煤焦油加氢技术简介
- 格式:doc
- 大小:220.50 KB
- 文档页数:30
中低温煤焦油加氢技术摘要:中低温煤焦油加氢技术的应用对于提升煤焦油利用率具有重要作用,也是煤焦油成为化工行业重要组成的关键技术。
借助加氢技术将中低温煤焦油转化成优质汽油和柴油作为汽车能源,有效缓解了燃料资源压力。
本文将围绕着中低温煤焦油加氢技术展开论述,对中低温煤焦油进行简单概述,简单分析技术原理和目的,对常见技术类型和优劣做出简单分析,并结合实际情况探索技术优化策略,以期为化工生产实践提供一定思路,促进能源领域健康发展。
关键词:中低温煤焦油;加氢技术;化工生产引言煤焦油作为煤加工过程中的副产品,由于工艺差异分为不同类型,其中中低温煤焦油利用率相对较低。
我国煤焦油企业较为分散,再加上技术的影响,利用一直不够充分,粗放的利用方式未能充分发挥煤焦油的作用,简单地通过燃烧的方式利用中低温煤焦油还会造成严重的污染问题。
因此很有必要对中低温煤焦油加氢技术进行深入研究,以提升中低温煤焦油的利用效率,促进行业发展的同时,缓解能源压力和环境问题。
1中低温煤焦油概述在进行煤炭加工的过程中会产生副产品煤焦油,煤焦油的成分组成较为复杂,通常主要是碳、硫,氮,氢等化学物质以及酚类和芳香烃形成的混合物。
产生煤焦油的环境温度通常为在为500~600℃的范围内,属低温煤焦油;中温煤焦油的温度为700~900℃范围内,温度为900~1100℃的煤焦油属高温煤焦油,中低温煤焦油与高温煤焦油的性能及组成成分存在着很大的差别。
在这些化合物中,苯酚和苯类化合物的组成比例高达10%~30%,烷烃类化合物含量高达20%,并含有少量的焦油沥青。
中低温煤焦油的成分决定了其适宜于工业生产中的加氢转化,从而可以用于实际的化工产品和发动机燃料油。
所以对中低温煤焦油加氢技术进行深入的研究,对于满足市场需求以及对炼厂的发展有着非常重要的现实意义。
2中低温煤焦的加氢原理和目的中低温煤焦油经煤热解后所生成的液体物料,因其组分中存在大量的烯烃、不饱和烃等,这种特性使得该产品会存在光、氧化稳定性差的特性。
煤焦油加氢技术就是采用固定床加氢处理技术将煤焦油所含的S、N等杂原子脱除,并将其中的烯烃和芳烃类化合物进行饱和,来生产质量优良的石脑油馏分和柴油馏分。
一般煤焦油加氢后生产的石脑油S、N含量均低于50ppm,芳潜含量均高于80%;生产的柴油馏分S含量低于50ppm,N含量均低于500ppm,十六烷值均高于35,凝点均低于-35℃~-50℃,是优质的清洁柴油调和组分。
1、煤焦油加氢技术概述1.1煤焦油的主要化学反应煤焦油加氢为多相催化反应,在加氢过程中,发生的主要化学反应有加氢脱硫、加氢脱氮、加氢脱金属、烯烃和芳烃加氢饱和以及加氢裂化等反应:①加氢脱硫反应②加氢脱氮反应③芳烃加氢反应④烯烃加氢反应⑤加氢裂化反应⑥加氢脱金属反应1.2、影响煤焦油加氢装置操作周期、产品质量的因素主要影响煤焦油加氢装置操作周期、产品收率和质量的因素为:反应压力、反应温度、体积空速、氢油体积比和原料油性质等。
1.2.1反应压力提高反应器压力和/或循环氢纯度,也是提高反应氢分压。
提高反应氢分压,不但有利于脱除煤焦油中的S、N等杂原子及芳烃化合物加氢饱和,改善相关产品的质量,而且也可以减缓催化剂的结焦速率,延长催化剂的使用周期,降低催化剂的费用。
不过反应氢分压的提高,也会增加装置建设投资和操作费用。
1.2.2、反应温度提高反应温度,会加快加氢反应速率和加氢裂化率。
过高的反应温度会降低芳烃加氢饱和深度,使稠环化合物缩合生焦,缩短催化剂的使用寿命。
1.2.3、体积空速提高反应体积空速,会使煤焦油加氢装置的处理能力增加。
对于新设计的装置,高体积空速,可降低装置的投资和购买催化剂的费用。
较低的反应体积空速,可在较低的反应温度下得到所期望的产品收率,同时延长催化剂的使用周期,但是过低的体积空速将直接影响装置的经济性。
1.2.4、氢油体积比氢油体积比的大小主要是以加氢进料的化学耗氢量为依据,描述的是加氢进料的需氢量相对大小。
煤焦油加氢比一般的石油类原料,要求有更高的氢油比。
煤焦油加氢技术概述摘要:目前,在我国所有资源的构造中,只有煤炭的分布最为广泛,存储量最多,在消费和生产中一直占着最主导地位。
我们需要充分利用煤炭这一重要资源,展开有关煤化技术的研究,这也是我们国家目前最重要的科研方向之一。
对高温的煤焦油进行加工的处理,筛选出合适的加氢条件,通过实验对柴油的分析和研究,以此来研究煤焦油的化学副产物是通过焦化过程而得来的关键字:煤焦油加氢焦化前言随着当今时代各国的经济发展,尤其是发展中国家的经济发展,对于一些燃料的需求量是越来越多。
因为诸多的原因的影响,伴随而来的就是石油资源也是日趋紧张,这样就导致了利用煤来制取一些燃料提供很大的机会和很多的优势,因此,对于煤焦油加氢的制取技术的研究也显得十分得重要。
煤在通过干馏和气化之后,获得一种液体产品,我们称之为煤焦油。
一、煤焦油加工现状目前,我国的煤焦油主要用于经过加工之后生产出酚油、轻油、改质沥青等等产物,再经过深入的加工之后,用于制取苯、酚等多种化工原材料,虽然,生产出的产品材料的数量比较多,用途广,但是,相对于煤焦油中500多种的其他化合物来说,此原材料还是相对较少的。
近几年来,随着煤化工的投资扩大,不断地研发技术,我国在煤焦油的加工规模、技术上,还是取得了相对应的进步,尤其是在煤焦油的加工分离技术上取得了更进一步的成就,为煤焦油的加工提供了重要技术的保障。
进而在煤焦油加工技术之后,又相继出现了其他几种加工工艺:第一,煤焦油蒸馏,有常压法改变为减压法或者减压;第二,煤焦油加氢的轻质化处理的工艺;第三,某些煤焦油的加工企业,会在煤焦油蒸馏分离技术的新工艺。
二、实验部分1.加氢装置的配备精密控制仪表、计算机控制系统、先进汞设备,使得原材料焦油一次性通过,并使氢气循环使用,在图1装置中,配备了两个主反应器,一个反装置是保护剂,另一个反装置主要是加氢催化剂。
2.加氢的主要产品具有以下三种:小于65℃的轻石脑油馏分,小于65~177℃的重石脑油馏分,大于177℃柴油馏分。
煤焦油加氢1. 概述煤焦油是煤炭加工中的一种主要副产品,主要包含苯、甲苯、二甲苯等有机化合物。
煤焦油加氢是一种常用的处理方法,通过加氢反应将煤焦油转化为具有较高附加值和广泛应用领域的产品,如汽油、柴油和润滑油。
2. 加氢工艺煤焦油加氢的工艺主要包括以下几个步骤:2.1 前处理煤焦油经过前处理后,可去除其中的杂质和不稳定成分,提高后续反应的效果。
前处理通常包括升温、加氢气和催化剂的引入等步骤。
2.2 加氢反应在加氢反应器中,将预处理后的煤焦油与氢气在催化剂的存在下进行反应。
加氢反应主要是将煤焦油中的芳香烃和不饱和烃转化为饱和烃,减少其中的硫、氮等杂质含量。
2.3 分离和后处理经过加氢反应后,产物中会产生水、含硫化合物等副产物,需要进行分离和后处理。
分离可以通过蒸馏等方式进行,将不同沸点的产物分离开,得到目标产品。
后处理主要是对分离得到的产品进行进一步的处理,如除硫、脱色等。
3. 加氢催化剂催化剂在煤焦油加氢中起到重要作用,能够加速反应速率,提高产物质量。
常用的加氢催化剂主要有镍基和钼基催化剂。
3.1 镍基催化剂镍基催化剂具有高活性和良好的选择性,在煤焦油加氢中得到广泛应用。
镍基催化剂能够有效催化芳香烃的饱和反应,提高产物的质量。
同时,镍基催化剂的价格相对较低,成本较为优势。
3.2 钼基催化剂钼基催化剂具有较高的催化活性和较好的硫化物抑制能力,在煤焦油加氢中也得到广泛应用。
钼基催化剂能够有效催化煤焦油中的硫化物,降低产品的硫含量,提高产品质量。
4. 应用领域煤焦油加氢产物主要包括汽油、柴油和润滑油等。
这些产品在交通运输、工业生产和农业领域都有广泛的应用。
4.1 汽油经过煤焦油加氢后产生的汽油具有较高的辛烷值和低的硫含量,适用于汽车燃料。
汽油作为交通运输领域的重要能源,具有巨大的市场需求。
4.2 柴油煤焦油加氢产生的柴油具有高的脱硫能力和较低的含硫量,适用于柴油发动机使用。
柴油作为工业生产和农业机械的重要燃料,也有着广泛的市场。
煤焦油加氢综述摘要:煤经历高温热解,产出大量燃料气体的同时副产煤焦油,而煤焦油的直接燃烧会产生大量的SO 和N0 ,造成严重的环境污染.采用加氢工艺可以完成煤焦油脱硫、脱氮、脱氧、脱金属、不饱和烃饱和、芳烃饱和等反应,从而改善其安定性,获得高品质的清洁燃料油,本文着重介绍常见的几种煤焦油加氢加工工艺关键词:煤焦油加氢加工工艺Abstract: coal experience high temperature pyrolysis, output amounts of fuel gas and byproduct coal tar, and coal tar direct combustion produces a large number of SO and N0, causing serious pollution of the environment. The hydrogenation process can be completed in coal tar desulfurization and nitrogen, deoxidization, take off metal, unsaturated hydrocarbons saturated, aromatic saturation and reaction, SO as to improve its stability, get high quality clean fuel oil, this paper introduces several common coal tar hydrogenation processing technologyKeywords: coal tar hydrogenation processing technology前言:煤是我国的主要化石能源,其主导地位在今后相当长的时间内不会发生根本的变化.【1】煤经历高温热解,产出大量燃料气体的同时副产煤焦油,我国是煤焦油大国,据统计2008年我国煤焦油产量已达1 080万t.【2】我国煤焦油的加工除约2/3通过蒸馏、结晶和精制等工艺提取萘、酚、蒽、苊、吲哚、联苯等化工产品外,其余均作为粗燃料替代重油直接烧掉,而煤焦油的直接燃烧会产生大量的SO 和N0 ,造成严重的环境污染.【3】“研究表明,采用加氢工艺可以完成煤焦油脱硫、脱氮、脱氧、脱金属、不饱和烃饱和、芳烃饱和等反应,从而改善其安定性,获得高品质的清洁燃料油.【4】一、煤焦油的来源和性质及前景1.1 煤焦油的来源和性质煤焦油是煤在干馏和气化过程中获得的液体产物之一。
中、低温煤焦油加氢相关技术介绍目录1、中、低温煤焦油加氢技术介绍 (3)1.1、背景 (3)1.2、煤焦油原料的特点 (3)1.3、煤焦油加氢反应机理 (4)1.4、煤焦油加氢催化剂选择原则 (5)1.5、选择煤焦油加氢技术的影响因素 (6)1.6、中低温煤焦油轻质化原则流程图 (6)1.7、中低温煤焦油加氢工艺 (6)1.8、煤焦油加工相关技术 (11)1.9、煤焦油领域试验和工业应用情况 (13)1.10、煤焦油加氢专利情况 (13)1.11、小结 (14)2、煤焦油加氢装置开工方案 (14)2.1、煤焦油加氢原则流程图 (14)2.2、开工前准备 (14)2.3、催化剂装填 (15)2.4、装置氮气气密 (24)2.5、催化剂预硫化过程 (25)2.6、换进低氮油和钝化 (29)2.7、换进原料油调整操作 (31)2.8、装置正常操作中原料控制 (31)2.9、装置正常操作中反应参数调节 (31)2.10、已使用过的催化剂开工(非硫化开工) (34)2.11、装置停工和催化剂的卸出 (35)2.12、事故处理原则 (37)1、中、低温煤焦油加氢技术介绍1.1、背景煤焦油是煤干馏和气化过程中得到的液体产物,常温下煤焦油是一种黑色粘稠液体,密度较高,主要由多环芳香族化合物组成,煤焦油的组成极为复杂。
据估算,全国中低温煤焦油随着焦炭产量及炼焦过程产品回收技术的发展,我国煤焦油产量呈增长趋势,2004年国内煤焦油产量为530万吨,到2008年煤焦油产量达800万吨,生产企业主要分布在晋、陕、蒙、宁四省区交界地带。
煤焦油的价格同国际市场原油价格关系密切。
目前国内低温煤焦油主要用来加工生产酚油、经过简单蒸馏生产工艺和船舶用燃料油,精制过程主要采用酸碱精制方法生产部分低转速发动机燃料油。
目前没有有效利用现有的煤焦油资源,造成污染物的排放。
我国煤炭储存量非常丰富,在目前国内对液体燃料的需求日益增长的形势下,充分利用煤干馏副产品煤焦油,采用适宜的加工方案,改善煤焦油安定性,降低硫含量,可获得低硫石脑油和清洁燃料油。
煤焦油根据干馏温度的不同,可分为高温、中温及低温煤焦油三类。
本文只叙述低、中温焦油加氢技术。
—、低温煤焦油加氢煤焦油加氢改质的目的是加氢脱除硫、氮、氧和金属杂质;加氢饱和烯烃,使黑色煤焦油变为浅色的加氢产品,提高产品安定性;加氢饱和芳烃并使环烷烃开环,大幅度降低加氢产品的密度,提高H∕C比和柴油产品的十六烷值,部分加氢裂化大分子烃类,使煤焦油轻质化,多产柴油馏分。
1、主要化学反应(1)烯烃加氢反应煤焦油中含有少量烯烃,烯烃虽然易被加氢饱和,但是烯烃特别是二烯烃和芳烃侧链上的双键极易引起催化剂表面的结焦,因此希望烯烃在低温下被加氢饱和,这就要求催化剂具有较好的低温加氢活性,并且抗结焦能力强。
(2)加氢脱氧反应无水煤焦油中氧含量通常为4%~6% (摩尔分数),以酚类、酸类、杂环氧类、醚类和过氧化物的形式存在,煤焦油中含氧化合物性质不稳定,加热时易缩合结焦,酸类、醚类和过氧化物类含氧化合物要求的加氢性能不高,酚类、杂环氧类和大分子含氧化合物则要求高加氢性能。
(3)加氢脱金属反应煤焦油中的金属杂质主要有钠、铝、镁、钙、铁和少量的镍、钒,非金属杂质有氯化物、硫酸盐和硅酸盐、二氧化硅等,煤焦油灰分含量通常大于0.1%,这些杂质一方面造成煤焦油结焦;另一方面在催化剂床层沉积,造成催化剂床层堵塞,因此,煤焦油必须进行预处理,脱除大部分的无机物,才能作为加氢原料。
煤热油中的金属杂质可以分为水溶性无机盐和油溶性有机盐,预处理后的加氢进料中金属杂质主要以有机盐的形式存在。
Na+极易在床层上部结垢,进入催化剂床层后使催化剂载体呈碱性,导致催化剂中毒失活,Fe2+与硫化氢作用生成非化学计量的硫化铁相或簇,难以进入催化剂内孔道,而是沉积在催化剂颗粒表面及粒间空隙,引起床层压降的上升。
加氢脱金属要求催化剂大孔径和大孔容,催化剂床层具有大的空隙率。
(4)加氢脱硫反应煤焦油中的硫主要以杂环硫的形式存在,小分子的硫化物有苯并噻吩、二苯并噻吩等。
煤焦油加氢技术简介煤焦油是从炼焦煤中分离出来的一种黑色粘稠液体,它是重要的化石能源原材料。
一方面,煤焦油可以用于生产苯、酚、己二酸等重要基础化工产品,另一方面,煤焦油中的许多成分也是有价值的燃料。
因此,如何更高效的利用煤焦油成为煤化工产业的关键之一。
煤焦油加氢技术正是一个可行的路径之一。
煤焦油加氢技术是指利用加氢反应将煤焦油中的多环芳烃、杂原子、硫和氮等杂质去除,同时将其转化成高附加值燃料或化学品的技术。
通过加氢技术,可以将煤焦油中的大分子碳氢化合物裂解成小分子烃类,并减少含硫、含氮等杂质,从而提高燃料质量。
煤焦油加氢技术的实施需要一定的条件。
首先,需要有高品质的煤焦油作为原料。
其次,加氢反应需要高温高压下进行。
一般情况下,反应温度在400℃~450℃,压力在30MPa~50MPa之间。
第三,加氢反应需要使用催化剂。
目前,常用的催化剂有氧化铝、氧化硅、氧化硫、氧化钡、硫化镍、氧化钠、氧化铜等。
煤焦油加氢技术可以制备多种燃料或化学品。
一种主要的产品是煤焦油加氢燃料油。
煤焦油加氢燃料油在克服了煤焦油成分复杂、热值低、不稳定等弊端后,其性能已经接近天然气和石油产品。
同时,煤焦油加氢燃料油也具有很高的燃烧效率和低排放。
除了煤焦油加氢燃料油,煤焦油加氢技术还可以用于制备沥青增稠剂、合成沥青、合成轻质基础油、煤焦油蜡等多种化学品。
煤焦油加氢技术的优势在于其可以充分利用煤资源,减少对非再生能源的依赖,同时也可以减少工业排放,达到减排的效果。
总之,煤焦油加氢技术是一种可行的利用煤焦油资源的方式。
通过加氢反应,可以将煤焦油中的杂质剔除,制备多种高附加值燃料或化学品,从而达到节能减排的效果。
随着技术的不断进步,相信煤焦油加氢技术将会在未来的煤化工产业中扮演越来越重要的角色。
煤焦油加氢工艺煤焦油加氢装置由原料预处理系统、加氢反应系统、高低压分离系统、压缩机系统、分馏系统和辅助系统组成。
原料预处理系统(延迟焦化)的主要目的是除去固体杂质、含盐水和沥青质,以维持反应正常运行,并得到合格产品。
加氢反应系统包括加氢精制和加氢裂化两部分。
加氢精制目的是油品轻质化及脱出硫、氮、氧和金属等杂质,加氢裂化目的是将未转化的重质尾油进一步裂化,以实现加氢油品完全转化的要求。
高低压分离系统包括加氢精制生成油的热高分、冷高分,加氢裂化生成油的热高分、冷高分,两套系统共用的热低分、冷低分,以及相应的换热、冷却和冷凝系统。
其目的是实现反应产物的液化及气液分离,并得到高纯度的循环氢气。
压缩机系统包括新氢压缩机和循环氢压缩机两部分。
辅助单元的作用主要是向系统中添加硫化剂和高压注水等。
煤焦油原料经过预处理后由加氢精制进料泵加压,经换热,与加氢精制循环氢混合后进入串联的多台加氢精制反应器。
反应器入口温度通过调整循环氢温度控制。
经过反应的高温反应产物送往高低压分离系统。
加氢精制反应产物分别与分馏塔底再沸油、减压塔进料、加氢精制反应进料和冷低分油换热,降温,进入精制热高分罐进行气液分离。
热高分罐的液体,减压后排入热低分罐,气体则经冷却后入精制冷高分罐再次进行气液分离。
冷高分罐的液体,减压后排入冷低分罐。
气体排出,与裂化冷高分的气体混合后去循环氢压缩机的循环氢入口缓冲罐。
加氢裂化反应产物分别与加氢裂化进料、循环氢、减压塔进料换热,降温,进入裂化热高分罐进行气液分离。
热高分罐的液体,减压后排入热低分罐,气体经冷却入裂化冷高分罐再次进行气液分离。
冷高分罐的液体,减压后排入冷低分罐,气体排出通过与精制冷高分的气体混合后去循环氢压缩机的循环氢入口缓冲罐。
热低分罐的气体和液体,分别送往稳定塔。
热低分气直接送入稳定塔的下部,混合后的热低分油和冷低分油送入稳定塔的上部。
塔顶气体排入燃料气系统,脱除轻组分的稳定塔底部液体进入分馏塔进行汽油馏分、柴油馏分和未转化油的分离汽油馏分由分馏塔的顶部抽出,柴油馏分由分馏塔的中部侧线抽出,而未转化油则由分馏塔的底部排出作为加氢裂化反应段的原料送至加氢裂化反应器。
煤焦油加氢技术
煤焦油加氢技术是一项改善煤焦油品质,延长煤焦油服务寿命、提升煤焦油加工效率的新型技术。
它通过把氢气添加到煤焦油中,使煤焦油的耐高温性能得到显著改善。
煤焦油加氢技术的特点在于使用氢气使煤焦油去除高炔烃、烯烃等多种有害物质,使得具有更好的治理效果。
不仅可以减少排放的污染物,还可以提高炼焦的质量和产量。
煤焦油加氢技术有多种优点。
首先,它具有节能减排的优点,可以在低温、低消耗、低能耗的条件下,将低品质焦油转化为高品质焦油。
它还能在较低温度下去除污染物,有助于降低二次污染,可以环保。
此外,煤焦油加氢技术可以把原来一次性排放的污染物转化为可使用的燃料,可以把排放物转化成可回收的柴油。
由于煤焦油加氢技术的独特性,能够节能减排,提高煤焦油的质量和效率,它已经受到了企业的青睐,几家焦化企业正在采用这一技术,改善煤焦油的性能,提高煤焦油的品质和加工效率。
总之,煤焦油加氢技术是一项具有巨大应用价值的新型技术,可以提高煤焦油的质量,改善煤炭加工效率,降低污染物的排放,节约能源,惠及环境。
10万吨/年煤焦油加氢装置简要说明1煤焦油加氢生产技术概述煤焦油的组成特点是硫、氮、氧含量高,多环芳烃含量较高,碳氢比大,粘度和密度大,机械杂质含量高,易缩合生焦,较难进行加工。
煤焦油加氢生产技术首先将煤焦油全馏分原料采用电脱盐、脱水技术将煤焦油原料脱水至含水量小于0.05%,然后再经过减压蒸馏切割掉含机械杂质的重尾馏分,以除去机械杂质(与油相不同的相,表现为固相的物质),使机械杂质含量小于0.03%,得到净化的煤焦油原料。
净化后的煤焦油原料经换热或加热炉加热到所需的反应温度后进入加氢精制(缓和裂化段)进行脱硫、脱氮、脱氧、烯烃和芳烃饱和、脱胶质和大分子裂化反应等,之后经过进入产品分馏塔,切割分馏出汽油馏分、柴油馏分和未转化油馏分;未转化油馏分经过换热或加热炉加热到反应所需的温度后进入加氢裂化段,进行深度脱硫、脱氮、芳烃饱和大分子加氢裂化反应等,同样进入产品分馏塔,切割分馏出反应产生的汽油馏分、柴油馏分和未转化油馏分。
氢气自制氢装置来,经压缩机压缩后分两路,一路进入加氢精制(缓和裂化)段,一路进入加氢裂化段。
经过反应的过剩氢气通过冷高分回收后进入氢气压缩机升压后返回加氢精制(缓和裂化)段和加氢裂化段。
2****技术的先进性******是一家按照现代企业制度建立的高新科技企业,主要从事炼油、石油化工、煤化工、环保和节能等技术领域的新技术工程开发、技术咨询、技术服务和工程设计及工程总包。
****汇集了国内炼油、石油化工和煤化工行业大、中型科研院所、设计院及生产企业的优秀技术人才,致力于新工艺、新设备、新材料的工程开发,转化移植和优化组合国内外先进技术,将最新科技成果向实际应用转化,为客户提供最优化系统整合、客观完善的技术咨询、完整的解决方案,根据用户的要求进行最优化设计,以提高客户竞争和赢利能力。
公司现在的主要业务为炼油、化工装置设计、技术方案和催化剂产品提供。
炼油、化工装置设计包括的装置有加氢、制氢、延迟焦化、重油催化裂化、重整、二烯烃选择性加氢、汽油醚化、气分、聚丙烯等。
******煤焦油加氢专有工艺技术是在原石油炼制尾油加氢技术的基础上进一步开发的,与常规加氢技术相比该技术有以下优点:催化剂的先进性根据煤焦油中不同组分的加氢反应的速度的快慢不同及易结焦特性,胜帮公司优化设计开发了适合煤焦油加氢的前处理的两类催化剂-保护/脱金属催化剂。
两类催化剂的加氢活性不同、颗粒度也不同,很好的适应了煤焦油的特点,使煤焦油加氢装置的运转寿命大大延长。
根据煤焦油的H/C小,氢含量低的特点,胜帮公司优化设计开发了适合煤焦油加氢经过前处理后再加氢的催化剂-加氢精制(缓和裂化)催化剂。
由于煤焦油氢含量低,加氢过程中会放出大量的热,若催化剂设计不当或装置控制不稳会造成装置飞温,使催化剂和反应器损坏。
因此,胜帮公司针对煤焦油的特点开发的加氢精制(缓和裂化)催化剂加氢活性适度、裂化活性适宜,使煤焦油加氢装置的运转寿命大大延长。
根据煤焦油的中有机分子大、氢含量低的特点等特点,胜帮公司优化设计开发了适合煤焦油加氢经过加氢精制(缓和裂化)后再裂化的催化剂-加氢裂化催化剂。
由于煤焦油氢含量低,即使经过加氢精制(缓和裂化)段后,其氢含量仍然达不到高压加氢裂化催化剂所能接受的氢含量指标,在这种情况下若采用常规的高压加氢裂化催化剂来裂化大分子,势必会造成裂化催化剂结焦速度加快,影响加氢装置的正常操作。
因此,胜帮公司针对煤焦油的特点开发的加氢精制裂化催化剂加氢活性与裂化活性匹配适宜,在裂化过程中还能快速进行小H/C分子的加氢,降低加氢裂化过程中的催化剂结焦机率,影响煤焦油加氢装置的运转寿命。
较少工艺污水排放技术控制减压塔在适当的真空度条件下操作,以常规的电动真空泵来达到真空度要求,避免使用蒸汽喷射泵带来的大量含油污水排放,对人身健康和环境有利,同时降低装置能耗。
另外,将各塔汽提蒸汽产生的含油污水收集起来用于加氢精制产物注水,亦可减少污水总量。
优化的换热网络技术装置能耗的高低,在处理同一原料的前提下,主要体现在换热网络的优化程度。
采用上海胜帮的工程技术经验,对各温位的能量进行了充分的优化设计,能量利用充分,与同类装置相比较,可以使单位能耗较大幅度地下降。
3公用工程规格本装置要求公用工程规格达到以下指标。
循环冷却水供水温度30 ℃回水温度40 ℃供水压力0.45 MPa (G)回水压力0.25 MPa (G)脱氧水(或冷凝水)压力0.3 MPa (G)温度25~65℃质量氧含量:≤50ppm固体物含量:≤25ppm氯离子含量:≤5ppm氨含量:≤100ppm硫化氢含量:≤100ppmPH值:7~9新鲜水压力0.8 MPa (G)温度15 ℃仪表风供风压力0.40MPa (G)温度环境温度露点(在1 Bar下)-60 ℃质量含尘微粒≤3μm,含油量≤8ppm,不含腐蚀、有毒及易燃、易爆气体。
氮气供气压力0.8 MPa (G)温度环境温度质量〉99.5V%电电压10KV/380V/220V频率50Hz4工艺说明4.1装置概况本装置由原料预处理系统(100)、加氢反应系统(200)、高低压分离系统(300)、压缩机系统(400)、分馏系统(500)和辅助系统(600)组成。
原料预处理系统包括过滤、电脱盐和减压蒸馏脱沥青质三部分,主要目的是除去固体杂质、含盐水和沥青质,以维持反应正常运行,并得到合格产品。
加氢反应系统包括加氢精制和加氢裂化两部分。
加氢精制目的是油品轻质化及脱出硫、氮等杂质,加氢裂化目的是将未转化的重质尾油进一步裂化,以实现加氢油品完全转化的要求。
高低压分离系统包括加氢精制生成油的热高分、冷高分,加氢裂化生成油的热高分、冷高分,两套系统共用的热低分、冷低分,以及相应的换热、冷却和冷凝系统。
其目的是实现反应产物的液化及气液分离,并得到高纯度的循环氢气。
压缩机系统包括新氢压缩机和循环氢压缩机两部分。
辅助单元的作用主要是向系统中添加硫化剂和高压注水等。
4.2工艺原理及特点4.2.1原料过滤根据煤焦油含有大量粉粒杂质的特点,设置超级离心机和自动反冲洗过滤器,以避免系统堵塞,尤其是反应器压降的过早提高。
4.2.2电脱盐由于原料来源不同,常规的炼厂油品加氢装置不需设置电脱盐系统。
鉴于煤焦油中含有较多的水份和盐类,本装置在原料过滤系统之后设置了电脱盐系统,以达到脱水、脱盐的目的。
4.2.3减压脱沥青原料中含有较多的也能影响反应器运行周期的胶质成分,不能通过过滤手段除去。
通过蒸馏方式,可以脱除这部分胶质物,并进一步洗涤除去粉粒杂质。
为避免结焦,蒸馏在负压下进行。
4.2.4加氢精制加氢精制反应主要目的是:1、烯烃饱和——将不饱和的烯烃加氢,变成饱和的烷烃;2、脱硫——将原料中的硫化物氢解,转化成烃和硫化氢;3、脱氮——将原料中的氮化合物氢解,转化成烃和氨;4、脱氧——将原料中的氧化合物氢解,转化成烃和水。
另外,加氢精制也会发生脱金属反应,原料中的金属化合物氢解后生成金属,沉积于催化剂表面,造成催化剂失活,并导致催化剂床层压差上升。
4.2.5加氢裂化加氢裂化的目的是使得未转化油进一步裂化成轻组分,提高轻油收率。
5主要工艺操作条件表0-1 主要操作条件6工艺流程说明本装置由原料预处理系统、加氢反应系统、高低压分离系统、压缩机系统、分馏系统和辅助系统组成。
6.1原料预处理系统原料煤焦油通过装置进料泵,在FRC控制下,由罐区送入装置。
经过换热器与减压塔中段循环油换热至100~130℃,再经过进料过滤器过滤掉固体杂质后,进入电脱盐系统。
在电脱盐罐中,煤焦油得到脱盐脱水处理。
脱后原料油在TIC-控制下,经换热器再次与减压中段循环油换热升温。
而后,经过换热器分别与减压塔底重油、加氢裂化反应产物、加氢精制反应产物换热,最终在TRC控制下,升温至350℃,进入减压塔。
减压塔塔顶气体经空冷器和水冷器冷凝冷却至45℃,入回流罐。
减压塔真空由真空泵提供。
回流罐中液体由减压塔顶泵加压。
一部分作为回流,在FRC控制下返回减压塔顶。
另一部分在FRC和LICAHL的串级控制下,经换热器与出装置的减压塔底重油换热后,送入加氢精制进料缓冲罐。
减压塔中段油由减压塔中部集油箱抽出,经减压中段油泵加压,一部分在TIC控制下,通过换热器与进装置煤焦油换热降温至152℃,作为中段循环油打入减压塔第二段填料上方和集油箱下方,洗涤煤焦油中的粉渣和胶质;另一部分则在FRC和LIC串级控制下,直接送入加氢精制原料缓冲罐。
减压塔底重油含有大量的粉渣和胶质,不能送去加氢,由泵加压,在LICAHL控制下,经换热器与减压塔顶油换热降温后,送至装置外渣油储罐。
7加氢反应系统7.1加氢精制部分加氢精制原料油由加氢精制进料泵加压后,在TRC控制下,经换热器与加氢精制反应产物换热升温至260℃(初期),与加氢精制循环氢混合后进入串联的三台加氢精制反应器A/B/C。
反应器A入口温度通过调整循环氢温度由TRCAH控制。
循环氢流量由FRCAL 控制。
三台反应器的各床层温度通过TRCAH和由补充的冷氢控制。
反应压力控制在16.8MPa。
415℃(初期)高温的反应产物送往高低压分离系统。
7.1.1加氢裂化部分加氢裂化原料油由加氢裂化进料泵加压后,在TRC控制下,经换热器与加氢裂化反应产物换热升温至399℃(初期),与加氢裂化循环氢混合后进入串联的两台加氢裂化反应器A/B。
加氢裂化反应器A入口温度通过调整循环氢温度由TRCASH控制。
循环氢的流量由FRCASL控制。
两台反应器的床层温度通过TRCAH和由补充的冷氢控制。
反应压力控制在16.8MPa。
402℃(初期)高温的反应产物送往高低压分离系统。
氢气加热炉用于加热加氢裂化用的循环氢,开工时也加热加氢精制的循环氢。
7.2高低压分离系统加氢精制反应产物经过换热器,分别与分馏塔底再沸油、减压塔进料、加氢精制反应进料和冷低分油换热,在TRC控制下降温至260℃,入精制热高分罐进行气液分离。
热高分罐的液体,在LICAHL控制下,减压后排入热低分罐,气体经换热器与循环氢换热,再由空冷器和水冷器冷却到43℃,入精制冷高分罐再次进行气液分离。
其间,为避免反应产生的铵盐堵塞空冷器,于空冷器入口前注入水。
冷高分罐的液体,在LICAHL 控制下,减压后排入冷低分罐。
冷高分罐气体排出,与裂化冷高分的气体混合后去循环氢压缩机的循环氢入口缓冲罐。
加氢裂化反应产物经过换热器,分别与加氢裂化进料、循环氢、减压塔进料换热,在TRC控制下降温至260℃,入裂化热高分罐进行气液分离。
热高分罐的液体,在LICAHL控制下,减压后排入热低分罐,气体经换热器与冷低分油换热,再由空冷器和水冷器冷却到43℃,入裂化冷高分罐再次进行气液分离。
冷高分罐的液体,在LICAHL 控制下,减压后排入冷低分罐。