推荐学年高中数学第二章基本初等函数I2.1.1.1根式课时作业新人教版必修1
- 格式:doc
- 大小:50.50 KB
- 文档页数:3
章末检测(A)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.若a<12,则化简4(2a -1)2的结果是( ) A .2a -1 B .-2a -1 C .1-2aD .-1-2a2.函数y =lg x +lg (5-3x)的定义域是( ) A .[0,53) B .[0,53] C .[1,53)D .[1,53]3.函数y =2+log 2(x 2+3)(x ≥1)的值域为( ) A .(2,+∞) B .(-∞,2) C .[4,+∞)D .[3,+∞)4.已知2x =72y =A ,且1x +1y =2,则A 的值是( ) A .7B .7 2C .±7 2D .985.若a>1,则函数y =a x 与y =(1-a)x 2的图象可能是下列四个选项中的( )6.下列函数中值域是(1,+∞)的是( ) A .y =(13)|x -1|B .y =34x -C .y =(14)x +3(12)x +1 D .y =log 3(x 2-2x +4)7.若0<a<1,在区间(-1,0)上函数f(x)=log a (x +1)是( ) A .增函数且f(x)>0 B .增函数且f(x)<0 C .减函数且f(x)>0 D .减函数且f(x)<08.已知函数f(x)=⎩⎨⎧log 3x ,x>02x ,x ≤0,则f(f(19))等于( )A .4B .14C .-4D .-149.右图为函数y =m +log n x 的图象,其中m ,n 为常数,则下列结论正确的是( )A .m<0,n>1B .m>0,n>1C .m>0,0<n<1D .m<0,0<n<110.下列式子中成立的是( ) A .log 0.44<log 0.46 B .1.013.4>1.013.5 C .3.50.3<3.40.3D .log 76<log 6711.方程log 2x +log 2(x -1)=1的解集为M ,方程22x +1-9·2x +4=0的解集为N ,那么M 与N 的关系是( )A .M =NB .M NC .MND .M ∩N =∅12.设偶函数f(x)=log a |x +b|在(0,+∞)上具有单调性,则f(b -2)与f(a +1)的大小关系为( )A .f(b -2)=f(a +1)B .f(b -2)>f(a +1)C .f(b -2)<f(a +1)D .不能确定二、填空题(本大题共4小题,每小题5分,共20分) 13.log 34log 98=________.14.函数f(x)=a x -1+3的图象一定过定点P ,则P 点的坐标是________. 15.设log a 34<1,则实数a 的取值范围是________________.16.如果函数y =log a x 在区间[2,+∞)上恒有y>1,那么实数a 的取值范围是________.三、解答题(本大题共6小题,共70分)17.(10分)(1)计算:(-3)0-120+(-2)-2-1416-; (2)已知a =12,b =132, 求[23a -()()122123b ab a ----]2的值.18.(12分)(1)设log a 2=m ,log a 3=n ,求a 2m +n 的值; (2)计算:log 49-log 212+5lg210-.19.(12分)设函数f(x)=2x+a2x-1(a为实数).(1)当a=0时,若函数y=g(x)为奇函数,且在x>0时g(x)=f(x),求函数y=g(x)的解析式;(2)当a<0时,求关于x的方程f(x)=0在实数集R上的解.20.(12分)已知函数f (x )=log a x +1x -1(a >0且a ≠1),(1)求f (x )的定义域;(2)判断函数的奇偶性和单调性.21.(12分)已知-3≤12log x ≤-32,求函数f (x )=log 2x 2·log 2x4的最大值和最小值.22.(12分)已知常数a 、b 满足a >1>b >0,若f (x )=lg(a x -b x ). (1)求y =f (x )的定义域;(2)证明y =f (x )在定义域内是增函数;(3)若f (x )恰在(1,+∞)内取正值,且f (2)=lg2,求a 、b 的值.章末检测(A)1.C [∵a <12,∴2a -1<0.于是,原式=4(1-2a )2=1-2a .]2.C[由函数的解析式得:⎩⎨⎧lg x ≥0,x >0,5-3x >0,即⎩⎪⎨⎪⎧x ≥1,x >0,x <53.所以1≤x <53.]3.C [∵x ≥1,∴x 2+3≥4, ∴log 2(x 2+3)≥2,则有y ≥4.]4.B [由2x =72y =A 得x =log 2A ,y =12log 7A , 则1x +1y =1log 2A +2log 7A =log A 2+2log A 7=log A 98=2, A 2=98.又A >0,故A =98=7 2.] 5.C [∵a >1,∴y =a x 在R 上是增函数,又1-a <0,所以y =(1-a )x 2的图象为开口向下的抛物线.] 6.C [A 选项中,∵|x -1|≥0,∴0<y ≤1; B 选项中,y =341x=14x 3,∴y >0;C 选项中y =[(12)x ]2+3(12)x +1,∵(12)x >0,∴y >1; D 选项中y =log 3[(x -1)2+3]≥1.]7.C [当-1<x <0,即0<x +1<1,且0<a <1时,有f (x )>0,排除B 、D.设u =x +1,则u 在(-1,0)上是增函数,且y =log a u 在(0,+∞)上是减函数,故f (x )在(-1,0)上是减函数.]8.B [根据分段函数可得f (19)=log 319=-2, 则f (f (19))=f (-2)=2-2=14.]9.D [当x =1时,y =m ,由图形易知m <0,又函数是减函数,所以0<n <1.] 10.D [A 选项中由于y =log 0.4x 在(0,+∞)单调递减, 所以log 0.44>log 0.46;B 选项中函数y =1.01x 在R 上是增函数, 所以1.013.4<1.013.5;C 选项中由于函数y =x 0.3在(0,+∞)上单调递增, 所以3.50.3>3.40.3;D 选项中log 76<1,log 67>1,故D 正确.] 11.B [由log 2x +log 2(x -1)=1,得x (x -1)=2, 解得x =-1(舍)或x =2,故M ={2}; 由22x +1-9·2x +4=0,得2·(2x )2-9·2x +4=0, 解得2x=4或2x=12,即x =2或x =-1,故N ={2,-1},因此有M N .] 12.C [∵函数f (x )是偶函数,∴b =0,此时f (x )=log a |x |. 当a >1时,函数f (x )=log a |x |在(0,+∞)上是增函数, ∴f (a +1)>f (2)=f (b -2);当0<a <1时,函数f (x )=log a |x |在(0,+∞)上是减函数, ∴f (a +1)>f (2)=f (b -2). 综上可知f (b -2)<f (a +1).] 13.43解析 原式=lg4lg3lg8lg9=lg4lg3×lg9lg8=2lg2×2lg3lg3×3lg2=43.14.(1,4)解析 由于函数y =a x 恒过(0,1),而y =a x -1+3的图象可看作由y =a x 的图象向右平移1个单位,再向上平移3个单位得到的,则P 点坐标为(1,4).15.(0,34)∪(1,+∞)解析 当a >1时,log a 34<0<1,满足条件; 当0<a <1时,log a 34<1=log a a ,得0<a <34. 故a >1或0<a <34.16.(1,2)解析 当x ∈[2,+∞)时,y >1>0,所以a >1,所以函数y =log a x 在区间[2,+∞)上是增函数,最小值为log a 2,所以log a 2>1=log a a ,所以1<a <2. 17.解 (1)原式=1-0+1(-2)2-()1442-=1+14-2-1=1+14-12=34. (2)因为a =12,b =132,所以 原式=231281142233a b a b --+-+⎛⎫= ⎪⎝⎭=84144130333222221----⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭. 18.解 (1)∵log a 2=m ,log a 3=n , ∴a m =2,a n =3.∴a 2m +n =a 2m ·a n =(a m )2·a n =22·3=12. (2)原式=log 23-(log 23+log 24)+2lg 510=log 23-log 23-2+25=-85.19.解 (1)当a =0时,f (x )=2x -1, 由已知g (-x )=-g (x ),则当x <0时,g (x )=-g (-x )=-f (-x )=-(2-x -1) =-(12)x +1,由于g (x )为奇函数,故知x =0时,g (x )=0, ∴g (x )=⎩⎪⎨⎪⎧2x -1, x ≥0-(12)x+1,x <0.(2)f (x )=0,即2x +a2x -1=0,整理,得:(2x )2-2x +a =0, 所以2x=1±1-4a2,又a <0,所以1-4a >1,所以2x=1+1-4a2,从而x =log 21+1-4a2.20.解 (1)要使此函数有意义,则有⎩⎨⎧ x +1>0x -1>0或⎩⎨⎧x +1<0x -1<0, 解得x >1或x <-1,此函数的定义域为 (-∞,-1)∪(1,+∞),关于原点对称. (2)f (-x )=log a-x +1-x -1=log a x -1x +1=-log a x +1x -1=-f (x ).∴f (x )为奇函数. f (x )=log ax +1x -1=log a (1+2x -1), 函数u =1+2x -1在区间(-∞,-1)和区间(1,+∞)上单调递减. 所以当a >1时,f (x )=log a x +1x -1在(-∞,-1),(1,+∞)上递减;当0<a <1时,f (x )=log ax +1x -1在(-∞,-1),(1,+∞)上递增. 21.解 ∵f (x )=log 2x 2·log 2x4 =(log 2x -1)(log 2x -2) =(log 2x )2-3log 2x +2 =(log 2x -32)2-14, ∵-3≤12log x ≤-32.∴32≤log 2x ≤3.∴当log 2x =32,即x =22时,f (x )有最小值-14;当log 2x =3,即x =8时,f (x )有最大值2.22.(1)解 ∵a x -b x >0,∴a x >b x ,∴(a b )x >1.∵a >1>b >0,∴a b >1.∴y =(a b )x 在R 上递增.∵(a b )x >(a b )0,∴x >0.∴f (x )的定义域为(0,+∞).(2)证明 设x 1>x 2>0,∵a >1>b >0, ∴1x a >2x a >1,0<1x b <2x b <1.∴-1x b >-2x b >-1.∴1x a -1x b >2x a -2x b >0. 又∵y =lg x 在(0,+∞)上是增函数, ∴lg(1x a -1x b )>lg(2x a -2x b ),即f (x 1)>f (x 2). ∴f (x )在定义域内是增函数.(3)解 由(2)得,f (x )在定义域内为增函数, 又恰在(1,+∞)内取正值,∴f (1)=0.又f (2)=lg2,∴⎩⎨⎧ lg (a -b )=0,lg (a 2-b 2)=lg2.∴⎩⎨⎧ a -b =1,a 2-b 2=2.解得⎩⎪⎨⎪⎧ a =32,b =12.。
函数表示方法5分钟训练(预习类训练,可用于课前)1.函数f(x)=,求解:〔1〕点〔3,14〕在f(x)图象上吗?〔2〕当x =4时,求f(x)值;〔3〕当f(x)=2时,求x 值.解:〔1〕因为≠14,所以点〔3,14〕不在函数f(x)图象上.〔2〕f(x)==-3.〔3〕由=2,解得x=14.2.画出以下函数图象:〔1〕f(x)=〔2〕g(x)=3n+1,n∈{1,2,3}.思路解析:画函数图象一般采用描点法,要注意定义域限制.解:〔1〕函数f(x)图象如以下图所示:〔2〕函数g(x)图象如以下图所示:100 cm 2等腰梯形,上底长为x cm ,下底长为上底长3倍,那么把它高y 表示成x 函数为( )A .y =50x(x >0) B.y =100x(x >0)C.y =x 50 (x >0)D.y =x100 (x >0) 思路解析:由·y=100,得2xy =100. ∴y=x50 (x >0). 答案:C10分钟训练(强化类训练,可用于课中)1.以下图形是函数y =-|x|(x∈[-2,2])图象是( )思路解析:y=-|x|=其中y=-x(0≤x≤2)是直线y=-x 上满足0≤x≤2一条线段(包括端点),y=x 是直线y=x 上满足-2≤x<0一条线段(包括左端点),其图象在原点及x 轴下方.答案:B 2.f(x1)=11+x ,那么f(x)解析式为( ) A. 11+x B.x x +1 C.1+x x D.1+x思路解析:令u=x1,用换元法,同时应注意函数定义域.∵x≠0且x≠-1,那么x=u 1,u≠0,u≠-1.∴f(u)=(u≠0,且u≠-1),即f(x)=1+x x (x≠0且x≠-1). 答案:C3.求实系数一次函数y=f(x),使f [f(x)]=4x+3.思路解析:设f(x)=ax+b 〔a≠0〕,用待定系数法.解:设f(x)=ax+b(a≠0),∴f[f(x)]=a·f(x)+b=a(ax+b)+b=a 2x+ab+b.∴a 2x+ab+b=4x+3.∴∴或∴f(x)=2x+1或f(x)=-2x-3.4.在学校洗衣店中每洗一次衣服〔4.5 kg 以内〕需要付费4元,如果在这家店洗衣10次以后可以免费洗一次.〔1〕根据题意填写下表:〔2〕“费用c 是次数n 函数〞还是“次数n 是费用c 函数〞 〔3〕写出函数解析式,并画出图象.思路解析:此题考察阅读理解能力,当 n≤10时,c=4n ;当10<n≤21时,c=4〔n-1〕.解:〔1〕〔2〕费用c 是次数n 函数,因为对于次数集合中每一个元素〔次数〕,在费用集合中都有唯一元素〔费用〕与它对应.但对于费用集合中每一个元素〔费用〕,在次数集合中并不都是只有唯一一个元素与它对应.如40元就有10次与11次与它对应.〔3〕函数解析式为c=,,11,,10),1(4,4**N n n N n n n n ∈≥∈≤⎩⎨⎧-且且其图象如图:5.用长为l 铁丝弯成下部为矩形,上部为半圆形框架,假设矩形底边长为2x ,求此框架围成面积y 与x 函数关系式,并指出其定义域. 思路解析:求函数定义域,如果是实际问题除应考虑解析式本身有定义外,还应考虑实际问题有意义,如此题注意到矩形长2x 、宽a 必须满足2x >0与a >0,即l-πx -2x>0.解:由题意知此框架围成面积是由一个矩形与一个半圆组成图形面积,而矩形长AB=2x ,宽为a.所以有2x +2a +πx=l,即a=2l -2πx-x ,半圆直径为2x ,半径为x.所以y=22x π+(2l -2πx-x)·2x=-(2+2π)x 2+lx. 根据实际意义知2l -2πx-x >0,又∵x>0,解得0<x <,即函数y=-(2+2π)x 2+lx 定义域是{x|0<x <}.6.如右图,某灌溉渠横断面是等腰梯形,底宽2 m ,渠深1.8 m ,边坡倾角是45°.〔1〕试用解析表达式将横断面中水面积A m 2表示成水深h m 函数; 〔2〕画出函数图象;〔3〕确定函数定义域与值域.思路解析:利用等腰梯形性质解决问题.解:〔1〕由,横断面为等腰梯形,下底为2 m ,上底为〔2+2h 〕 m ,高为h m ,∴水横断面面积A==h 2+2h .〔2〕函数图象如下确定:由于A=〔h+1〕2-1,对称轴为直线h=-1,顶点坐标为〔-1,-1〕,且图象过〔0,0〕与〔-2,0〕, 又考虑到0<h <1.8,∴函数A=h 2+2h 图象仅是抛物线一局部,如下图.〔3〕定义域为{h |0<h <1.8},值域由函数A=h 2+2h=〔h+1〕2-1图象可知,在区间〔0,1.8〕上函数为增函数,所以0<A <6.84. 故值域为{A|0<A <6.84}.快乐时光得不偿失一条狗跑进一家肉店,从柜台上叼起一块肉就跑.肉店老板认出那是邻居一只狗,那个邻居是一名律师.肉店老板向邻居打去了 问:“嘿,如果你狗从我肉店里偷去了一块肉,你愿意赔我肉钱吗?〞律师答复说:“当然可以,那你说多少钱?〞“7.98元.〞肉店老板答复说.几天后,肉店老板收到了一张7.98元支票,随那张支票寄来还有一张发票,上面写道:律师咨询费150美元.30分钟训练(稳固类训练,可用于课后)1.设f(x)=那么f [f(21)]( ) A.21 B.13459 D.4125 思路解析:f [f(21)]=f(-23)=. 答案:B2.由于水污染日益严重,水资源变得日益短缺.为了节约用水,某市政府拟自2007年始对居民自来水收费标准调整如下:每户每月用水不超过4吨时,每吨6元;当用水超过4吨时,超过局部每吨增收3元.那么某户居民所交水费y元与该月此户居民所用水量x吨之间函数关系式为…( )A.y=6xB.y=C.y=D.y=9x-12思路解析:当用水量0≤x≤4时,水费y=6x;当用水量x>4时,水费y=24+9×〔x-4〕=9x-12.应选B.答案:B3.甲、乙两厂年产值曲线如右图所示,那么以下结论中,错误是……( )思路解析:由图象可知,在1993年、1996年、2002年两厂产值一样,而在1993年以前,甲厂产值明显低于乙厂,而在1995年至2000年时,乙厂年产值增长那么要比甲厂快,所以B选项错.答案:B4.函数f(x)图象如右图所示,那么f(x)解析式是____________.思路解析:∵f(x)图象由两条线段组成,要重点注意是端点值是否可以取到.答案:f(x)=5.(2006安徽高考,理)函数f(x)对于任意实数x满足条件f(x+2)=,假设f(1)=-5,那么f(f(5))=___________.思路解析:由f(x+2)=,得f(x+4)= =f(x),所以f(5)=f(1)=-5,那么f(f(5))=f(-5)=f(-1)==-51.答案:- 51 6.f(1-x )=x ,求f(x).思路解析:设1-x =t ,用换元法,同时应注意函数定义域. 解:设1-x=t ,那么x=(1-t)2.∵x≥0,∴t≤1.∴f(t)=(1-t)2(t≤1).∴f(x)=(x -1)2(x≤1).7.设函数f(x)满足f(x)+2f(x 1)=x 〔x≠0〕,求f(x).思路解析:以x 1代换x ,解关于x 1、x 方程组,消去x 1.解:∵f(x)+2f(x 1)=x , ① 以x 1代换x 得f(x 1)+2f(x)= x 1. ②解①②组成方程组得f(x)=.8.某家庭今年一月份、二月份与三月份煤气用量与支付费用如下表所示:该市煤气收费方法是:煤气费=根本费+超额费+保险费.假设每月用量不超过最低限度A 米3,只付根本费3元与每户每月定额保险C 元,假设用气量超过A 米3,超过局部每立方米付B 元,又知保险费C 不超过5元,根据上面表格求A 、B 、C.思路解析:此题支付费用为每月用气量分段函数,先写出函数解析式,再求A 、B 、C.解:设每月用气量为x 米3,支付费用为y 元,那么得y=,,0,)(3,3A x A x C A x B C >≤≤⎩⎨⎧+-++ 由0<C≤5有3+C≤8.由第二、第三月份费用都大于8,即用气量25米3,35米3都大于最低限度A 米3,那么⎩⎨⎧=+-+=+-+.19)35(3,14)25(3C A B C A B 两式相减,得B=0.5.∴A=2C+3.再分析一月份用气量是否超过最低限度,不妨设A <4,将x=4代入3+B(x-A)+C,得3+0.5[4-(3+2C)]+C=4.由此推出3.5=4,矛盾.∴A≥4.一月份付款方式选3+C,∴3+C=4,即C=1.将C=1代入A=2C +3,得A=5.∴A=5,B=0.5,C=1.9.设二次函数f(x)满足f(2+x)=f(2-x),且f(x)=0两个实根平方与为10,f(x)图象过点(0,3),求f(x)解析式.思路解析:要求二次函数解析式,一般用待定系数法先设f(x)=ax2+bx+c(a≠0),然后根据条件列出关于a、b、c方程组,求解即可.解:∵f(2+x)=f(2-x),代入f(x)=ax2+bx+c化简可得b=-4a.∵f(x)图象过点(0,3),∴f(0)=c=3.∴f(x)=ax2-4ax+3.∵ax2-4ax+3=0两实根平方与为10,6.∴a=1.∴f(x)=x2-4x+3.∴10=x12+x22=(x1+x2)2-2x1x2=16-a10.如右图,动点P从边长为4正方形ABCD顶点B开场,顺次经C、D、A绕边界运动,用x表示点P行程,y表示△APB面积,求函数y=f〔x〕解析式.思路解析:由P点运动方向知当P运动到BC、CD、DA上时,分别对应解析式不同,因此这是个分段函数.解:由,得y=11.某小型自来水厂蓄水池中存有400吨水,水厂每小时可向蓄水池注入自来水60吨,假设蓄水池向居民小区不连续供水,且t小时内供水总量为1206t吨〔0≤t≤24〕.〔1〕供水开场几小时后,蓄水量最少最少蓄水量是多少吨〔2〕假设蓄水池中水量少于80吨时,就会出现供水紧张现象,试问一天24小时内有多少小时会出现供水紧张现象并说明理由.解:〔1〕设t小时蓄水量y吨,所以y=400+60t-120t6〔0≤t≤24〕.令t=m〔0≤m≤26〕,y=60m2-1206m+400=60〔m-6〕2+40.∴t=6小时时,蓄水量最少为40吨.〔2〕由y <80,得60t-120t 6 +400<80.故一天中有8小时会出现供水紧张现象.12.如右图,动点P 从边长为1正方形ABCD 顶点A 出发顺次经过B 、C 、D 再回到A ,设x 表示P 点运动路程,y 表示PA 长,求y 关于x 函数解析式.思路解析:P 在A 、B 间运动,即0≤x≤1时,y=x.P 在B 、C 间运动,即1<x≤2时,y=221)1(22+-=+-x x x . P 在C 、D 间运动时,同理,得y=1061)3(22+-=+-x x x ,2<x≤3. P 在D 、A 间运动时,y=4-x ,3<x≤4.综上,得y 关于x 函数为y=⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤<+-≤≤.43,4,32,106,21,22,10,22x x x x x x x x x x。
§2.2习题课课时目标 1.巩固对数的概念及对数的运算.2.提高对对数函数及其性质的综合应用能力.1.已知m=0.95.1,n=5.10.9,p=log0.95.1,则这三个数的大小关系是() A.m<n<p B.m<p<nC.p<m<n D.p<n<m2.已知0<a<1,log a m<log a n<0,则()A.1<n<m B.1<m<nC.m<n<1 D.n<m<13.函数y=x-1+1lg(2-x)的定义域是()A.(1,2) B.[1,4] C.[1,2) D.(1,2]4.给定函数①y=12x,②y=()12log1x+,③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是()A.①②B.②③C.③④D.①④5.设函数f(x)=log a|x|,则f(a+1)与f(2)的大小关系是________________________.6.若log32=a,则log38-2log36=________.一、选择题1.下列不等号连接错误的一组是()A.log0.52.7>log0.52.8 B.log34>log65C .log 34>log 56D .log πe>log e π2.若log 37·log 29·log 49m =log 412,则m 等于( )A.14B.22C.2D .43.设函数若f (3)=2,f (-2)=0,则b 等于( )A .0B .-1C .1D .24.若函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,12)内恒有f (x )>0,则f (x )的单调递增区间为( )A .(-∞,-14)B .(-14,+∞)C .(0,+∞)D .(-∞,-12) 5.若函数若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1) 6.已知f (x )是定义在R 上的奇函数,f (x )在(0,+∞)上是增函数,且f (13)=0,则不等式f (log 18x )<0的解集为( )A .(0,12)B .(12,+∞)C .(12,1)∪(2,+∞)D .(0,12)∪(2,+∞)二、填空题7.已知log a(ab)=1p,则log abab=________.8.若log236=a,log210=b,则log215=________.9.设函数若f(a)=18,则f(a+6)=________.三、解答题10.已知集合A={x|x<-2或x>3},B={x|log4(x+a)<1},若A∩B=∅,求实数a的取值范围.11.抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽几次?(lg2≈0.3010)能力提升12.设a>0,a≠1,函数f(x)=log a(x2-2x+3)有最小值,求不等式log a(x-1)>0的解集.13.已知函数f(x)=log a(1+x),其中a>1.(1)比较12[f(0)+f(1)]与f(12)的大小;(2)探索12[f(x1-1)+f(x2-1)]≤f(x1+x22-1)对任意x1>0,x2>0恒成立.1.比较同真数的两个对数值的大小,常有两种方法:(1)利用对数换底公式化为同底的对数,再利用对数函数的单调性和倒数关系比较大小;(2)利用对数函数图象的相互位置关系比较大小.2.指数函数与对数函数的区别与联系指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)是两类不同的函数.二者的自变量不同.前者以指数为自变量,而后者以真数为自变量;但是,二者也有一定的联系,y=a x(a>0,且a≠1)和y=log a x(a>0,且a≠1)互为反函数.前者的定义域、值域分别是后者的值域、定义域.二者的图象关于直线y=x对称.§2.2习题课双基演练1.C [0<m <1,n >1,p <0,故p <m <n .]2.A [∵0<a <1,∴y =log a x 是减函数.由log a m <log a n <0=log a 1,得m >n >1.]3.A [由题意得:⎩⎨⎧ x -1≥0,2-x >0,lg (2-x )≠0,解得:1<x <2.]4.B [①y =x 在(0,1)上为单调递增函数,∴①不符合题意,排除A ,D.④y =2x +1在(0,1)上也是单调递增函数,排除C ,故选B.]5.f (a +1)>f (2)解析 当a >1时,f (x )在(0,+∞)上递增,又∵a +1>2,∴f (a +1)>f (2);当0<a <1时,f (x )在(0,+∞)上递减;又∵a +1<2,∴f (a +1)>f (2).综上可知,f (a +1)>f (2).6.a -2解析 log 38-2log 36=log 323-2(1+log 32)=3a -2-2a =a -2.作业设计1.D [对A ,根据y =log 0.5x 为单调减函数易知正确.对B ,由log 34>log 33=1=log 55>log 65可知正确.对C ,由log 34=1+log 343>1+log 365>1+log 565=log 56可知正确.对D ,由π>e>1可知,log e π>1>log πe 错误.]2.B [左边=lg7lg3·2lg3lg2·lg m 2lg7=lg m lg2,右边=-lg22lg2=-12,∴lg m =lg2-12=lg 22,∴m =22.]3.A [∵f (3)=2,∴log a (3+1)=2,解得a =2,又f (-2)=0,∴4-4+b =0,b =0.]4.D [令y =2x 2+x ,其图象的对称轴x =-14<0, 所以(0,12)为y 的增区间,所以0<y <1,又因f (x )在区间(0,12)内恒有f (x )>0,所以0<a <1.f (x )的定义域为2x 2+x >0的解集,即{x |x >0或x <-12}, 由x =-14>-12得,(-∞,-12)为y =2x 2+x 的递减区间,又由0<a <1,所以f (x )的递增区间为(-∞,-12).]5.C [①若a >0,则f (a )=log 2a ,f (-a )=12log a ,∴log 2a >12log a =log 21a∴a >1a ,∴a >1.②若a <0,则f (a )=12log (-a ),f (-a )=log 2(-a ),∴12log (-a )>log 2(-a )=12log (-1a ),∴-a <-1a ,∴-1<a <0,由①②可知,-1<a <0或a >1.]6.C [∵f (x )在(0,+∞)上是增函数,且f (13)=0,在(0,+∞)上f (18log x )<0⇒f (18log x )<f (13)⇒0<18log x <13⇒18log 1<18log x <18log 1318⎛⎫ ⎪⎝⎭⇒12<x <1;同理可求f (x )在(-∞,0)上是增函数,且f (-13)=0,得x >2.综上所述,x ∈(12,1)∪(2,+∞).]7.2p -1解析 ∵log ab a =p ,log ab b =log ab ab a =1-p ,∴log ab a b =log ab a -log ab b=p -(1-p )=2p -1.8.12a +b -2解析 因为log 236=a ,log 210=b ,所以2+2log 23=a,1+log 25=b .即log 23=12(a -2),log 25=b -1,所以log 215=log 23+log 25=12(a -2)+b -1=12a +b -2.9.-3解析 (1)当a ≤4时,2a -4=18,解得a =1,此时f (a +6)=f (7)=-3;(2)当a >4时,-log 2(a +1)=18,无解.10.解 由log 4(x +a )<1,得0<x +a <4,解得-a <x <4-a ,即B ={x |-a <x <4-a }.∵A ∩B =∅,∴⎩⎨⎧-a ≥-2,4-a ≤3,解得1≤a ≤2, 即实数a 的取值范围是[1,2].11.解 设至少抽n 次才符合条件,则a ·(1-60%)n <0.1%·a (设原来容器中的空气体积为a ).即0.4n <0.001,两边取常用对数,得n ·lg 0.4<lg 0.001,所以n >lg 0.001lg 0.4.所以n >-32lg2-1≈7.5. 故至少需要抽8次,才能使容器内的空气少于原来的0.1%.12.解 设u (x )=x 2-2x +3,则u (x )在定义域内有最小值. 由于f (x )在定义域内有最小值,所以a >1.所以log a (x -1)>0⇒x -1>1⇒x >2,所以不等式log a (x -1)>0的解集为{x |x >2}.13.解 (1)∵12[f (0)+f (1)]=12(log a 1+log a 2)=log a 2,又∵f (12)=log a 32,且32>2,由a >1知函数y =log a x 为增函数,所以log a 2<log a 32. 即12[f (0)+f (1)]<f (12).(2)由(1)知,当x 1=1,x 2=2时,不等式成立.接下来探索不等号左右两边的关系:12[f (x 1-1)+f (x 2-1)]=log a x 1x 2,f (x 1+x 22-1)=log a x 1+x 22,因为x 1>0,x 2>0,所以x 1+x 22-x 1x 2=(x 1-x 2)22≥0, 即x 1+x 22≥x 1x 2. 又a >1, 所以log a x 1+x 22≥log a x 1x 2,即12[f (x 1-1)+f (x 2-1)]≤f (x 1+x 22-1).综上可知,不等式对任意x1>0,x2>0恒成立.。
§2.2 对数函数2.2.1 对数与对数运算第1课时 对 数 课时目标 1.理解对数的概念,能进行指数式与对数式的互化.2.了解常用对数与自然对数的意义.3.掌握对数的基本性质,会用对数恒等式进行运算.1.对数的概念如果a x =N (a >0,且a ≠1),那么数x 叫做__________________,记作____________,其中a 叫做__________,N 叫做______.2.常用对数与自然对数通常将以10为底的对数叫做____________,以e 为底的对数叫做____________,log 10N 可简记为______,log e N 简记为________.3.对数与指数的关系若a >0,且a ≠1,则a x =N ⇔log a N =____.对数恒等式:a log a N =____;log a a x =____(a >0,且a ≠1).4.对数的性质(1)1的对数为____;(2)底的对数为____;(3)零和负数__________.一、选择题1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式;③以10为底的对数叫做常用对数;④以e 为底的对数叫做自然对数.其中正确命题的个数为( )A .1B .2C .3D .42.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =100;④若e =ln x ,则x =e 2.其中正确的是( )A .①③B .②④C .①②D .③④3.在b =log (a -2)(5-a )中,实数a 的取值范围是( )A .a >5或a <2B .2<a <5C .2<a <3或3<a <5D .3<a <44.方程3log 2x =14的解是( ) A .x =19 B .x =33C .x = 3D .x =95.若log a 5b =c ,则下列关系式中正确的是( )A .b =a 5cB .b 5=a cC .b =5a cD .b =c 5a6.0.51log 412-+⎛⎫ ⎪⎝⎭的值为( )A .6 B.72C .8 D.37二、填空题7.已知log 7[log 3(log 2x )]=0,那么12x -=________.8.若log 2(log x 9)=1,则x =________.9.已知lg a =2.431 0,lg b =1.431 0,则b a =________. 三、解答题10.(1)将下列指数式写成对数式:①10-3=11 000;②0.53=0.125;③(2-1)-1=2+1. (2)将下列对数式写成指数式:①log 26=2.585 0;②log 30.8=-0.203 1;③lg 3=0.477 1.11.已知log a x =4,log a y =5,求A =12232x xy ⎡⎢⎥⎢⎥⎢⎥⎣的值.能力提升12.若log a 3=m ,log a 5=n ,则a 2m +n 的值是( )A .15B .75C .45D .22513.(1)先将下列式子改写成指数式,再求各式中x 的值:①log 2x =-25;②log x 3=-13. (2)已知6a =8,试用a 表示下列各式:①log 68;②log 62;③log 26.1.对数概念与指数概念有关,指数式和对数式是互逆的,即a b=N ⇔log a N =b (a >0,且a ≠1),据此可得两个常用恒等式:(1)log a ab =b ;(2) log a N a =N .2.在关系式a x =N 中,已知a 和x 求N 的运算称为求幂运算;而如果已知a 和N 求x 的运算就是对数运算,两个式子实质相同而形式不同,互为逆运算.3.指数式与对数式的互化§2.2 对数函数2.2.1 对数与对数运算第1课时 对 数知识梳理1.以a 为底N 的对数 x =log a N 对数的底数 真数 2.常用对数 自然对数 lg N ln N 3.x N x 4.(1)零 (2)1 (3)没有对数作业设计1.C [①、③、④正确,②不正确,只有a >0,且a ≠1时,a x =N 才能化为对数式.]2.C [∵lg 10=1,∴lg(lg 10)=0,故①正确;∵ln e =1,∴ln(ln e)=0,故②正确;由lg x =10,得1010=x ,故x ≠100,故③错误;由e =ln x ,得e e =x ,故x ≠e 2,所以④错误.]3.C [由对数的定义知⎩⎪⎨⎪⎧ 5-a >0,a -2>0,a -2≠1⇒⎩⎪⎨⎪⎧ a <5,a >2,a ≠3⇒2<a <3或3<a <5.]4.A [∵3log 2x =2-2,∴log 3x =-2,∴x =3-2=19.] 5.A [由log a 5b =c ,得a c =5b , ∴b =(a c )5=a 5c .] 6.C [(12)-1+log 0.54=(12)-1·(12)12log 4=2×4=8.] 7.24解析 由题意得:log 3(log 2x )=1,即log 2x =3,转化为指数式则有x =23=8, ∴128-=1218=18=122=24. 8.3解析 由题意得:log x 9=2,∴x 2=9,∴x =±3,又∵x >0,∴x =3.9.110解析 依据a x =N ⇔log a N =x (a >0且a ≠1),有a =102.431 0,b =101.431 0,∴b a =101.431 0102.431 0=101.431 0-2.431 0=10-1=110. 10.解 (1)①lg 11 000=-3;②log 0.50.125=3; ③log 2-1(2+1)=-1.(2)①22.585 0=6;②3-0.203 1=0.8;③100.477 1=3. 11.解 A =12x ·(122x y -)16=51213x y . 又∵x =a 4,y =a 5,∴A =3535aa =1.12.C [由log a 3=m ,得a m =3,由log a 5=n ,得a n =5.∴a 2m +n =(a m )2·a n =32×5=45.] 13.解 (1)①因为log 2x =-25,所以x =252-=582. ②因为log x 3=-13,所以13x -=3,所以x =3-3=127. (2)①log 68=a . ②由6a =8得6a =23,即36a =2,所以log 62=a 3. ③由36a =2得32a =6,所以log 26=3a .。
2.1.2 指数函数及其性质(二) 课时目标 1.理解指数函数的单调性与底数a 的关系,能运用指数函数的单调性解决一些问题.2.理解指数函数的底数a 对函数图象的影响.1.下列一定是指数函数的是( )A .y =-3xB .y =x x (x >0,且x ≠1)C .y =(a -2)x (a >3)D .y =(1-2)x2.指数函数y =a x 与y =b x 的图象如图,则( )A .a <0,b <0B .a <0,b >0C .0<a <1,b >1D .0<a <1,0<b <13.函数y =πx 的值域是( )A .(0,+∞)B .[0,+∞)C .RD .(-∞,0)4.若(12)2a +1<(12)3-2a ,则实数a 的取值范围是( )A .(1,+∞)B .(12,+∞)C .(-∞,1)D .(-∞,12) 5.设13<(13)b <(13)a <1,则( )A .a a <a b <b aB .a a <b a <a bC .a b <a a <b aD .a b <b a <a a6.若指数函数f (x )=(a +1)x 是R 上的减函数,那么a 的取值范围为( )A .a <2B .a >2C .-1<a <0D .0<a <1一、选择题1.设P ={y |y =x 2,x ∈R },Q ={y |y =2x ,x ∈R },则( )A .Q PB .Q PC .P ∩Q ={2,4}D .P ∩Q ={(2,4)}2.函数y =16-4x 的值域是( )A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)3.函数y =a x 在[0,1]上的最大值与最小值的和为3,则函数y =2ax -1在[0,1]上的最大值是( )A .6B .1C .3D.324.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则( )A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C .f (x )与g (x )均为奇函数D .f (x )为奇函数,g (x )为偶函数5.函数y =f (x )的图象与函数g (x )=e x +2的图象关于原点对称,则f (x )的表达式为( )A .f (x )=-e x -2B .f (x )=-e -x +2C .f (x )=-e -x -2D .f (x )=e -x +26.已知a =1335-⎛⎫ ⎪⎝⎭,b =1235-⎛⎫ ⎪⎝⎭,c =1243-⎛⎫ ⎪⎝⎭,则a ,b ,c 三个数的大小关系是( ) A .c <a <b B .c <b <aC .a <b <cD .b <a <c二、填空题7.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.8.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,则不等式f (x )<-12的解集是________________.9.函数y =2212x x -+⎛⎫ ⎪⎝⎭的单调递增区间是________.三、解答题 10.(1)设f (x )=2u ,u =g (x ),g (x )是R 上的单调增函数,试判断f (x )的单调性;(2)求函数y =2212xx --的单调区间.11.函数f (x )=4x -2x +1+3的定义域为[-12,12].(1)设t =2x ,求t 的取值范围;(2)求函数f (x )的值域.能力提升12.函数y =2x -x 2的图象大致是()13.已知函数f (x )=2x -12x +1.(1)求f [f (0)+4]的值;(2)求证:f (x )在R 上是增函数;(3)解不等式:0<f (x -2)<1517.1.比较两个指数式值的大小主要有以下方法:(1)比较形如a m与a n的大小,可运用指数函数y=a x的单调性.(2)比较形如a m与b n的大小,一般找一个“中间值c”,若a m<c且c<b n,则a m<b n;若a m>c且c>b n,则a m>b n.2.了解由y=f(u)及u=φ(x)的单调性探求y=f[φ(x)]的单调性的一般方法.2.1.2指数函数及其性质(二)知识梳理1.C 2.C 3.A4.B[∵函数y=(12)x在R上为减函数,∴2a+1>3-2a,∴a>1 2.]5.C[由已知条件得0<a<b<1,∴a b<a a,a a<b a,∴a b<a a<b a.]6.C作业设计1.B[因为P={y|y≥0},Q={y|y>0},所以Q P.]2.C[∵4x>0,∴0≤16-4x<16,∴16-4x∈[0,4).]3.C[函数y=a x在[0,1]上是单调的,最大值与最小值都在端点处取到,故有a0+a1=3,解得a=2,因此函数y=2ax-1=4x-1在[0,1]上是单调递增函数,当x=1时,y max=3.]4.B[∵f(-x)=3-x+3x=f(x),g (-x )=3-x -3x =-g (x ).]5.C [∵y =f (x )的图象与g (x )=e x +2的图象关于原点对称,∴f (x )=-g (-x )=-(e -x +2)=-e -x -2.]6.A [∵y =(35)x 是减函数,-13>-12,∴b >a >1.又0<c <1,∴c <a <b .]7.19解析 假设第一天荷叶覆盖水面面积为1,则荷叶覆盖水面面积y 与生长时间的函数关系为y =2x -1,当x =20时,长满水面,所以生长19天时,荷叶布满水面一半.8.(-∞,-1)解析 ∵f (x )是定义在R 上的奇函数,∴f (0)=0.当x <0时,f (x )=-f (-x )=-(1-2x )=2x -1.当x >0时,由1-2-x <-12,(12)x >32,得x ∈∅;当x =0时,f (0)=0<-12不成立; 当x <0时,由2x-1<-12,2x <2-1,得x <-1. 综上可知x ∈(-∞,-1).9.[1,+∞)解析 利用复合函数同增异减的判断方法去判断.令u =-x 2+2x ,则y =(12)u 在u ∈R 上为减函数,问题转化为求u =-x 2+2x 的单调递减区间,即为x ∈[1,+∞).10.解 (1)设x 1<x 2,则g (x 1)<g (x 2).又由y =2u 的增减性得,即f (x 1)<f (x 2),所以f (x )为R 上的增函数.(2)令u =x 2-2x -1=(x -1)2-2,则u 在区间[1,+∞)上为增函数.根据(1)可知y =在[1,+∞)上为增函数.同理可得函数y 在(-∞,1]上为单调减函数.即函数y 的增区间为[1,+∞),减区间为(-∞,1].11.解 (1)∵t =2x 在x ∈[-12,12]上单调递增,∴t ∈[22,2].(2)函数可化为:f (x )=g (t )=t 2-2t +3,g (t )在[22,1]上递减,在[1,2]上递增,比较得g (22)<g (2).∴f (x )min =g (1)=2,f (x )max =g (2)=5-2 2.∴函数的值域为[2,5-22].12.A [当x →-∞时,2x →0,所以y =2x -x 2→-∞, 所以排除C 、D.当x =3时,y =-1,所以排除B.故选A.]13.(1)解 ∵f (0)=20-120+1=0, ∴f [f (0)+4]=f (0+4)=f (4)=24-124+1=1517. (2)证明 设x 1,x 2∈R 且x 1<x 2,则22x >12x >0,22x -12x >0,即f (x 1)<f (x 2),所以f (x )在R 上是增函数.(3)解 由0<f (x -2)<1517得f (0)<f (x -2)<f (4),又f (x )在R 上是增函数,∴0<x -2<4,即2<x <6,所以不等式的解集是{x |2<x <6}.。
章末检测(B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知函数f (x )=lg(4-x )的定义域为M ,函数g (x )=0.5x -4的值域为N ,则M ∩N 等于( )A .MB .NC .[0,4)D .[0,+∞)2.函数y =3|x |-1的定义域为[-1,2],则函数的值域为( ) A .[2,8] B .[0,8] C .[1,8]D .[-1,8]3.已知f (3x )=log 29x +12,则f (1)的值为( ) A .1 B .2C .-1D.124.21log 52 等于( ) A .7 B .10 C .6D.925.若100a =5,10b =2,则2a +b 等于( ) A .0 B .1C .2D .36.比较13.11.5、23.1、13.12的大小关系是( ) A .23.1<13.12<13.11.5 B .13.11.5<23.1<13.12 C .13.11.5<13.12<23.1D .13.12<13.11.5<23.17.式子log 89log 23的值为( )A.23B.32C .2D .38.已知ab >0,下面四个等式中: ①lg(ab )=lg a +lg b ; ②lg ab =lg a -lg b ; ③12lg(a b )2=lg a b ; ④lg(ab )=1log ab10.其中正确命题的个数为( ) A .0 B .1 C .2D .39.为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度 10.函数y =2x 与y =x 2的图象的交点个数是( ) A .0 B .1 C .2D .311.设偶函数f (x )满足f (x )=2x -4(x ≥0),则{x |f (x -2)>0}等于( ) A .{x |x <-2或x >4} B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}12.函数f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),则f (-4)与f (1)的关系是( )A .f (-4)>f (1)B .f (-4)=f (1)C .f (-4)<f (1)D .不能确定二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f (x )=⎩⎪⎨⎪⎧(12)x , x ≥4f (x +1),x <4,则f (2+log 23)的值为______.14.函数f (x )=log a3-x3+x(a >0且a ≠1),f (2)=3,则f (-2)的值为________. 15.函数y =212log (32)x x -+的单调递增区间为______________.16.设0≤x ≤2,则函数y =124x --3·2x +5的最大值是________,最小值是________.三、解答题(本大题共6小题,共70分) 17.(10分)已知指数函数f (x )=a x (a >0且a ≠1). (1)求f (x )的反函数g (x )的解析式; (2)解不等式:g (x )≤log a (2-3x ).18.(12分)已知函数f (x )=2a ·4x -2x -1. (1)当a =1时,求函数f (x )在x ∈[-3,0]的值域; (2)若关于x 的方程f (x )=0有解,求a 的取值范围.19.(12分)已知x>1且x≠43,f(x)=1+log x3,g(x)=2log x2,试比较f(x)与g(x)的大小.20.(12分)设函数f(x)=log2(4x)·log2(2x),14≤x≤4,(1)若t=log2x,求t的取值范围;(2)求f(x)的最值,并写出最值时对应的x的值.21.(12分)已知f(x)=log a 1+x1-x(a>0,a≠1).(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;(3)求使f(x)>0的x的取值范围.22.(12分)已知定义域为R 的函数f (x )=-2x +b2x +1+2是奇函数.(1)求b 的值;(2)判断函数f (x )的单调性;(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.章末检测(B)1.C [由题意,得M ={x |x <4},N ={y |y ≥0}, ∴M ∩N ={x |0≤x <4}.]2.B [当x =0时,y min =30-1=0, 当x =2时,y max =32-1=8, 故值域为[0,8].] 3.D [由f (3x )=log 29x +12,得f (x )=log 23x +12,f (1)=log 22=12.] 4.B [21log 52 =2·2log 52=2×5=10.] 5.B [由100a =5,得2a =lg5,由10b =2,得b =lg2,∴2a +b =lg5+lg2=1.] 6.D [∵13.11.5=1.5-3.1=(11.5)3.1,13.12=2-3.1=(12)3.1,又幂函数y =x 3.1在(0,+∞)上是增函数, 12<11.5<2,∴(12)3.1<(11.5)3.1<23.1,故选D.] 7.A [∵log 89=log 232log 223=23log 23,∴原式=23.]8.B [∵ab >0,∴a 、b 同号. 当a 、b 同小于0时①②不成立; 当ab =1时④不成立,故只有③对.] 9.C [y =lg x +310=lg(x +3)-1, 即y +1=lg(x +3).故选C.]10.D [分别作出y =2x 与y =x 2的图象.知有一个x <0的交点,另外,x =2,x =4时也相交,故选D.]11.B [∵f (x )=2x -4(x ≥0),∴令f (x )>0,得x >2.又f (x )为偶函数且f (x -2)>0,∴f (|x -2|)>0,∴|x -2|>2,解得x >4或x <0.]12.A [由f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),可知a >1,而f (-4)=a |-4+1|=a 3,f (1)=a |1+1|=a 2, ∵a 3>a 2,∴f (-4)>f (1).] 13.124解析 ∵log 23∈(1,2),∴3<2+log 23<4, 则f (2+log 23)=f (3+log 23)=23log 312+⎛⎫ ⎪⎝⎭=(12)3·12log 32-=18×13=124.14.-3解析 ∵3-x3+x>0,∴-3<x <3 ∴f (x )的定义域关于原点对称. ∵f (-x )=log a3+x 3-x =-log a 3-x3+x=-f (x ), ∴函数f (x )为奇函数. ∴f (-2)=-f (2)=-3. 15.(-∞,1)解析 函数的定义域为{x |x 2-3x +2>0}={x |x >2或x <1}, 令u =x 2-3x +2,则y =12log u 是减函数,所以u =x 2-3x +2的减区间为函数y =()212log 32x x -+的增区间,由于二次函数u =x 2-3x +2图象的对称轴为x =32,所以(-∞,1)为函数y 的递增区间. 16.52 12 解析 y =124x --3·2x +5=12(2x )2-3·2x +5.令t =2x ,x ∈[0,2],则1≤t ≤4,于是y =12t 2-3t +5=12(t -3)2+12,1≤t ≤4. 当t =3时,y min =12;当t =1时,y max =12×(1-3)2+12=52. 17.解 (1)指数函数f (x )=a x (a >0且a ≠1), 则f (x )的反函数g (x )=log a x (a >0且a ≠1). (2)∵g (x )≤log a (2-3x ),∴log a x ≤log a (2-3x )若a >1,则⎩⎨⎧x >02-3x >0x ≤2-3x,解得0<x ≤12,若0<a <1,则⎩⎨⎧x >02-3x >0x ≥2-3x,解得12≤x <23,综上所述,a >1时,不等式解集为(0,12]; 0<a <1时,不等式解集为[12,23).18.解 (1)当a =1时,f (x )=2·4x -2x -1=2(2x )2-2x -1,令t =2x ,x ∈[-3,0],则t ∈[18,1],故y =2t 2-t -1=2(t -14)2-98,t ∈[18,1], 故值域为[-98,0].(2)关于x 的方程2a (2x )2-2x -1=0有解,等价于方程2ax 2-x -1=0在(0,+∞)上有解.记g (x )=2ax 2-x -1,当a =0时,解为x =-1<0,不成立; 当a <0时,开口向下,对称轴x =14a <0, 过点(0,-1),不成立;当a >0时,开口向上,对称轴x =14a >0, 过点(0,-1),必有一个根为正,符合要求. 故a 的取值范围为(0,+∞).19.解 f (x )-g (x )=1+log x 3-2log x 2=1+log x 34=log x 34x ,当1<x <43时,34x <1,∴log x 34x <0;当x >43时,34x >1,∴log x 34x >0. 即当1<x <43时,f (x )<g (x ); 当x >43时,f (x )>g (x ).20.解 (1)∵t =log 2x ,14≤x ≤4,∴log 214≤t ≤log 24, 即-2≤t ≤2.(2)f (x )=(log 24+log 2x )(log 22+log 2x ) =(log 2x )2+3log 2x +2, ∴令t =log 2x ,则y =t 2+3t +2=(t +32)2-14,∴当t =-32即log 2x =-32,x =322 时,f (x )min =-14.当t =2即x =4时,f (x )max =12. 21.解 (1)由对数函数的定义知1+x1-x>0, 故f (x )的定义域为(-1,1). (2)∵f (-x )=log a1-x 1+x =-log a 1+x1-x=-f (x ), ∴f (x )为奇函数. (3)(ⅰ)对a >1,log a1+x 1-x >0等价于1+x1-x>1,① 而从(1)知1-x >0,故①等价于1+x >1-x 又等价于x >0. 故对a >1,当x ∈(0,1)时有f (x )>0. (ⅱ)对0<a <1,log a1+x 1-x >0等价于0<1+x1-x<1,② 而从(1)知1-x >0,故②等价于-1<x <0. 故对0<a <1,当x ∈(-1,0)时有f (x )>0. 综上,a >1时,x 的取值范围为(0,1); 0<a <1时,x 的取值范围为(-1,0).22.解 (1)因为f (x )是奇函数,所以f (0)=0, 即b -12+2=0⇒b =1.∴f (x )=1-2x2+2x +1.经典小初高讲义小初高优秀教案 (2)由(1)知f (x )=1-2x 2+2x +1=-12+12x +1, 设x 1<x 2则f (x 1)-f (x 2)=12112121x x -++=()()2112222121x x x x -++. 因为函数y =2x 在R 上是增函数且x 1<x 2, ∴22x -12x >0.又(12x +1)(22x +1)>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).∴f (x )在(-∞,+∞)上为减函数.(3)因为f (x )是奇函数,从而不等式:f (t 2-2t )+f (2t 2-k )<0.等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2),因f (x )为减函数,由上式推得:t 2-2t >k -2t 2. 即对一切t ∈R 有:3t 2-2t -k >0,从而判别式Δ=4+12k <0⇒k <-13.。
某某省青龙满族自治县逸夫中学高中数学必修1第2章 基本初等函数〔1〕-1.示X 教案〔1.1 指数与指数幂的运算 第1课时〕本章教材分析教材把指数函数、对数函数、幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,从而让学生体会建立和研究一个函数模型的基本过程和方法,学会运用具体的函数模型解决一些实际问题.本章总的教学目标是:了解指数函数模型的实际背景,理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算;理解指数函数的概念和意义,掌握f(x)=a x 的符号及意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质〔单调性、值域、特别点〕,通过应用实例的教学,体会指数函数是一种重要的函数模型;理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用;通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x 的符号及意义,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质〔单调性、值域、特殊点〕;知道指数函数y=a x 与对数函数y=log a x 互为反函数〔a >0,a≠1〕,初步了解反函数的概念和f -1(x)的意义;通过实例了解幂函数的概念,结合五种具体函数y=x,y=x 2,y=x 3,y=x -1,y=x 21的图象,了解它们的变化情况.本章的重点是三种初等函数的概念、图象及性质,要在理解定义的基础上,通过几个特殊函数图象的观察,归纳得出一般图象及性质,这种由特殊到一般的研究问题的方法是数学的基本方法.把这三种函数的图象及性质之间的内在联系及本质区别搞清楚是本章的难点.教材注重从现实生活的事例中引出指数函数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情境创设.在学习对数函数的图象和性质时,教材将它与指数函数的有关内容作了比较,让学生体会两种函数模型的增长区别与关联,渗透了类比思想.建议教学中重视知识间的迁移与互逆作用.教材对反函数的学习要求仅限于初步的知道概念,目的在于强化指数函数与对数函数这两种函数模型的学习,教学中不宜对其定义做更多的拓展.教材对幂函数的内容做了削减,仅限于学习五种学生易于掌握的幂函数,并且安排的顺序向后调整,教学中应防止增加这部分内容,以免增加学生的学习负担.通过运用计算机绘制指数函数的动态图象,使学生进一步体会到信息技术在数学学习中的作用,教师要尽量发挥电脑绘图的教学功能.教材安排了“阅读与思考〞的内容,有利于加强数学文化的教育,应指导学生认真研读.2.1 指数函数2.1.1 指数与指数幂的运算整体设计我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂.教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫. 本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,表达数学的应用价值.根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.三维目标1.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质.掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.培养学生观察分析、抽象类比的能力.2.掌握根式与分数指数幂的互化,渗透“转化〞的数学思想.通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理.3.能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力.4.通过训练及点评,让学生更能熟练掌握指数幂的运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美.重点难点教学重点:(1)分数指数幂和根式概念的理解.(2)掌握并运用分数指数幂的运算性质.(3)运用有理指数幂性质进行化简、求值.教学难点:(1)分数指数幂及根式概念的理解.(2)有理指数幂性质的灵活应用.课时安排3课时教学过程第1课时指数与指数幂的运算(1)导入新课思路 1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的.教师板书本节课题:指数函数——指数与指数幂的运算.思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算. 推进新课提出问题(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?(2)如x4=a,x5=a,x6=a根据上面的结论我们又能得到什么呢?(3)根据上面的结论我们能得到一般性的结论吗?(4)可否用一个式子表达呢?活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题②的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维. 讨论结果:(1)假设x2=a,那么x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,假设x3=a,那么x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.(2)类比平方根、立方根的定义,一个数的四次方等于a,那么这个数叫a的四次方根.一个数的五次方等于a,那么这个数叫a的五次方根.一个数的六次方等于a,那么这个数叫a的六次方根.(3)类比(2)得到一个数的n次方等于a,那么这个数叫a的n次方根.(4)用一个式子表达是,假设x n=a,那么x叫a的n次方根.教师板书n次方根的意义:一般地,如果x n=a,那么x叫a的n次方根(n-throot),其中n>1且n∈N*.可以看出数的平方根、立方根的概念是n次方根的概念的特例.提出问题(1)你能根据n次方根的意义求出以下数的n次方根吗?(多媒体显示以下题目).①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质的数,有什么特点?(3)问题〔2〕中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?(4)任何一个数a的偶次方根是否存在呢?活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的特点,对问题〔2〕中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:〔1〕因为±2的平方等于4,±2的立方等于8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.〔2〕方根的指数是2,3,4,5,7…特点是有奇数和偶数.总的来看,这些数包括正数,负数和零.〔3〕一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数.0的任何次方根都是0.〔4〕任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数.类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n 次方根的性质:①当n 为偶数时,a 的n 次方根有两个,是互为相反数,正的n 次方根用n a 表示,如果是负数,负的n 次方根用n a -表示,正的n 次方根与负的n 次方根合并写成±n a (a >0).②n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时a 的n 次方根用符号n a 表示.③负数没有偶次方根;0的任何次方根都是零.上面的文字语言可用下面的式子表示:a 为正数:⎪⎩⎪⎨⎧±.,,,n n a n a n a n a n 次方根有两个为的为偶数次方根有一个为的为奇数 a 为负数:⎪⎩⎪⎨⎧.,,,次方根不存在的为偶数次方根只有一个为的为奇数n a n a n a n n 零的n 次方根为零,记为n 0=0.可以看出数的平方根、立方根的性质是n 次方根的性质的特例.思考根据n 次方根的性质能否举例说明上述几种情况?活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,4次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题. 解答:答案不唯一,比如,64的立方根是4,16的四次方根为±2,-27的5次方根为527-527-也表示方根,它类似于n a 的形式,现在我们给式子n a 一个名称——根式. 根式的概念: 式子n a 叫根式,其中a 叫被开方数,n 叫根指数. 如327-中,3叫根指数,-27叫被开方数.思考n n a 表示a n 的n 次方根,等式n n a =a 一定成立吗?如果不一定成立,那么n n a 等于什么? 活动:教师让学生注意讨论n 为奇偶数和a 的符号,充分让学生多举实例,分组讨论.教师点拨,注意归纳整理. 〔如33)3(-=327-=-3,44)8(-=|-8|=8〕.解答:根据n 次方根的意义,可得:(n a )n =a.通过探究得到:n 为奇数,n na =a.n 为偶数,n n a =|a|=⎩⎨⎧<-≥.0,,0,a a a a因此我们得到n 次方根的运算性质: ①(n a )n=a.先开方,再乘方〔同次〕,结果为被开方数. ②n 为奇数,n n a =a.先奇次乘方,再开方〔同次〕,结果为被开方数.n 为偶数,n n a =|a|=a,⎩⎨⎧<-≥.0,,0,a a a a 先偶次乘方,再开方〔同次〕,结果为被开方数的绝对值.应用示例思路1例1求以下各式的值: (1)33)8(-;(2)2)10(-;(3)44)3(π-;(4)2)(b a -(a>b).活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析.观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药.求以下各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数. 解:(1)33)8(-=-8; (2)2)10(-=10; (3)44)3(π-=π-3; (4)2)(b a -=a-b(a>b).点评:不注意n 的奇偶性对式子n n a 的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用.变式训练求出以下各式的值: (1)77)2(-; (2)33)33(-a (a≤1); (3)44)33(-a .解:(1)77)2(-=-2, (2)33)33(-a (a≤1)=3a -3,(3)44)33(-a =⎩⎨⎧<-≥-.1,33,1,33a a a a点评:此题易错的是第(3)题,往往忽视a 与1大小的讨论,造成错解.思路2例1以下各式中正确的选项是( ) (1)44a =a; (2)62)2(-=32-;(3)a 0=1; (4)105)12(-=)12(-.活动:教师提示,这是一道选择题,此题考查n 次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答.解:(1)44a =a,考查n 次方根的运算性质,当n 为偶数时,应先写n n a =|a|,故此题错. (2)62)2(-=32-,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为62)2(-=32,故此题错.(3)a 0=1是有条件的,即a≠0,故此题也错.(4)是一个正数的偶次方根,根据运算顺序也应如此,故此题正确.所以答案选(4).点评:此题由于考查n 次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心. 例223++223-=_________活动:让同学们积极思考,交流讨论,此题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式.正确分析题意是关键,教师提示,引导学生解题的思路. 解:223+=2)2(221++=2)21(+=2+1. 223-=122)2(2+-=2)12(-=2-1. 所以223++223-=22.点评:不难看出223-与223+形式上有些特点,即是对称根式,是B A 2±形式的式子,我们总能找到办法把其化成一个完全平方式.思考上面的例2还有别的解法吗?活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是+,一个是-,去掉一层根号后,相加正好抵消.同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法.另解:利用整体思想,x=223++223-,两边平方得x 2=3+22+3-22+2(223+)(223-)=6+222)22(3-=6+2=8,所以x=22.点评:对双重二次根式,特别是B A 2±形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对B A B A 22-±+的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解.变式训练 假设12a -a 2+=a-1,求a 的取值X 围.解:因为12a -a 2+=a-1,而12a -a 2+=2)1(-a =|a-1|=a-1,即a-1≥0,所以a≥1.点评:利用方根的运算性质转化为去绝对值符号,是解题的关键.知能训练(教师用多媒体显示在屏幕上)1.以下说法正确的选项是( )n a 表示(以上n >1且n∈N *).答案:C2.化简以下各式: (1)664;(2)42)3(-;(3)48x ;(4)636y x ;(5)2y)-(x .答案:(1)2;(2)9;(3)x 2;(4)|x|y ;(5)|x-y|.407407-++=__________. 解:407407-++ =2222)2(252)5()2(252)5(+•-++•+ =22)25()25(-++=5+2+5-2- =25.答案:25拓展提升 问题:n n a =a 与(n a )n =a 〔n >1,n∈N 〕哪一个是恒等式,为什么?请举例说明.活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n 次方根的定义.通过归纳,得出问题结果,对a 是正数和零,n 为偶数时,n 为奇数时讨论一下.再对a 是负数,n 为偶数时,n 为奇数时讨论一下,就可得到相应的结论.解答:①〔n a 〕n =a 〔n >1,n∈N 〕.如果x n =a 〔n >1,且n∈N 〕有意义,那么无论n 是奇数或偶数,x=n a 一定是它的一个n 次方根,所以〔n a 〕n =a 恒成立.例如:〔43〕4=3,33)5(-=-5. ②n n a =⎩⎨⎧.|,|,,为偶数当为奇数当n a n a当n 为奇数时,a∈R ,n n a =a 恒成立. 例如:552=2,55)2(-=-2. 当n 为偶数时,a∈R ,a n ≥0,n n a 表示正的n 次方根或0,所以如果a≥0,那么n n a 443=3,40=0;如果a <0,那么n n a =|a|=-a,如2(-3)=23=3. 即〔n a na 〕n =a 〔n >1,n∈N 〕是恒等式,n n a =a 〔n >1,n∈N〕是有条件的.点评:实质上是对n 次方根的概念、性质以及运算性质的深刻理解.课堂小结学生仔细交流讨论后,在笔记上写出本节课的学习收获,教师用多媒体显示在屏幕上. n =a,那么x 叫a 的n 次方根,其中n >1且n∈N *.用式子n a 表示,式子n a 叫根式,其中a 叫被开方数,n 叫根指数.(1)当n 为偶数时,a 的n 次方根有两个,是互为相反数,正的n 次方根用n a 表示,如果是负数,负的n 次方根用-n a 表示,正的n 次方根与负的n 次方根合并写成±n a (a >0).(2)n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时a 的n 次方根用符号n a 表示.(3)负数没有偶次方根.0的任何次方根都是零.2.掌握两个公式:n 为奇数时,(n a )n =a,n 为偶数时,n n a =|a|=⎩⎨⎧<-≥.0,,0,a a a a 作业课本P 59习题2.1A 组 1.补充作业:1.化简以下各式: (1)681;(2)1532-;(3)48x ;(4)642b a .解:(1)681=643=323=39; (2)1532-=1552-=32-; (3)48x =442)(x =x 2; (4)642b a =622)|(|b a •=32||b a •.2.假设5<a<8,那么式子22)8()5(---a a 的值为__________.分析:因为5<a<8,所以22)8()5(---a a =a-5-8+a=2a-13.答案:2a-13. 3.625625-++=__________.分析:对双重二次根式,我们觉得难以下笔,我们考虑只有在开方的前提下才可能解出,由此提示我们想办法去掉一层根式, 不难看出625+=22)(3+=3+2. 同理625-=22)(3-=3-2.所以625++625-=23. 答案:23设计感想学生已经学习了数的平方根和立方根,根式的内容是这些内容的推广,本节课由于方根和根式的概念和性质难以理解,在引入根式的概念时,要结合已学内容,列举具体实例,根式n a 的讲解要分n 是奇数和偶数两种情况来进行,每种情况又分a>0,a<0,a=0三种情况,并结合具体例子讲解,因此设计了大量的类比和练习题目,要灵活处理这些题目,帮助学生加以理解,所以需要用多媒体信息技术服务教学.。
【创新设计】(浙江专用)2016-2017学年高中数学 第二章 基本初等函数(I )2.1.1.1 根式课时作业 新人教版必修11.若a <12,则化简4(2a -1)2的结果是( )A.2a -1B.-2a -1C.1-2aD.-1-2a解析 ∵a <12,∴2a -1<0,∴(2a -1)2=1-2a ,∴4(2a -1)2=1-2a .答案 C2.下列式子中成立的是( ) A.a -a =-a 3B.a -a =-a 3C.a -a =--a 3D.a -a =a 3解析 依题意-a ≥0,即a ≤0,∴a -a =-(-a )2(-a )=-(-a )3=--a 3. 答案 C3.(2016·天津高一检测)化简(x +3)2-3(x -3)3得( ) A.6 B.2xC.6或-2xD.-2x 或6或2解析 原式=|x +3|-(x -3),当x ≥-3时,原式=x +3-x +3=6.当x <-3时,原式=-(x +3)-x +3=-2x . 答案 C4.计算:12-1-⎝ ⎛⎭⎪⎫350+⎝ ⎛⎭⎪⎫94-0.5+4(2-e )4=____________. 解析 原式=2+1-1+⎝ ⎛⎭⎪⎫232×0.5+e -2=e +23.答案 e +235.若x 2+4x +4=-x -2,则实数x 的取值范围是________. 解析 因为x 2+4x +4=(x +2)2=|x +2|. 又|x +2|=-(x +2),所以x +2≤0,故x ≤-2.答案 (-∞,-2]6.化简n(x -π)n (x <π,且n ∈N *). 解 ∵x <π,∴x -π<0,当n 为偶数时,n (x -π)n=|x -π|=π-x ; 当n 为奇数时,n(x -π)n=x -π, 综上,n(x -π)n=⎩⎪⎨⎪⎧π-x ,n 为偶数,n ∈N *.x -π,n 为奇数,n ∈N * 7.若等式(x -5)(x 2-25)=(5-x )x +5成立,求实数x 的取值范围. 解 由于(x -5)(x 2-25)=(x -5)2(x +5) 依题意要使(x -5)2(x +5)=(5-x )x +5成立, 只需⎩⎪⎨⎪⎧x +5≥0,x -5≤0,即-5≤x ≤5.故实数x 的取值范围是[-5,5].8.当2-x 有意义时,化简x 2-4x +4-x 2-6x +9. 解 ∵2-x 有意义,∴2-x ≥0,即x ≤2, ∴x 2-4x +4-x 2-6x +9 =(x -2)2-(x -3)2=|x -2|-|x -3|=2-x -(3-x ) =-1.能 力 提 升9.化简-x3x的结果为( )A.--xB.xC.-xD.-x解析 要使式子有意义,只需-x 3>0,即x <0,所以-x3x =-x -xx=--x .答案 A10.已知二次函数y =ax 2+2bx 图象如图所示,则4(a -b )4的值为( )A.a +bB.-(a +b )C.a -bD.b -a解析 由图象知a <0,-b a>-1,故b >a ,即a -b <0,∴4(a -b )4=|a -b |=b -a . 答案 D11.若a <0,则a 2·(a +1)+3a 3=________.解析 ∵a <0,∴a 2·(a +1)+3a 3=|a |(a +1)+a =-a (a +1)+a =-a 2. 答案 -a 212.若x -1+4x +y =0,则x 2 015+y 2 016=________.解析 由x -1+4x +y =0,得x -1=0且4x +y =0,∴x =1且y =-1, 从而x2 015+y2 016=12 015+(-1)2 016=1+1=2.答案 213.已知4a 4+4b 4=-a -b ,求4(a +b )4+3(a +b )3的值.解 因为4a 4+4b 4=-a -b .所以4a 4=-a ,4b 4=-b ,所以a ≤0,b ≤0,所以a +b ≤0,所以原式=|a +b |+a +b =-(a +b )+a +b =0.探 究 创 新14.若x >0,则(2x 14+332)(2x 14-332)-4x -12(x -x 12)=________.解析 因为x >0,所以原式=(2x 14)2-(332)2-4x -12·x +4x -12·x 12=4x 14×2-332×2-4x -12+4x-12+12=4x 12-33-4x 12+4x 0=4x 12-33-4x 12+4=4-27 =-23. 答案 -23。
【创新设计】(浙江专用)2016-2017学年高中数学 第二章 基本初
等函数(I )2.1.1.1 根式课时作业 新人教版必修1
1.若a <12,则化简4(2a -1)2
的结果是( )
A.2a -1
B.-2a -1
C.1-2a
D.-1-2a
解析 ∵a <12,∴2a -1<0,∴(2a -1)2=1-2a ,∴4(2a -1)2
=1-2a .
答案 C
2.下列式子中成立的是( ) A.a -a =-a 3
B.a -a =-a 3
C.a -a =--a 3
D.a -a =a 3
解析 依题意-a ≥0,即a ≤0,∴a -a =-(-a )2
(-a )=-(-a )3
=--a 3
. 答案 C
3.(2016·天津高一检测)化简(x +3)2-3(x -3)3
得( ) A.6 B.2x
C.6或-2x
D.-2x 或6或2
解析 原式=|x +3|-(x -3),当x ≥-3时,原式=x +3-x +3=6.当x <-3时,原式=-(x +3)-x +3=-2x . 答案 C
4.计算:1
2-1-⎝ ⎛⎭
⎪⎫350
+⎝ ⎛⎭⎪
⎫94-0.5+4
(2-e )4
=____________. 解析 原式=2+1-1+⎝ ⎛⎭
⎪⎫232×0.5+e -2=e +2
3
.
答案 e +2
3
5.若x 2
+4x +4=-x -2,则实数x 的取值范围是________. 解析 因为x 2
+4x +4=(x +2)2
=|x +2|. 又|x +2|=-(x +2),所以x +2≤0,故x ≤-2.
答案 (-∞,-2]
6.化简n
(x -π)n (x <π,且n ∈N *
). 解 ∵x <π,∴x -π<0,
当n 为偶数时,n (x -π)n
=|x -π|=π-x ; 当n 为奇数时,n
(x -π)n
=x -π, 综上,
n
(x -π)n
=⎩
⎪⎨⎪⎧π-x ,n 为偶数,n ∈N *
.
x -π,n 为奇数,n ∈N * 7.若等式(x -5)(x 2
-25)=(5-x )x +5成立,求实数x 的取值范围. 解 由于(x -5)(x 2
-25)=(x -5)2
(x +5) 依题意要使(x -5)2(x +5)=(5-x )x +5成立, 只需⎩⎪⎨
⎪⎧x +5≥0,x -5≤0,
即-5≤x ≤5.
故实数x 的取值范围是[-5,5].
8.当2-x 有意义时,化简x 2
-4x +4-x 2
-6x +9. 解 ∵2-x 有意义,∴2-x ≥0,即x ≤2, ∴x 2
-4x +4-x 2
-6x +9 =(x -2)2
-(x -3)2
=|x -2|-|x -3|=2-x -(3-x ) =-1.
能 力 提 升
9.化简
-x
3
x
的结果为( )
A.--x
B.x
C.-x
D.-x
解析 要使式子有意义,只需-x 3
>0,即x <0,所以-x
3
x =-x -x
x
=--x .
答案 A
10.已知二次函数y =ax 2+2bx 图象如图所示,则4(a -b )4
的值为( )。