Alexa Fluor® 680, 700, 750, Cy® 3, 5, 5.5, DyeLight, IRDye® 800CW, VivoTrack 680, VivoTag 750…the best possible system configuration in terms of light source excitation, emission filter and sensitivity level. The Apps Studio ensures reproducibility and one click image acquisition for the best ease of use.The Newton 7.0 accomodates 8 excitation chanels in the visible RGB and NIR spectrum.. Signals can beoverlayed so that several reporters can be visualized simultaneously. Research on microbial infection of plants - BIK1 and FLS2interact with RbohD in N. benthamiana. The indicated constructs were transiently expressed in N. benthamiana,and luciferase complementation imaging assay was performed.Each individual light source delivers a precisely defined range of the spectrum. The very tight LED spectrum is additionally constrained with a very narrow excitation filter. This means less background in the images of your sample and a higher signal to noise ratio to detect the weakest signals. The LED Spectra Capsules can be easily changed, meaning that NEWTON 7.0 can be adapted simply as the requirements of your applicationsevolve.Cloned Plant screening: Arabidopsis thaliana seedlings transfected with luciferase (right) and nontransfected (left), 3min exposure after 1 mM luciferin was sprayed onto the leaves.The NEWTON’s protocoldriven image acquisition is as quick as it is intuitive: adjust your exposure, save, print or quantify.QUANTITATIVE IMAGINGPLANT MANIPULATION ROTATING STAGESUPERIOR QUANTITATIVERESULTSThe NEWTON 7.0 achieves the best signal to noise ratio for the lowest limits of detection. The system is extremely linear over its wide dynamics and can easily detect large intensity difference between bright and faint signals before reaching saturation. The broad linear dynamic range enables relative quantification of target proteins with confidence.Sensitivity is a key feature to detect a bioluminescence orfluorescence signal. Broad linear dynamic range is necessary to compare weak and strong signals in the same image.MULTISPECTRALIMAGINGCUSTOM MADE V.070 LENSNARROW BANDPASSFILTERSUltimate linearity for precise protein quantification over the full dynamic range.Ultra-low noise imaging thanks to a dualcamera amplifier architecture.NEWTON 7.0 Software - 3D Dynamic ScanThe NEWTON 7.0 BIO has been specially designed to handle plants with minimum manipulation. Simply position your pot on the dedicated tray, the stage can be inclined by 15° on the X/Y axis to visualize the plants from different angles and is easily controlled from the software interface, avoiding time consuming manipulation. The rotating stage is also motorized on the Z-axis to get closer to the CCD camera depending on your sample size, giving the possibility to image whole plants, leaves and seedlings with an enhanced sensitivity and image resolution.FUSION custom made lens for enhanced sensitivity and sharpness.Height Adjustable Plant StageTime to get the image is drastically reduced and precious antibody can be saved.Various imaging modes are available from automatic, manual, or time-lapse imaging program. Benefit from our 3D Dynamic Scan technology and observe the different signal intensities in a live 3D video reconstruction. The unique color imaging mode helps you acquire a quick snapshot of your plants with a true color representation,making the documentation faster!When a whole plant is being imaged, it could be difficult to focus on a specific part of the plant. With the NEWTON 7.0 BIO’s new generation of CCD camera, simply click on the leaf of interest for an immediate focusing with no manual adjustment.NEWTON 7.0 BIOVersatile ApplicationsPerformance• Comparative Plant Virology • Genetic Regulation • Infection Monitoring • Regulation of Plant Growth • Stress Tolerance• Proprietary V.070 lens with f0.70 aperture • 1” scientific grade CCD camera • Bioluminescence detection • Fluorescence detectionNEWTON 7.0 BIOLuciferase Expression GFP ExpressionChlorophyll Phosphorescence NIR IlluminationIntuitive user interfaceOne click to get the imageAuto-exposure and automatic illumination control Easy to cleanEase of UseWide DetectionMonitor the growth of a plant overtime thanks to the Daylight and Nightlight simulation modes. The system allows you to collect and compare data throughout the growth of plants.3 days 7 days 14 days 21 days 28 days 37 days 43 days50 daysSOFTWAREILLUMINATIONPERFORMANCENEWTON 7.0 BIOCAMERA & OPTICSHARDWARE CAPABILITIESIntelligent Darkroom concept Fully-automatic system •Motorized Optical Lens •Z-axis Motorized Camera •15° Tilting sample stageDual White-Light LED Panels 8 excitation channels:440nm - 480nm - 540nm - 580nm 640nm - 680nm - 740nm - 780nm 11-Position Motorized Filter Wheel 8 Narrow Bandpass Emission Filters: 500nm - 550nm - 600nm - 650nm 700nm - 750nm - 800nm - 850nmBioluminescence, Chemiluminescence & Fluorescence detectionScientific grade 16-bit CCD camera Grade 0, 400-900nm / 4.8 O.D.-90°C delta Coolingf/0.70 motorized lens aperture Image resolution: 10 megapixels Native resolution: 2160x2160Peak Quantum Efficiency: 80%FOV mininum: 6x6cm (macro imaging) FOV maximum: 20x20cm (whole plant)Bioluminescence detection : femtogram level Fluorescence detection : picogram levelAutomatic, Manual & Serial Acquisition modes Exposure time minimum: 40 milliseconds Exposure time maximum: 2 hours 3D live Dynamic ScanImage Editing and Image AnalysisincludedChemiluminescence and fluorescence on Western, Northern or Southern blot.eGFP transfected rice grainsexcitation 480nm and emission filter F-565,exposure time 0.8 sec.GFP expressionGFP-transfected (right) and Control (left) tobacco leaves, Epiexcitation 480nm and emission filter F-565,exposure time 2sec.Plant VirologyAgroinfiltration in Nicothiana Benthamania 16c, observed under blue excitation (480nm with F-565) to localize the GFP expressionCHINAVilber China Room 127 Building A N° 111 Yuquangying Fengtai District – Beijing ChinaPhone:+86136****1545**************GERMANYVilber L Deutschland GmbH Wielandstrasse 2D-88436 Eberhardzell DeutschlandPhone : + 49 (0) 7355 931 380**************HEADQUARTERS VilberZAC de Lamirault CollegienF-77601 Marne-la-Vallee cedex 3FrancePhone : + 33 (0) 1 60 06 07 71 ***************Disclaimer: Vilber’s NEWTON 7.0 Imager may be used in a wide range of imaging applications for research use only, including in vivo and in-vitro imaging in plants. No license under any third-party patent is conveyed with the purchase or transfer of this product. No right under any other patent claim, no right to perform any patented method, and no right to perform commercial services of any kind,including without limitation, reporting the results of purchaser’s activities for a fee or other commercial consideration, is conveyed expressly, by implication, or by estoppel. Therefore, users of the NEWTON 7.0 should seek legal advice to determine whether they require a license under one or more of the exiting patents in their country. This system is not intended for sale or transfer in the United States and Canada.TEL: +1 (519) 914 5495*****************FAX: +1 (226) 884 5502。
2002年医学界的重大发现:在人眼的视网膜上发现了出杆状和椎状细胞以外的地三种视觉细胞.它连接着上视交叉神经核(suprachiasmatic nucleus,SCN)和松果腺(pineal gland),SCN直接控制着周期时钟及接受时间线索以进行校准,而松果腺制造腿黑激素(melatonin)可以调节上视交叉神经甚至是视网膜细胞的周期活动.而其他非光线的时间线索则可经由大脑其他部位来转传讯息至上视交叉神经核。
上视交叉神经核除了接受时间线索的输入讯号之外,也会输出讯号到达生理行为或活动调控有关的其他大脑区段,以呈现体温、睡眠等日夜节奏。
light波长在380nm~780nm间的,可以直接为人眼所察觉的电磁辐射。
Electromagnetic radiation that has a wavelength in the range from about 380nm(violet) to about 780nm (red) and may be perceived by the normal unaided human eye.light source:光源Thermal radiation light source :热辐射光源for instance :incandescence lamp(白炽灯),halogen lamp(卤钨灯)Gas discharge light source :气体放电光源for instance :fluorescent lamp(荧光灯),HID lamps(高压气体放电灯)Others light sourceEL(场致发光光源),LED(发光二极管)incandescence lamp(白炽灯)白炽灯发光是基于钨丝在高温下发热发光,达到白炽状态。
Tungsten-Halogen Lamps (卤钨灯)卤素灯也属于白炽灯,围绕在灯丝旁的卤素气体会捕获蒸发的钨,使其再度凝结在灯丝上。
/symbia-evo-excel Symbia Evo Excel System Specifications23Symbia Evo ExcelSmall is the new big.Small on the outside, yet big on the inside, Symbia Evo™ Excel 1 empowers you to image every patient 2 knowing you have the clinical information needed for confident decision making and a system designed to optimize your investment.Optimize Your InvestmentEngineered to manage key life-cycle costs, Symbia Evo Excel is the most cost-effective SPECT scanner in its class.3 The system design addresses space requirements, as well as maintenance and serviceability, making it an investment that works for you. With the smallest 3 room size requirement in its class—up to 29%3 smaller than conventional SPECT systems—Symbia Evo Excel signifi-cantly reduces costs associated with room remodeling and expansion. Lower up-front costs equate to a faster return on investment.Image Every Patient 2With exceptional detector flexibility, Symbia Evo Excel supports gurney and hospital bed imaging. The stream-lined bed accommodates patients up to 227 kg (500 lb) and the lowest bed position offers easy access to patients with limited mobility. Increase your scannable population and improve patient comfort with a 30% larger bore, compared to prior systems; a high-capacity, low-height patient bed; and gurney and hospital bed imaging capabilities.Read with ConfidenceEquipped with advanced high-definition detector tech-nology, Symbia Evo Excel offers the highest 3 collimator sensitivity and the best 3 NEMA-reconstructed resolution. Symbia Evo Excel’s industry-leading 3 image quality delivers accurate and reproducible clinical information to support physicians’ diagnostic confidence, potentially leading to improved clinical outcomes and reduced readmission rates.FeaturesHeight 225 cm (7 ft 4.7 in)Width 215.6 cm (7 ft 0.9 in)Depth 194.7 cm (6 ft 4 in)Axis of rotation (from floor) 104 cm (3 ft 5 in)Weight42,369 kg (5,224 lb)Min./max. patient opening (HE Coll) 12 cm (4.7 in)/65.4 cm (25.7 in)Min./max. patient opening (LEHR Coll) 19.2 cm (7.6 in)/72.6 cm (28.6 in)Patient positioning monitor 38.1 cm (15 in) flat panel color LCD display Tunnel opening 101.2 x 78.3 cm (39.8x30.8 in)Average autocontour distance 1.1 cm (0.45 in)Max. radial and lateral 72 cm/min (28.3 in/min)Max. lateral position left/right 37.5 cm (14.7 in)/10 cm (4 in)Max. clockwise (CW)/counter-clockwise (CCW)405°/135°rotation detector 1Ring rotation range 540°Rotational uniformity YesRotational accuracy 0.1°Rotational speed 0.03-3.0 RPM≤0.25 pixel (64x64 matrix)Center of rotationLength 233.2 cm (7 ft 7.8 in)Weight483 kg (1,065 lb)Height 113.4 cm (3 ft 8.6 in)Vertical motion range 53.9-103.7 cm (21.2-40.8 in)Vertical speed 72 cm/min (28 in/min), maximumPallet material AluminumPallet thickness 2.6 mm (0.10 in)Pallet width 40.3 cm (15.8 in)Attenuation at 140 keV <7%Max. patient weight 227 kg (500 lb)Max. deflection of patient pallet <2.0 mm (<0.08 in) for 92 kg (200 lb) patient Max. scan length in whole-body mode 200 cm (6 ft 6.7 in)Horizontal motion accuracy 0.7 mm (0.02 in)Min./max. horizontal speed 3-600 cm/min (1.2-236 in/min)4Width 26.3 cm (10.3 in)Length 104.3 cm (3 ft 5.1 in)Height 101.4 cm (3 ft 3.9 in)Width 82.8 cm (2 ft 8.6 in)Depth 120.4 cm (3 ft 11.4 in)Back 9.5 mm (0.375 in)Sides 12.7 mm (0.5 in)Min./max. in patient direction527.9/36.4 mm (1.1/1.435 in)Brain reach67.6 cm (3 in)5System spatial resolution without scatter (LEHR at 10 cm)FWHM in CFOV ≤7.5 mm ≤7.8 mmFWTM in CFOV ≤13.6 mm ≤14.9 mm System spatial resolution with scatter (LEHR at 10 cm)FWHM in CFOV≤8.3 mm ≤8.9 mmFWTM in CFOV ≤18.6 mm ≤19.5 mm System planar sensitivity (LEHR at 10 cm)Absolute 99m Tc202 cpm/μCi 225 cpm/μCi System planar sensitivity (MELP at 10 cm)Absolute 111In 430 cpm/μCi 565 cpm/μCi 67Reconstructed spatial resolution withoutFiltered back projectionscatter at 15 cm radius (LEHR)Central transaxial ≤10.2 mm –Central axial ≤10.8 mm–Peripheral radial ≤9.8 mm –Peripheral tangential ≤8.4 mm –Peripheral axial ≤9.0 mm –Reconstructed spatial resolution withoutFlash 3D iterative reconstructionscatter at 15 cm radius (LEHR)Central transaxial ≤4.4 mm –Central axial ≤4.4 mm –Peripheral radial ≤4.0 mm –Peripheral tangential ≤3.9 mm –Peripheral axial ≤4.2 mm –Reconstructed spatial resolutionFiltered back projectionwith scatter (LEHR)Center ≤10.7 mm ≤11.5 mmRadial ≤10.9 mm ≤12.0 mmTangential ≤7.9 mm ≤8.8 mmReconstructed spatial resolutionFlash 3D iterative reconstructionwith scatter (LEHR)Center ≤5.8 mm –Radial ≤5.0 mm–Tangential ≤4.1 mm –Average volume sensitivity per axial centimeterLEHR, 99m Tc12,000 (cts/sec)/(MBq/cm2)–Detector-to-detector sensitivity variation99mscatter at 10 cm/min scan speed (LEHR at 10 cm)FWHM perpendicular ≤7.5 mm –FWHM parallel ≤7.9 mm –FWTM perpendicular ≤14.0 mm –FWTM parallel ≤14.2 mm –7Low Energy High Resolution LowPenetrationHighResolutionLow EnergyAll PurposeLow EnergyUltra-HighResolutionLow EnergyFan BeamMediumEnergy LowPenetrationHighEnergyIsotope 99m Tc 123I 99m Tc 99m Tc99m Tc 67Ga 131IHole shape Hex Hex Hex Hex Hex Hex Hex Number ofjoles (x1000)148 86 90 146 64 14 8Hole length 24.05 mm 35.0 mm 24.05 mm 35.8 mm 35 mm 40.64 mm 50.8 mm Septal thickness 0.16 mm 0.2 mm 0.2 mm 0.13 mm 0.16 mm 1.14 mm 2 mm Hole diameteracross the flats1.11mm 1.5 mm 1.45 mm 1.16 mm 1.53 mm2.94 mm3.4 mmSensitivity at 10 cm8202 cpm/μCi330 cpm/μCi330 cpm/μCi100 cpm/μCi280 cpm/μCi275 cpm/μCi135 cpm/μCiGeometricresolution at10 cm6.4 mm 6.4 mm 8.3 mm 4.6 mm 6.3 mm 10.8 mm 12.6 mmSystemresolution at10 cm7.5 mm 8.0 mm 9.4 mm 6.0 mm 7.3 mm 12.5 mm 14.5 mmCalculatedpenetration1.5% 1.2% 1.9% 0.8% 1.0% 1.2% 3.5%Weight 22.6 kg(49.8 lb)33.1 kg(73 lb)22.6 kg(49.8 lb)28 kg(61.8 lb)28.4 kg(62.5 lb)63.5 kg(140.1 lb)N/A8910Room Size 3.60 m (11 ft 8 in) x 4.57 m (15 ft) Ceiling Height 2.44 m (8 ft 0 in)Hung Ceiling Height 2.29 m (7 ft 5 in)System Length 4.48 m (14.7 ft)System Width 2.15 m (7.0 ft)Example layout. Please request site-specific plans for your project.Symbia Evo ExcelMinimum room sizeRoom size 3.60 m (11 ft 9 in)x4.57 m (14 ft 11 in) Ceiling height 2.44 m (8 ft 0 in)Hung ceiling height 2.29 m (7.5 ft)System length 4.48 m (14.7 ft)System width 2.16 m (7.1 ft)Installation SpecificationsAllowable temperature change 4.4° C (8° F) per hourHumidity range20-80% non-condensingFloor loading10 3.37 kg/sq cm (48 lb/sq in) maximum under the gantyHeat dissipation116,500 BTU/hrTemperature range18°-30°C (64°-86° F)Maximum temperature gradient 4.4° C/hour (8° F/hour)1112Detector VersatilitySiemens Molecular Imaging reserves the right to modify the design and specifications contained herein without prior notice. Please contact your local sales representative for the most current information. Some options and func-tionality will not be available immediately on product release. Where certain options and functionality are not available on delivery, these will be delivered as part of subsequent software or hardware releases. Please confirm availability and timing with your representative.Siemens Healthcare Headquarters Siemens Healthcare GmbH Henkestr. 127 91052 Erlangen GermanyPhone: +49 9131 84-0 /healthcareGlobal Business LineSiemens Medical Solutions USA, Inc. Molecular Imaging2501 North Barrington Road Hoffman Estates, IL 60192 USAPhone: +1 847 304-7700 /miLegal ManufacturerSiemens Medical Solutions USA, Inc. Molecular Imaging2501 N. Barrington Road Hoffman Estates, IL 60192 USATelephone: +1 847 304 7700 /miMI-2913.TM.JV PDF ONLY© Siemens Healthcare GmbH, 08.2016Trademarks and service marks used in this material are property of Siemens Healthcare GmbH. All other company, brand, product and service names may be trademarks or registered trademarks of their respective holders./mi1S ymbia Evo Excel is not commercially available in all countries.Due to regulatory reasons, its future availability cannot be guaranteed. Please contact your local Siemens organization for further details.2Patients up to 227 kg (500 lb).3Based on competitive literature available at time of publication.4Gantry weight: NM gantry 2,374 kg (5,224 lb).5F or any point on the pallet at maximum 183 cm (6 ft) from the detector while the detector is at 25.4 cm (10 in) radial position. 6D istance from the edge of the detector housing to the edge of the FOV.7V alues are determined at the manufacturer's facility using methods described in NEMA Standards Publications NU 1-2007 “Performance measurements of Scintillation Cameras.”8V alues measured in accordance with NEMA Standards Publication NU-1 2007 using 3/8" crystal.9V alues measured in accordance with NEMA Standards Publication NU-1 2007 using 3/8” crystal. Sensitivities for pinhole collimators measured using a 9 cm diameter phantom. Resolution for pinhole collimator measured using a line separation of 6 cm (4 mm and 6 mm aperture) and 4 cm (8 mm aperture).10Floor loading based on utilization of a floor plate.11I ncludes gantry, detectors, patient bed, acquisition workstation, LCD monitor, PPM and UPS. Values in idle mode and operating mode would produce higher values.。
Title:The Microscopic World in Nature:Wonders Beneath the LensNature's grandeur is not confined to the majestic vistas that stretch across the horizon.A parallel universe,a microscopic world of hidden complexity and unparalleled beauty,awaits our discovery beyond the reach of the naked eye.With the aid of microscopes,we can delve into this miniature realm,revealing the intricate details and delicate structures that form the building blocks of life on Earth.This journey into the microscale exposes an ethereal landscape,where even the smallest organisms boast elaborate designs and functions that rival any macroscopic marvel.The microscopic realm is a silent stage where life's drama unfolds through the interactions of cells,microorganisms,and subcellular structures.Delicate strands of DNA,the molecular rungs in the ladder of heredity,spiral within the nucleus of each cell like twining vines around the trunk of life's tree.These genetic blueprints house the instructions for all living processes,their base pairs a code as ancient as it is advanced.Similarly,the fluttering"wings"of a paramecium,magnified under a lens,resemble a ballet in motion,each beat propelling the single-celled creature along its aqueous pathway.The significance of this microcosm extends far beyond aesthetic appreciation.Microorganisms such as bacteria and fungi are the unsung heroes of ecosystems,driving the cycles of matter that sustain all forms of complex life.They are the decomposers,the recyclers,breaking down organic material to release nutrients back into the soil and water, thereby feeding plants and supporting food webs.The role of mycorrhizal fungi,for instance,is crucial for plant health;they form mutualistic relationships with plant roots,exchanging minerals for carbon compounds,thereby facilitating nutrient flow in ecosystems.Microscopic life also plays a critical role in human well-being.In the human body,white blood cells patrol our veins like vigilant guardians, their phagocytic actions akin to a cellular constabulary that engulfs and destroys invading pathogens.The precision and efficiency of these processes,viewed under a microscope,bear testament to nature's sophistication in designing self-defense mechanisms.Furthermore,microscopy has revolutionized modern medicine and scientific research.Advances such as electron microscopy have allowed scientists to visualize viruses,once invisible agents of disease,ushering in new frontiers in virology and immunology.The same technology has revealed the fine structure of cells and their organelles,deepening our understanding of cellular biology and physiology.Yet,with all its wonders,the microscopic world remains largely unnoticed by the human eye.Its preservation and study require a conscientious approach to avoid the overuse of antibiotics that kill beneficial microbes or the pollution that alters microbial communities in ecosystems.Understanding and respecting the balance in this invisible domain are essential for maintaining the health of both natural and human-made environments.In conclusion,the microscopic world,though hidden,is a vital tapestry of life,showcasing nature's artistry at its most minute scale.It is a realm of mesmerizing beauty and fundamental importance,where every tiny organism plays a role in an intricate,interconnected network of existence.By peering through the lens of our microscopes,we gain a profound appreciation for the delicate intricacy that sustains all life on Earth—a subtle reminder that big things often have small beginnings.。
FLIR A6750sc MWIRThermal imaging camera with FLIR cooled InSb detector HIGH SENSITIVITY, CRISP THERMAL IMAGESFLIR A6750sc incorporates a cooled FLIR Indium Antimonide (InSb) detector that operates in the 3- to 5-micron waveband. Optionally, a broadbandversion that operates in the 1-5 micron waveband is available. Both versions produce crisp thermal images of 640 x 512. Achieving a high thermal sensitivity of <20 mK, FLIR A6700sc is able to capture the finest image details.FAST INTEGRATION TIMESWorking in snapshot mode, the FLIR A6750sc is able to capture all pixels from a scene simultaneously in under 190µs for room temperature scenes. This is particularly important when monitoring fast moving objects where an uncooled thermal imaging camera would suffer from image blur. The camera supports image frame rates up to 4.1k frames per second when operating in windowing mode.STANDARD VIDEO INTERFACESUsing a standard GigE Vision ® interface to transmit full dynamic range digital video, and GenICam for camera control, the FLIR A6750sc is a true “plug and play” thermal imaging camera. Additional interfaces include a BNC analog video output. The Gigabit Ethernet and analog video are simultaneously active yet independently controlled allowing greater flexibility for recording and display purposes.CUSTOM COLD FILTERS AVAILABLECustom cold filtering options for specific spectral detection and measurement are available. Perfect for imaging through glass, measuring temperature of thin film plastics, laser profiling and detection, or optical gas imagingSOFTWAREFLIR A6750sc camera works seamlessly with FLIR ResearchIR Max software enabling intuitive viewing, recording and advanced processing of thethermal data provided by the camera. A Software Developers Kit (SDK) is optionally available.COMPATIBLE WITH 3RD PARTY SOFTWARE Control the A6750sc and capture data directly into MathWorks ® MATLAB software for custom image analysis and enhancement.KEY FEATURES• FLIR built cryo cooler and insb detector• Excellent image quality: 640 x 512 pixels • High sensitivity: <20 mK• High speed image acquisition: up to 4,1 kHz in windowing mode• Synchronization with other instruments and events • Wide choice of optics & extender ringsElectronics microscopyMotorcycle brake testingImaging Specifications NASDAQ: FLIRSpecifications are subject to change without notice©Copyright 2015, FLIR Systems, Inc. All other brand and product names are trademarks of their respective owners. The images displayed may not be representative of the actual resolution of the camera shown. Images for illustrative purposes only. (Created 04/15)PORTLANDCorporate Headquarters FLIR Systems, Inc.27700 SW Parkway Ave.Wilsonville, OR 97070USAPH: +1 866.477.3687BELGIUMFLIR Systems Trading Belgium BVBALuxemburgstraat 22321 Meer BelgiumPH: +32 (0) 3665 5100SWEDENFLIR Systems AB Antennvägen 6, PO Box 7376SE-187 66 Täby SwedenPH: +46 (0)8 753 25 00NASHUAFLIR Systems, Inc.9 Townsend West Nashua, NH 06063USAPH: +1 603.324.7611UKFLIR Systems UK 2 Kings Hill Avenue Kings HillWest Malling - Kent ME19 4AQUnited KingdomPH: +44 (0)1732 220 011On/Off switchStatus LEDsPower inCat 6 Ethernet portSyncVideo portAUX port。