全等三角形的判定综合复习(二)(人教版)(含答案)
- 格式:doc
- 大小:643.00 KB
- 文档页数:14
全等三角形判定二(ASA ,AAS )(基础)【学习目标】1.理解和掌握全等三角形判定方法3——“角边角”,判定方法4——“角角边”;能运用它们判定两个三角形全等.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】【高清课堂:379110 全等三角形判定二,知识点讲解】要点一、全等三角形判定3——“角边角”全等三角形判定3——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”). 要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”) 要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:已知条件可选择的判定方法 一边一角对应相等SAS AAS ASA 两角对应相等ASA AAS 两边对应相等 SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定3——“角边角”【高清课堂:379110 全等三角形判定二,例5】1、已知:如图,E ,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B .求证:AE =CF .【答案与解析】证明:∵AD ∥CB∴∠A =∠C在△ADF 与△CBE 中A C AD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△CBE (ASA )∴AF =CE ,AF +EF =CE +EF故得:AE =CF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.举一反三:【变式】(2014•青山区模拟)如图,已知AE=CF ,∠AFD=∠CEB,AD∥BC,求证:△ADF≌△CBE.【答案】证明:∵AE=CF,∴AE+EF=CF+EF ,即AF=CE;∵AD∥BC,∴∠A=∠C;在△ADF与△CBE中,,∴△ADF≌△CBE(ASA).类型二、全等三角形的判定4——“角角边”2、(2015•长乐市一模)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.求证:△ACD≌△CBE.【思路点拨】根据垂直的定义可得∠ADC=∠E=90°,然后根据同角的余角相等求出∠B=∠ACD,再利用“角角边”证明△ACD≌△CBE.【答案与解析】证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠E=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∵∠B+∠BCE=90°,∴∠B=∠ACD,在△BEC和△CDA中,,∴△ACD≌△CBE(AAS).【总结升华】本题考查了全等三角形的判定,求出∠B=∠ACD是证明三角形全等的关键.举一反三:【变式】如图,AD是△ABC的中线,过C、B分别作AD及AD的延长线的垂线CF、BE.求证:BE=CF.【答案】证明:∵AD 为△ABC 的中线∴BD =CD∵BE ⊥AD ,CF ⊥AD ,∴∠BED =∠CFD =90°,在△BED 和△CFD 中BED CFD BDE CDFBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩(对顶角相等) ∴△BED ≌△CFD (AAS )∴BE =CF3、已知:如图,AC 与BD 交于O 点,AB ∥DC ,AB =DC .(1)求证:AC 与BD 互相平分;(2)若过O 点作直线l ,分别交AB 、DC 于E 、F 两点,求证:OE =OF.【思路点拨】(1)证△ABO ≌△CDO ,得AO =OC ,BO =DO (2)证△AEO ≌△CFO 或△BEO ≌△DFO【答案与解析】证明:∵AB ∥DC∴∠A=∠C在△ABO 与△CDO 中A C (AOB COD ∠∠⎧⎪∠∠⎨⎪⎩==对顶角相等) AB=CD∴△ABO ≌△CDO (AAS )∴AO =CO ,BO=DO在△AEO 和△CFO 中A C (AOE COF ∠∠⎧⎪⎨⎪∠∠⎩=AO=CO=对顶角相等) ∴△AEO ≌△CFO (ASA )∴OE =OF.【总结升华】证明线段相等,就是证明它们所在的两个三角形全等.利用平行线找角等是本题的关键.类型三、全等三角形判定的实际应用4、(2014春•通川区校级期末)要测量河两岸相对两点A ,B 间的距离,先在过点B 的AB 的垂线上取两点C 、D ,使CD=BC ,再在过点D 的l 的垂线上取点E ,使A 、C 、E 三点在一条直线上,这时ED 的长就是A ,B 两点间的距离.你知道为什么吗?说说你的理由.【思路点拨】利用“角边角”证明△ABC 和△EDC 全等,根据全等三角形对应边相等可得AB=DE ,从而得解.【答案与解析】解:∵AB⊥l,CD⊥l,∴∠ABC=∠EDC=90°,在△ABC 和△EDC 中,,∴△ABC≌△EDC(ASA ),∴AB=DE,即ED 的长就是A ,B 两点间的距离.【总结升华】此题主要考查了全等三角形的应用,解答本题的关键是借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.【巩固练习】一、选择题1. 能确定△ABC ≌△DEF 的条件是 ( )A .AB =DE ,BC =EF ,∠A =∠EB .AB =DE ,BC =EF ,∠C =∠EC .∠A =∠E ,AB =EF ,∠B =∠DD .∠A =∠D ,AB =DE ,∠B =∠E2.如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC 全等的图形是( )图4-3A.甲和乙B.乙和丙C.只有乙D.只有丙3.(2015•滕州市校级模拟)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.BD=CD B.AB=AC C.∠B=∠C D.∠BAD=∠CAD 4.(2016•永州)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD5. 某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.①②③都带去6.如图,∠1=∠2,∠3=∠4,下面结论中错误的是()A.△ADC≌△BCD B.△ABD≌△BACC.△ABO≌△CDO D.△AOD≌△BOC二、填空题7.(2015•黑龙江二模)如图,线段AD与BC相交于点O,连结AB、CD,且∠B=∠D,要使△AOB≌△COD,应添加一个条件是(只填一个即可)8. 在△ABC 和△'''A B C 中,∠A =44°,∠B =67°,∠'C =69°,∠'B =44°,且AC = ''B C ,则这两个三角形_________全等.(填“一定”或“不一定”)9. 已知,如图,AB ∥CD ,AF ∥DE ,AF =DE ,且BE =2,BC =10,则EF =________.10. (2016•石景山一模) 如图,AD=AE ,请你添加一个条件______________,使得△ADC ≌△AEB .11. 如图, 已知:∠1 =∠2 , ∠3 =∠4 , 要证BD =CD , 需先证△AEB ≌△AEC , 根据是 ,再证△BDE ≌△ ,根据是 .12. 已知:如图,∠B =∠DEF ,AB =DE ,要说明△ABC ≌△DEF ,(1)若以“ASA ”为依据,还缺条件(2)若以“AAS ”为依据,还缺条件(3)若以“SAS ”为依据,还缺条件E D C BA三、解答题13.(2014•丰台区一模)已知:如图,点E、C、D、A在同一条直线上,AB∥DF,ED=AB,∠E=∠CPD.求证:△ABC≌△DEF.14. 已知如图,E、F在BD上,且AB=CD,BF=DE,AE=CF,求证:AC与BD互相平分.15. 已知:如图, AB∥CD, OA = OD, BC过O点, 点E、F在直线AOD上, 且AE = DF.求证:EB∥CF.【答案与解析】一.选择题1. 【答案】D;【解析】A 、B 选项是SSA ,没有这种判定,C 选项字母不对应.2. 【答案】B ;【解析】乙可由SAS 证明,丙可由ASA 证明.3. 【答案】B ;【解析】解:A 、∵∠1=∠2,AD 为公共边,若BD=CD ,则△ABD≌△ACD(SAS );B 、∵∠1=∠2,AD 为公共边,若AB=AC ,不符合全等三角形判定定理,不能判定△ABD≌△ACD;C 、∵∠1=∠2,AD 为公共边,若∠B=∠C,则△ABD≌△ACD(AAS );D 、∵∠1=∠2,AD 为公共边,若∠BAD=∠CAD,则△ABD≌△ACD(ASA );故选:B .4. 【答案】D ;【解析】解:∵AB=AC ,∠A 为公共角,A 、如添加∠B=∠C ,利用ASA 即可证明△ABE ≌△ACD ;B 、如添AD=AE ,利用SAS 即可证明△ABE ≌△ACD ;C 、如添BD=CE ,等量关系可得AD=AE ,利用SAS 即可证明△ABE ≌△ACD ;D 、如添BE=CD ,因为SSA ,不能证明△ABE ≌△ACD ,所以此选项不能作为添加的条件.5. 【答案】C ;【解析】由ASA 定理,可以确定△ABC.6. 【答案】C ;【解析】△ABO 与△CDO 中,只能找出三对角相等,不能判定全等.二、填空题7. 【答案】OB=OD ;【解析】解:添加条件OB=OD ,在△ABO 和△CDO 中,,∴△AOB≌△COD(ASA ),故答案为:OB=OD .8. 【答案】一定;【解析】由题意,△ABC ≌△'''B A C ,注意对应角和对应边.9. 【答案】6;【解析】△ABF ≌△CDE ,BE =CF =2,EF =10-2-2=6.10.【答案】答案不唯一,B C ∠=∠或AC AB =等;【解析】11.【答案】ASA ,CDE ,SAS ;【解析】△AEB ≌△AEC 后可得BE =CE.12.【答案】(1)∠A = ∠D ;(2)∠ACB = ∠F ;(3) BC =EF.三、解答题13. 【解析】证明:∵AB∥DF,∴∠B=∠CPD,∠A=∠FDE,∵∠E=∠CPD.∴∠E=∠B,在△ABC 和△DEF 中,,∴△ABC≌△DEF(ASA ).14.【解析】证明: ∵BF =DE ,∴BF -EF =DE -EF ,即BE =DF在△ABE 和△CDF 中,AB CD BE DF ,AE CF ⎧⎪⎨⎪⎩===∴△ABE ≌△CDF (SSS )∴∠B =∠D ,在△ABO 和△CDO 中B D AOB COD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABO ≌△CDO (AAS )∴AO =OC ,BO =DO ,AC 与BD 互相平分.15.【解析】证明:∵AB ∥CD,∴∠CDO =∠BAO在△OAB 和△ODC 中,CDO BAO OD OA DOC AOB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△OAB ≌△ODC (ASA )∴OC =OB又∵AE = DF ,∴AE +OA =DF +OD ,即OE =OF 在△OCF 和△OBE 中OC OB DOC AOB OF OE =⎧⎪∠=∠⎨⎪=⎩∴△OCF ≌△OBE (SAS ) ∴∠F =∠E ,∴CF ∥EB.。
12.2全等三角形的判定一.选择题1.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,添加的一组条件不正确的是()A.BC=DC,∠A=∠D B.BC=EC,AC=DCC.∠B=∠E,∠BCE=∠ACD D.BC=EC,∠B=∠E2.如图,下列推理不能求证△ABD≌△CAD的是()A.DB=DC,AB=AC B.∠ADC=∠ADB,DB=DCC.∠C=∠B,∠ADC=∠ADB D.∠C=∠B,DB=DC3.一块三角形玻璃,被摔成如图所示的四块,小敏想去店里买一块形状、大小与原来一样的玻璃,借助“全等三角形”的相关知识,小敏只带了一块去,则这块玻璃的编号是()A.①B.②C.③D.④4.如图,在△ABC和△DEF中,∠A=∠D,AC=DF,要使得△ABC≌△DEF,还需要补充一个条件,则下列错误的条件是()A.BF=CE B.AC∥DF C.∠B=∠E D.AB=DE5.如图,AB=12m,CA⊥AB于点A,DB⊥AB于点B,且AC=4m,点P从B向A运动,每分钟走1m,点Q从B向D运动,每分钟走2m,P、Q两点同时出发,运动()分钟后,△CAP与△PQB全等.A.2B.3C.4D.86.如图,E,F是BD上两点,BE=DF,∠AEF=∠CFE,那么添加下列一个条件后,仍无法判定△AED≌△CFB的是()A.∠B=∠D B.AD=BC C.AE=CF D.AD∥BC7.如图,∠C=∠DFE=90°,下列条件中,不能判定△ACB与△DFE全等的是()A.∠A=∠D,AB=DE B.AC=DF,BC=EFC.AB=DE,BC=EF D.∠A=∠D,∠ABC=∠E8.嘉淇发现有两个结论:在△A1B1C1与△A2B2C2中,①若A1B1=A2B2,A1C1=A2C2,B1C1=B2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,A1C1=A2C2,B1C1=B2C2,则△A1B1C1≌△A2B2C2.对于上述的两个结论,下列说法正确的是()A.①,②都错误B.①,②都正确C.①正确,②错误D.①错误,②正确9.如图,已知△ABC的六个元素,则下面甲、乙、丙、丁四个三角形中一定和△ABC全等的图形是()A.甲、丁B.甲、丙C.乙、丙D.乙10.如图,D为△ABC边BC上一点,AB=AC,∠BAC=56°,且BF=DC,EC=BD,则∠EDF等于()A.62°B.56°C.34°D.124°二.填空题11.如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件,使△ABC≌△ADC.12.如图,AC=AD,∠1=∠2,要使△ABC≌△AED,应添加的条件是.(只需写出一个条件即可)13.如图,已知AB=CD,只需再添一个条件就可以证明△ABC≌△CDA的是.A.BC=ADB.AD∥BCC.∠B=∠DD.AB∥DC14.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,下列结论正确的是.A.∠1=∠2;B.BE=CF;C.△CAN≌△ABM;D.CD=DN.15.如图是5×5的正方形网格,△ABC的顶点都在小正方形的顶点上,像△ABC这样的三角形叫格点三角形.画与△ABC有一条公共边且全等的格点三角形,这样的格点三角形最多可以画个.三.解答题16.如图,已知OA=OC,OB=OD,∠AOC=∠BOD.求证:△AOB≌△COD.17.如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.18.如图,△ABC中,CD⊥AB,垂足为D.BE⊥AC,垂足为G,AB=CF,BE=AC.(1)求证:AE=AF;(2)求∠EAF的度数.参考答案一.选择题1.解:A.AB=DE,BC=DC,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC ≌△DEC,故本选项符合题意;B.AC=DC,AB=DE,BC=EC,符合全等三角形的判定定理SSS,能推出△ABC≌△DEC,故本选项不符合题意;C.∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,即∠ACB=∠DCE,∵∠B=∠E,AB=DE,∴△ABC≌△DEC(AAS),故本选项不符合题意;D.AB=DE,∠B=∠E,BC=EC,符合全等三角形的判定定理SAS,能推出△ABC≌△DEC,故本选项不符合题意;故选:A.2.解:A、依据SSS可知△ABD≌△ACD,故A不符合要求;B、依据SAS可知△ABD≌△ACD,故B不符合要求;C、依据AAS可知△ABD≌△ACD,故C不符合要求;D、依据SSA可知△ABD≌△ACD,故D符合要求.故选:D.3.解:因为第③块中有完整的两个角以及他们的夹边,利用ASA易证三角形全等,故应带第3块.故选:C.4.解:A、添加BF=CE,可得,BC=EF,不能得出△ABC≌△DEF,符合题意;B、添加AC∥DF,可得,∠ACB=∠DFE,利用ASA得出△ABC≌△DEF,不符合题意;C、添加∠B=∠E,利用AAS得出△ABC≌△DEF,不符合题意;D、添加AB=DE,利用SAS得出△ABC≌△DEF,不符合题意;故选:A.5.解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,∴AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故选:C.6.解:∵BE=DF,∴BE+EF=DF+EF,即BF=DE,∵∠AEF=∠CFE,A、添加∠B=∠D,利用ASA能判定△AED≌△CFB,不符合题意;B、添加AD=BC,不能判定△AED≌△CFB,符合题意;C、添加AE=CF,利用SAS能判定△AED≌△CFB,不符合题意;D、添加AD∥BC,得出∠B=∠D,利用ASA能判定△AED≌△CFB,不符合题意;故选:B.7.解:A、∵∠A=∠D,AB=DE,∠C=∠DFE=90°,根据AAS判定△ACB与△DFE 全等,不符合题意;B、∵AC=DF,BC=EF,∠C=∠DFE=90°,根据SAS判定△ACB与△DFE全等,不符合题意;C、∵AB=DE,BC=EF,∠C=∠DFE=90°,根据HL判断Rt△ACB与Rt△DFE全等,不符合题意;D、∵∠A=∠D,∠ABC=∠E,∠C=∠DFE=90°,由AAA不能判定△ACB与△DFE全等,符合题意;故选:D.8.解:①若A1B1=A2B2,A1C1=A2C2,B1C1=B2C2,根据SSS判定△A1B1C1≌△A2B2C2;②若∠A1=∠A2,A1C1=A2C2,B1C1=B2C2,不能判定△A1B1C1≌△A2B2C2.故选:C.9.解:A、△ABC和甲两个三角形根据SAS可以判定全等,△ABC与丁三角形根据ASA可以判定全等,故本选项正确;B、△ABC与丙两个三角形的对应角不一定相等,无法判定它们全等,故本选项错误;C、△ABC与乙、丙都无法判定全等,故本选项错误;D、△ABC与乙无法判定全等,故本选项错误;故选:A.10.解:∵AB=AC,∴∠B=∠C=(180°﹣∠BAC)=(180°﹣56°)=62°,在△BFD和△EDC中,,∴△BFD≌△EDC(SAS),∴∠BFD=∠EDC,∴∠FDB+∠EDC=∠FDB+∠BFD=180°﹣∠B=180°﹣62°=118°,则∠EDF=180°﹣(∠FDB+∠EDC)=180°﹣118°=62°.故选:A.二.填空题11.解:添加的条件是AD=AB,理由是:在△ABC和△ADC中,∴△ABC≌△ADC(SAS),故答案为:AD=AB(答案不唯一).12.解:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD,∵AC=AD,∴当添加∠B=∠E时,可根据“AAS”判断△ABC≌△AED;当添加∠C=∠D时,可根据“ASA”判断△ABC≌△AED;当添加AB=AE时,可根据“SAS”判断△ABC≌△AED.故答案为∠B=∠E或∠C=∠D或AB=AE.13.解:A.根据BC=AD、AB=CD和AC=AC能推出△ABC≌△CDA(SSS);B.∵AD∥BC,∴∠DAC=∠BCA,∴根据AB=CD、AC=AC和∠BCA=∠DAC不能推出△ABC≌△CDA;C.根据AB=CD,AC=AC和∠B=∠D不能推出△ABC≌△CDA;D.∵AB∥DC,∴∠BAC=∠DCA,根据AB=CD,∠BAC=∠DCA和AC=AC能推出△ABC≌△CDA(SAS);故答案为:AD.14.解:如图,∵∠E=∠F=90°,∠B=∠C,AE=AF,∴Rt△ABE≌Rt△ACF(AAS),∴∠F AC=∠EAB,BE=CF,AB=AC,∴∠1=∠2,故A,B正确;又∠B=∠C,∠CAN=∠BAM,∴△ACN≌△ABM(ASA),故C错误;∵△ACN≌△ABM(ASA),∴AN=AM,∴MC=BN,而∠B=∠C,∠CDM=∠BDN,∴△DMC≌△DMB(AAS),∴DC=DB,∴DC≠DN,故D错误.故答案为:A,B;15.解:如图,以BC为公共边可画出△BDC,△BEC,△BFC三个三角形和原三角形全等.以AB为公共边可画出三个三角形△ABG,△ABM,△ABH和原三角形全等.所以可画出6个.故答案为:6.三.解答题16.证明:∵∠AOC=∠BOD,∴∠AOC﹣∠AOD=∠BOD﹣∠AOD,即∠COD=∠AOB,在△AOB和△COD中,,∴△AOB≌△COD(SAS).17.(1)证明:∵CF∥AB,∴∠ADF=∠F,∠A=∠ECF.在△ADE和△CFE中,,∴△ADE≌△CFE(AAS).(2)∵△ADE≌△CFE,∴AD=CF=4.∴BD=AB﹣AD=5﹣4=1.18.(1)证明:∵CD⊥AB,BE⊥AC,∴∠CAD+∠ACD=∠CAD+∠EBA=90°,∴∠ACD=∠EBA,在△AEB和△F AC中,,∴△AEB≌△F AC(SAS),∴AE=F A;(2)解:∵△AEB≌△F AC,∴∠E=∠CAF,∵∠E+∠EAG=90°,∴∠CAF+∠EAG=90°,即∠EAF=90°.。
人教版八年级数学上册考点与题型归纳第十二章全等三角形12.2 全等三角形的判定一:考点归纳考点一、三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。
考点二、直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL 定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL ”).考点三、证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.二:【题型归纳】题型一:直角三角形全等的判定1.如图,已知,,AE BD AC BC DF EF =⊥⊥,垂足分别为点,C F ,且BC EF =.求证:ABC DEF ∆≅∆题型二:SAS的判定2.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=48°,求∠BDE的度数.题型三:全等三角形判定与性质的综合3.如图,∆ABC中,AC=CB,∠ACB=90°,D为AC延长线上的一点,E在BC边上,连接AE,DE,BD,AE=BD,∆≅∆(1)求证:ACE BCD(2)若∠CAE=15°,求∠EDB的度数.4.如图,AD为ABC的高,AD=BD,E为AC上一点,BE交AD于F,且FD=CD.(1)求证:BFD≌ACD;(2)判断BE与AC的位置关系,并说明理由.三:基础巩固和培优一、单选题1.如图,∠ABD =∠EBC ,BC =BD ,再添加一个条件,使得△ABC ≌△EBD ,所添加的条件不正确的是( )A .∠A =∠EB .BA =BEC .∠C =∠D D .AC =DE2.如图,下列条件中,不能证明ABD ≌ACD 的是( )A .BD DC =,AB AC =B .ADB ADC ∠∠=,BD DC =C .B C ∠=∠,BAD CAD ∠=∠D .B C ∠=∠,BD DC =3.如图,下列条件不能证明ABC DCB △≌△的是( )A .AB =DC ,AC =DB B .AB =DC ,∠ABC =∠DCBC .BO =CO ,∠A =∠D D .AB =DC ,∠ACB =∠DBC4.如图,BE=CF ,AB=DE ,添加下列哪一个条件可以推证△ABC ≌△DEF ()A .BC=EFB .∠A=∠DC .AC//DFD .∠B=∠DEF5.如图,∆ABC 的面积为102cm ,BP 平分∠ABC ,AP 垂直于BP 于P .连接CP ,若∆ACP 的面积为22cm ,则∆ABP 的面积为( )A .12cmB .22cmC .32cmD .42cm6.如图,已知AD 是ABC 的角平分线,增加以下条件:①AB =AC ;②∠B =∠C ;③AD ⊥BC ;④ABD ACD S S ,其中能使BD =CD 的条件有 ( )A .①B .①②C .①②③D .①②③④7.如图,已知AE=CF ,∠AFD=∠CEB ,那么添加下列一个条件后,仍无法判定△ADF ≌△CBE 的是( )A .∠B=∠DB .BE=DFC .AD=CBD .AD ∥BC8.如图,在△ABC 和△DEC 中,已知CB CE =,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( ).A .AB DE =,B E ∠=∠ B .AB DE =,AC DC =C .AB DE =,AD ∠=∠ D .A D ∠=∠,BE ∠=∠9.如图,90ACB ∠=︒,AC=BC .AD CE ⊥,BE CE ⊥,垂足分别是点D 、E .若AD=6,BE=2,则DE 的长是( )A .2B .3C .4D .510.如图,△ABC 的面积为1cm 2, AP 垂直∠B 的平分线BP 于P ,则△PBC 的面积为( )A .0.4 cm 2B .0.5 cm 2C .13 cm 2D .0.6 cm 2二、填空题 11.如图所示,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 上,且BE =BD ,连接AE 、DE 、DC .若∠CAE =25°,则∠BDC =_____.12.在△ABC 和△A ′B ′C ′中,若∠A =∠A ′,AB =A ′B ′,请你补充一个条件_____,使得△ABC ≌△A ′B ′C ′.13.如图,在ABC中,点D、E、F分别是BC,AB,AC上的点,若∠B=∠C,BF=CD,BD=CE,∠EDF =56°,则∠A=_____°.14.如图,已知在ABC中,PR⊥AB于R,PS⊥AC于S,PR=PS,∠1=∠2,则四个结论:①AR=AS;②PQ∥AB;≌;④BP=CP中,正确的是________.③BPR CPS15.如图,在△ABC 中,AB=AC=12,BC=8,D 为AB 的中点,点P 在线段BC 上以每秒2 个单位的速度由B 点向C 点运动,同时,点Q 在线段CA 上以每秒x 个单位的速度由C 点向A 点运动.当△BPD 与以C、Q、P 为顶点的三角形全等时,x 的值为_____.三、解答题16.如图所示,在四边形ABCD中,CD∥AB,∠ABC的平分线与∠BC D的平分线相交于点F,BF与CD的延长线交于点E,连接CE.求证:(1)△BCE是等腰三角形.(2)BC=AB+CD17.如图,点B,E,C,F在一条直线上,AB=DE,AC =DF,BE=CF.求证:△ABC ≌△DEF;18.如图,D为△ABC外一点,∠DAB=∠B,CD⊥AD,∠1=∠2,若AC=7,BC=4,求AD的长.19.如图,在△ABC中,AB<AC,边BC的垂直平分线DE交△ABC的外角∠CAM平分线于点D,垂足为E,DF⊥AC于点F,DG⊥AM于点G,连接CD.(1)求证:BG=CF;(2)若AB=10cm,AC=14cm,求AG的长.20.在ABC中,∠ACB=90°,AC=BC,直线,MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系?请你直接写出这个数量关系,不要证明.10 / 26参考答案题型归纳1.证明:,AC BC DF EF ⊥⊥ 90C F ︒∴∠=∠=AE BD =AB DE ∴=在Rt ABC ∆和Rt DEF ∆中AB DEBC EF =⎧⎨=⎩()Rt ABC Rt DEF HL ∴∆≅∆ 2.解:(1)证明:∵AE 和BD 相交于点O , ∴∠AOD =∠BOE .在△AOD 和△BOE 中,∠A =∠B ,∴∠BEO =∠2. 又∵∠1=∠2,∴∠1=∠BEO ,∴∠AEC =∠BED .在△AEC 和△BED 中,A BAE BE AEC BED∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEC ≌△BED (ASA ).(2)∵△AEC ≌△BED ,∴EC =ED ,∠C =∠BDE .在△EDC 中,∵EC =ED ,∠1=48°,∴∠C =∠EDC =66°,∴∠BDE =∠C =66°.3.(1)证明:在Rt △ACE 和Rt △BCD 中,AC BCAE BD =⎧⎨=⎩,∴△ACE ≌△BCD (HL );(2)∵△ACE ≌△BCD ,∠CAE=15°,∴CE=CD,∠CBD=∠CAE=15°∴∠CDE=∠CED ,∵∠ACB=90°,∴∠CED=45°,∵∠CED 为△BDE 的外角,∴∠EDB=∠CED-∠CBD=45°-15°=30°.4.证明:(1)在△BDF 和△ADC 中,90ADBD ADCBDF CD DF , ∴△BDF≌△ADC(SAS );(2)BE⊥AC,理由如下:∵△BDF≌△ADC,∴∠DAC=∠DBF,∵∠DAC+∠C=90°,∴∠DBF+∠C=90°,∴∠BEC=90°,∴BE⊥AC.三:基础巩固和培优1.D解:∵∠ABD =∠EBC ,BC=BD ,∴∠ABC=∠EBD ,A.当添加∠A=∠E 时,可根据“AAS”判断△ABC ≌△EBD ,故正确;B.当添加BA=BE 时,可根据“SAS”判断△ABC ≌△EBD ,故正确;C.当添加∠C=∠D 时,可根据“ASA”判断△ABC ≌△EBD ,故正确;D.当添加AC =DE 时,无法判断△ABC ≌△EBD ,故错误;故选:D .2.D解:A 、因为BD DC =,AB AC =,又因为AD=AD ,所以ABD ≌ACD (SSS ),故本选项不符合题意; B 、因为ADB ADC ∠∠=,BD DC =,又因为AD=AD ,所以ABD ≌ACD (SAS ),故本选项不符合题意;C 、因为B C ∠=∠,BAD CAD ∠=∠,又因为AD=AD ,所以ABD ≌ACD (AAS ),故本选项不符合题意;D 、因为B C ∠=∠,BD DC =,AD=AD ,这是边边角,不能证明ABD ≌ACD ,故本选项符合题意. 故选:D .3.D解:AB =DC ,AC =DB ,BC =BC ,符合全等三角形的判定定理“SSS”,能推出ABC DCB △≌△ ,故A 选项错误;AB =DC ,ABC DCB ∠=∠,BC =CB符合全等三角形的判定定理“SAS”,能推出ABC DCB △≌△ ,故B 选项错误;在△AOB 和△DOC 中,AOB DOCA D OB OC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AOB DOC △≌△ (AAS ),∴AB =DC ,∠ABO =∠DCO ,∵OB =OC ,∴∠OBC =∠OCB ,∴∠ABC =∠DCB ,在△ABC 和△DCB 中,AB DC ABC DCB BC CB =⎧⎪∠=∠⎨⎪=⎩, ∴ABC DCB △≌△(SAS ),能推出ABC DCB △≌△,故C 选项错误;BC =CB ,AB =DC ,∠ACB =∠DBC ,SSA 不符合全等三角形的判定定理,即不能推出ABC DCB △≌△,故D 选项正确.故选D .4.D解:∵BE =CF ,∴BC =EF ,又∵AB=DE ,A 、添加BC =EF 不能证明△ABC ≌△DEF ,故此选项错误;B 、添加∠A =∠D 不能证明△ABC ≌△DEF ,故此选项错误;C 、添加AC ∥DF 可得∠ACB =∠F ,不能证明△ABC ≌△DEF ,故此选项错误;D 、添加∠B=∠DEF 可利用SAS 判定△ABC ≌△DEF ,故此选项正确;故选:D .5.C解:延长AP 交BC 于D ,∵BP 平分∠ABC ,AP ⊥BP ,∴∠ABP=∠DBP ,∠APB=∠DPB=90°,在△ABP 与△DBP 中,ABP DBPPB PB APB DPB∠∠⎧⎪⎨⎪∠∠⎩===,∴△ABP ≌△DBP (ASA ),∴AP=PD ,S △PBD =S △ABP∴2ACP PCD S S ∆∆==2cm∴S △ABD =10-4=62cm ,∴△ABP 的面积=3cm 2,故选:C .6.D解:∵AD 平分∠BAC ,∴∠BAD=∠CAD ,∵AB=AC ,AD=AD ,∴△BAD ≌△CAD (SAS ),∴BD=CD ,故①符合题意;∵∠B=∠C ,AD=AD ,∴△BAD ≌△CAD (AAS ),∴BD=CD ,故②符合题意;∵AD ⊥BC ,∴∠ADB=∠ADC=90°,∵AD=AD ,∴△BAD ≌△CAD (ASA ),∴BD=DC ,故③符合题意;∵ABD ACD S S ,∴BD=DC ,故④符合题意;∴①②③④都可以得到BD=CD ;故选D .7.C解:∵AE=CF ,∴AE+EF=CF+EF ,∴AF=CE ,A 、∠B=∠D ,∠AFD=∠CEB ,AF=CE ,满足AAS ,能判定△ADF ≌△CBE ;B 、BE=DF ,∠AFD=∠CEB ,AF=CE ,满足SAS ,能判定△ADF ≌△CBE ;C 、AD=CB ,AF=CE ,∠AFD=∠CEB ,满足SSA ,不能判定△ADF ≌△CBE ;D 、AD ∥BC ,则∠A=∠C ,又AF=CE ,∠AFD=∠CEB ,满足ASA ,能判定△ADF ≌△CBE ; 故选:C .8.C解:∵CB=CE.∴当AB DE =,B E ∠=∠时,满足SAS ,可证△ABC ≌△DEC ,故A 不符合题意; 当AB DE =,AC DC =时,满足SSS ,可证△ABC ≌△DEC ,故B 不符合题意;当AB DE =,A D ∠=∠时,满足是ASS ,不能证明△ABC ≌△DEC ,故C 符合题意; 当A D ∠=∠,B E ∠=∠时,满足AAS ,可证△ABC ≌△DEC ,故D 不符合题意. 故选C .9.C解:∵90ACB ∠=︒,∴∠ACD+∠ECB=90º,∵AD CE ⊥,BE CE ⊥,∴∠ADC=∠CEB=90º,∴∠ECB+∠CBE=90º,∴∠ACD=∠CBE ,在△ACD 和△CBE 中,∵∠ADC=∠CEB=90º,∠ACD=∠CBE ,AC=BC ,∴△ACD ≌△CBE (AAS ),∴AD=CE=6,CD=BE=2,∴ED=EC-CD=6-2=4.故选择:C .10.B解:如图,延长AP 交BC 于T .∵BP ⊥AT ,∴∠BPA =∠BPT =90°,∵BP =BP ,∠PBA =∠PBT ,∴△BPA ≌△BPT (ASA ),∴PA =PT ,∴S △BPA =S △BPT ,S △CAP =S △CPT ,∴S △PBC =12S △ABC =12=0.5,故选:B .11.70°解: ∵∠ABC=90°,∴∠CBD=∠ABC =90°,在Rt △ABE 与Rt △CBD 中,BE BDCBD ABC AB BC=⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CBD ,∴∠AEB=∠BDC ,∵AB=BC ,∴∠BAC=∠ACB=45°,∵∠AEB 为△AEC 的外角,∠CAE=25°,∴∠AEB=∠ACB+∠CAE=45°+25°=70°,∴∠BDC=70°.故答案为:70°.12.∠B =∠B ′或∠C =∠C ′或AC =A ′C ′.解:在△ABC 和△A ′B ′C ′中,AB =A ′B ′,∠A =∠A ′, 当添加∠B =∠B ′可利用“ASA ”判断△ABC ≌△A ′B ′C ′; 当添加∠C =∠C ′可利用“AAS ”判断△ABC ≌△A ′B ′C ′; 当添加AC =∠A ′C ′可利用“SAS ”判断△ABC ≌△A ′B ′C ′. 故答案为:∠B =∠B ′或∠C =∠C ′或AC =A ′C ′. 13.68°.解:在△BDF和△CED中∵BF=CD ,∠B=∠C ,BD =CE ,∴△BDF ≌△CED (SAS ),∴∠BFD=∠CDE ,∠BDF=∠CED ,∴∠BDF+∠CDE=180º-∠EDF=180º-56º=124º,∴∠BFD+∠BDF=∠BDF+∠CDE=124º,∴∠C=∠B=180º-∠BFD-∠BDF=56º,∴∠A=180º-∠B-∠C=180º-56º-56º=68º.故答案为:68º.14.①② 解:在Rt APR ∆和Rt APS ∆中,PS PR AP AP =⎧⎨=⎩, Rt APR Rt APS ∴∆≅∆,()HLAR AS ∴=,①正确,∴1BAP ∠=∠,12∠=∠,2BAP ∴∠=∠,//QP AB ∴,②正确,BRP ∆和QSP ∆中,只有一个条件PR PS =,再没有其余条件可以证明 BRP QSP ∆≅∆,故③④错误; 故答案是:①②.15.2 或 3解:设经过 t 秒后,使△BPD 与△CQP 全等. ∵AB =AC =12,点 D 为 AB 的中点.∴BD =6.∵∠ABC =∠ACB .∴要使△BPD 与△CQP 全等,必须 BD =CP 或 BP =CP . 即 6=8﹣2t 或 2t =8﹣2t .1t =1,2t =2.当t =1 时,BP =CQ =2,2÷1=2. 当t =2 时,BD =CQ =6,6÷2=3. 即点 Q 的运动速度是 2 或 3,故答案为:2 或 3.16.解:(1)∵BF 平分∠ABC , ∴12ABF CBF ABC ∠=∠=∠,∵CD ∥AB ,∴ABF E ∠=∠,∴E CBF ∠=∠,∴BC=CE ,∴△BCE 是等腰三角形.(2)∵CF 平分∠BCE , ∴12BCF BCE ∠=,∵CD ∥AB ,∴180ABC BCE ∠+∠=︒,∴90CBF BCF ∠+∠=︒,∴90BFC ∠=︒,即 CF ⊥BE ,又BC=CE ,∴BF=EF ,在△ABF 和△DEF 中,∵ABF EAFB DFE BF EF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△DEF ;∴AB=DE ,∴BC=CE=DE+CD=AB+CD ,因此 BC=AB+CD .17.解:证明:∵BE =CF ,∴BE +EC =CF +EC ,∴BC =EF ,在△ABC 和△DEF 中,∵AB DEAC DF BC EF=⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF (SSS ).18.解:证明:延长AD ,BC 交于点E .∵CD ⊥AD ,∴∠ADC =∠EDC =90°.在△ADC 和△EDC 中12ADC EDCCD CD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△EDC(ASA).∴∠DAC=∠DEC,AC=EC,AD=ED.∵AC=7,∴EC=7.∵BC=4∴BE=11∵∠DAB=∠B,∴AE=BE=11.∴AD=5.5.答:AD的长为5.5.19.解:(1)证明:如图所示,连接DB.∵AD是△ABC的外角平分线,DG⊥AB,DF⊥CA,∴DF=DG .∵DE 垂直平分BC ,∴DC=DB ,在Rt △CDF 与Rt △BDG 中DF DG DC DB=⎧⎨=⎩ ∴Rt △CDF ≌Rt △BDG (HL ),∴BG=CF .(2)解:∵∠GAD=∠FAD ,∠AGD=∠AFD ,AD=AD , ∴在△ADG 与△ADF 中GAD FAD AGD AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADG ≌△ADF (AAS ),∴AG=AF ,∵BG=CF∴AG=()()111410222AC AB -=-=(cm). 20.解:(1)证明:∵AD ⊥MN ,BE ⊥MN , ∴∠ADC =∠CEB =90°,∴∠DAC+∠ACD =90°,∵∠ACB =90°,∴∠BCE+∠ACD =90°,∴∠DAC =∠BCE ,在△ADC 和△CEB ,ADC CEBDAC ECB AC CB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS ), ∴CD =BE ,AD =CE ,∴DE =CE+CD =AD+BE ;(2)证明:∵AD ⊥MN ,BE ⊥MN , ∴∠ADC =∠CEB =90°, ∴∠DAC+∠ACD =90°, ∵∠ACB =90°,∴∠BCE+∠ACD =90°,∴∠DAC =∠BCE ,∵AC=BC ,∴△ADC ≌△CEB ,∴CD =BE ,AD =CE ,∴DE =CE ﹣CD =AD ﹣BE ;(3)解:DE =BE ﹣AD ,理由如下:∵AD ⊥MN ,BE ⊥MN ,∴∠ADC =∠CEB =90°, ∴∠DAC+∠ACD =90°, ∵∠ACB =90°,∴∠BCE+∠ACD =90°,∴∠DAC=∠BCE,∵AC=BC,∴△ADC≌△CEB,∴CD=BE,AD=CE,∴DE=BE﹣AD.。
2021年三角形全等的判定(2)边角边一.选择题(共2小题)1.如图,已知AB=AE,AC=AD,再需要哪两个角对应相等,就可以应用SAS判定△ABC≌△AED.()A.∠A=∠A B.∠C=∠D C.∠B=∠E D.∠BAC=∠EAD 2.如图,已知AB=AC,AD=AE,∠BAC=∠DAE.下列结论不正确的是()A.∠BAD=∠CAE B.△ABD≌△ACE C.AB=BC D.BD=CE二.解答题(共4小题)3.如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,MB=NC.求证:DM=DN.4.如图所示,AD是△ABC的中线,在AD及其延长线上截取DE=DF,连接CE、BF,试判断△BDF与△CDE全等吗?BF与CE有何位置关系?并说明原因.5.已知,如图△ABC中,AM是BC边上的中线,求证:AM<12(AB+AC).6.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.2021年三角形全等的判定(2)边角边参考答案与试题解析一.选择题(共2小题)1.如图,已知AB =AE ,AC =AD ,再需要哪两个角对应相等,就可以应用SAS 判定△ABC≌△AED .( )A .∠A =∠AB .∠C =∠D C .∠B =∠E D .∠BAC =∠EAD【分析】观察图形,找着已知条件在图形上的位置,然后结合全等的判定方法可得.【解答】解:有AB =AE ,AC =AD ,必须加它们的夹角,所以是∠BAC =∠EAD ,D 是正确的;A 、B 、C 都不能应用SAS 判定△ABC ≌△AED .故选:D .【点评】若有两边一角对应相等时,角必须是两边的夹角,要结合图形做题,由位置定方法.2.如图,已知AB =AC ,AD =AE ,∠BAC =∠DAE .下列结论不正确的是( )A .∠BAD =∠CAEB .△ABD ≌△ACEC .AB =BCD .BD =CE【分析】先证明△BAD ≌△CAE ,根据全等三角形的性质,一一判断即可.【解答】证明:∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,故A 正确,在△BAD 和△ACE 中,{BA =CA ∠BAD =∠CAE AD =AE,∴△BAD ≌△CAE ,故B 正确,∴BD =EC ,故D 正确,∴C 错误,故选:C .【点评】本题考查全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.二.解答题(共4小题)3.如图,在△ABC 中,已知AB =AC ,AD 平分∠BAC ,点M ,N 分别在AB ,AC 边上,MB =NC .求证:DM =DN .【分析】根据等式的性质得出AM =AN ,根据SAS 证明△AMD 和△AND 全等,利用全等三角形的性质解答即可.【解答】证明:∵AB =AC ,MB =NC ,∴AB ﹣MB =AC ﹣NC ,即AM =AN ,又∵AD 平分∠BAC ,∴∠MAD =∠NAD ,在△AMD 和△AND 中,{AM =AN ∠MAD =∠NAD AD =AD,∴△AMD ≌△AND (SAS ),∴DM =DN .【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的性质,证明三角形全等是解题的关键.4.如图所示,AD 是△ABC 的中线,在AD 及其延长线上截取DE =DF ,连接CE 、BF ,试判断△BDF 与△CDE 全等吗?BF 与CE 有何位置关系?并说明原因.【分析】结论:①△BDF ≌△CDE ②BF ∥CE ,①根据两边和夹角对应相等的两个三角形全等即可判断;②根据内错角相等两直线平行即可判断.【解答】解:结论:①△BDF ≌△CDE ②BF ∥CE .理由:①∵AD 是△ABC 中线,∴BD =DC ,在△BDF 和△CDE 中,{BD =CD ∠BDF =∠EDC DF =DE,∴△BDF ≌△CDE .②∴△BDF ≌△CDE ,∴∠F =∠CED ,∴BF ∥CE .【点评】本题考查全等三角形的判断和性质、两直线平行的判定等知识,解题的关键是熟练掌握全等三角形的判定,属于中考常考题型.5.已知,如图△ABC 中,AM 是BC 边上的中线,求证:AM <12(AB +AC).【分析】可延长AM到D,使MD=AM,连CD,则△ABM≌△DCM得AB=CD,进而在△ACD中利用三角形三边关系,证之.【解答】证明:延长AM到D,使MD=AM,连CD,∵AM是BC边上的中线,∴BM=CM,又AM=DM,∠AMB=∠CMD,∴△ABM≌△DCM,∴AB=CD,在△ACD中,则AD<AC+CD,即2AM<AC+AB,AM<12(AB+AC).【点评】本题主要考查了全等三角形的判定及性质以及三角形的三边关系问题,应熟练掌握.6.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.【分析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得∠HFB=∠HEC,由得对顶角相等得∠BHF =∠CHE ,所以∠ABD =∠ACG .再由AB =CG ,BD =AC ,利用SAS 可得出三角形ABD 与三角形ACG 全等,由全等三角形的对应边相等可得出AD =AG ,(2)利用全等得出∠ADB =∠GAC ,再利用三角形的外角和定理得到∠ADB =∠AED +∠DAE ,又∠GAC =∠GAD +∠DAE ,利用等量代换可得出∠AED =∠GAD =90°,即AG 与AD 垂直.【解答】(1)证明:∵BE ⊥AC ,CF ⊥AB ,∴∠HFB =∠HEC =90°,又∵∠BHF =∠CHE ,∴∠ABD =∠ACG ,在△ABD 和△GCA 中{AB =CG ∠ABD =∠ACG BD =CA,∴△ABD ≌△GCA (SAS ),∴AD =GA (全等三角形的对应边相等);(2)位置关系是AD ⊥GA ,理由:∵△ABD ≌△GCA ,∴∠ADB =∠GAC ,又∵∠ADB =∠AED +∠DAE ,∠GAC =∠GAD +∠DAE ,∴∠AED =∠GAD =90°,∴AD ⊥GA .【点评】此题考查了全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.。
人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题二(含答案)已知一个三角形的两条边长为1cm和2cm,一个内角为45°.(1)请你利用如图45°角,画出一个满足题设条件的三角形.(2)你是否还能画出既满足题设条件,又与(1)中所画的不全等的三角形?若能,请用“尺规作图”画出,若不能,请说明理由.(3)如果将题设条件改为“一个三角形的两条边长为3cm和4cm,一个内角为45°”,画出满足这一条件的,且彼此不全等的所有三角形.(要求在图中标记3cm和4cm的边长)【答案】(1)见解析;(2)不能,见解析;(3)见解析.【解析】【分析】(1)作AC=1cm,AB=2cm,连接BC,则△ABC就是要作的三角形;(2)若AB=2,则点B到∠A,则可判断BC边不能取1cm,于是可判断所画的三角形只能为1cm和2cm的两边夹45°;(3)分情况讨论:45°所对的边长为3cm;45°所对的边长为4cm;45°的邻边为3cm和4cm,分别作图即可.【详解】解:(1)如图1,△ABC为所作;(2)不能,理由:若AB=2,则点B到∠A,所以BC边不能取1,所以所画的三角形只能为1cm和2cm的两边夹45°;(3)如图,【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质.62.如图,在△ABC中,D是边AB上一点,E是边AC的中点,作CF∥AB 交DE的延长线于点F.求证:△ADE≌△CFE.【答案】证明见解析.【解析】【分析】根据AAS或ASA证明△ADE≌△CFE即可. 【详解】证明:∵E是边AC的中点,∴AE=CE.又∵CF∥AB,∴∠A=∠ACF,∠ADF=∠F,在△ADE与△CFE中,ADF FA ACF AE CE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE≌△CFE(AAS).【点睛】此题考查全等三角形的判定,解题关键在于掌握AAS或ASA即可.63.如图,点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:AD=AE【答案】见解析.【解析】【分析】根据ASA △ADC ≌△AEB ,即可得出结论.【详解】证明:在△ABE 和△ACD 中,A A AB AC B C ∠∠∠⎧⎪∠⎪⎨⎩=== ∴△ABE ≌△ACD (ASA )∴AE=AD【点睛】本题主要考查了全等三角形的判定及性质问题,应熟练掌握.64.如图所示,△ABC 是等腰直角三角形,∠A =90°,AB =AC ,D 是斜边BC 的中点,E ,F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BE =15,CF =8,求△AEF 的面积.【答案】60【解析】【分析】由“ASA ”可证△AED △△CFD ,可得AE =CF =8,可得AF =BE =15,即可求解.【详解】解:△在Rt △ABC 中,AB =AC ,AD 为BC 边的中线,△△DAC =△BAD =△C =45°,AD △BC ,AD =DC ,又△DE △DF ,AD △DC ,△△EDA+△ADF =△CDF+△FDA =90°,△△EDA =△CDF在△AED 与△CFD 中,EDA CDF AD CDEAD C ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△AED △△CFD (ASA ).△AE =CF =8,△AB ﹣AE =AC ﹣CF ,△AF =BE =15,△△EAF =90°,△S △AEF =12×AE ×AF =60. 【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,求AE=CF 是本题的关键.65.如图,在ABC ∆中,AB AC =,D 为射线BC 上一动点(不与点C 、B 重合),在AD 的右侧作ADE ∆,使得AE AD =,DAE BAC α∠=∠=,连接CE .(1)当点D 从点B 开始运动时,BCE ∠的度数等于______(用含α的式子表示);(2)当点D 运动到线段CB 上何处时,AC DE ⊥,并说明理由;(3)当90α=时,若6BC =,2CD =,求DE 的值.【答案】(1)180°-α.;(2)当点D 运动到CB 中点时,AC ⊥DE ,证明见解析;(3)DE 的值为.【解析】【分析】(1)由DAE BAC α∠=∠=得知∠BAD=∠CAE ,结合AB=AC,AD=AE 证明△ABD 与△ACE 全等,所以∠ABC=∠ACE ,进一步得出∠BCE=∠ACB +∠ACE=∠ABC +∠ACB ,从而得出答案即可;(2)当点D 运动到CB 中点时,AC ⊥DE ,根据AB=AC 得知∠BAD=∠CAD ,再结合∠BAD=∠CAE 得出∠CAD=∠CAE ,最后根据AD=AE 即可证明出结论;(3)首先分D 点在线段BC 上以及在BC 延长线上两种情况分开讨论,其中利用△ABD 与△ACE 全等求出相应的边长,最后利用勾股定理求长即可.【详解】(1)∵DAE BAC α∠=∠=,∴∠BAD +∠DAC=∠DAC +∠CAE ,∴∠BAD=∠CAE ,又∵AB=AC 、AD=AE,∴△ABD ≌△ACE ,∴∠ABD=∠ACE ,∴∠BCE=∠ACE +∠ACB=∠ABD +∠ACB=180°-∠BAC ,即∠BCE=180°-α.(2)当点D 运动到CB 中点时,AC ⊥DE ,证明如下:∵AB=AC ,点D 是CB 中点,∴∠BAD=∠CAD,又∵∠BAD=∠CAE,∴∠CAD=∠CAE ,∵AD=AE,∴AC ⊥DE.(3)①当D 点在线段BC 上时,如图1,∵6BC =,2CD =,∴BD=BC -CD=4,由(1)得△ABD ≌△ACE ,∴BD=CE=4,∵DAE BAC α∠=∠==90°,∴∠BCE=180°-90°=90°,∴在Rt △DCE 中,;②当D 点在BC 延长线上时,如图2:∵6BC =,2CD =,∴BD=BC +CD=8,由(1)得△ABD ≌△ACE ,∴BD=CE=8,∵DAE BAC α∠=∠==90°,∴∠BCE=180°-90°=90°即∠ECD=90°,∴在Rt △DCE 中,综上所述,DE 的值为【点睛】本题主要考查了动点问题与全等三角形以及勾股定理的综合运用,熟练掌握相关概念是解题关键.66.如图,ABC 是等边三角形,点 D ,E 分别在 AB ,BC 边上,且 AD BE =,求证:CD AE =.【答案】详见解析【解析】【分析】根据已知推出△ADC ≌△BEA,即可求证CD AE =【详解】证明:在等边 ABC △ 中,AB AC =,BAC ABC ∠=∠ , 在 ADC 和 BEA △ 中,,{,,AD BE DAC EBA AC AB =∠=∠= ADC BEA ∴≅.(SAS )AE CD ∴=.【点睛】本题主要考查全等三角形的判定67.如图AE AF =,AB AC =,DE BA ⊥,点E 为垂足,DF AC ⊥,点F 为垂足,求证:BD CD =.【答案】见解析【解析】【分析】根据DE BA ⊥与DF AC ⊥,得90AED AFD ∠=∠=︒,证明()Rt AEC Rt AFD HL ∆∆≌,则有DE=DF ,再证明()BED CFD SAS ∆∆≌则可证明BD CD =.【详解】解: DE BA ⊥,DF AC ⊥90AED AFD ∴∠=∠=︒在Rt AED ∆和Rt AFD ∆中,AE AF AD AD =⎧⎨=⎩()Rt AEC Rt AFD HL ∆∆∴≌DE DF ∴= =AE AF ,AB AC =BE CF ∴=在BED ∆和CFD ∆中,BE CF E F DE DF =⎧⎪∠=∠⎨⎪=⎩()BED CFD SAS ∆∆∴≌BD CD ∴=【点睛】本题考查了全等三角形的判定与性质,熟练掌握判定三角形全等的判定定理是解题的关键.68.如图,C BDE ∠=∠,AE BE =,点D 在AC 边上,DEC BEA ∠=∠.(1)求证:AEC BED ∆∆≌;(2)若40DEC ∠=︒,则BDA ∠的度数.【答案】(1)见解析;(2)40︒【解析】【分析】(1)根据已知条件即可判断△AEC ≌△BED ;(2)由(1)可知:A B ∠=∠,根据DEC BEA ∠=∠,得=40BEA ∠︒,再根据三角形的外角的性质,从而可求出∠BDA 的度数;【详解】(1)证明:DEC BEA ∠=∠BED AEC ∠=∠∴在AEC ∆和BED ∆中,C BED AEC BED AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AEC BED AAS ∆∆∴≌(2)由AEC BED ∆∆≌可得A B ∠=∠,DEC BEA ∠=∠=40BEA ∠︒∴AOB ∠是AOD ∆和BOE ∆的外角AOB A ADO B BEO ∴∠=∠+∠=∠+∠A B ∠=∠40BDA BEA ∴∠=∠=︒【点睛】本题考查了全等三角形,熟练掌握全等三角形的性质与判定以及外角的性质是解题的关键.69.如图,A 、B 两建筑物位于河的两岸,为了测量它们的距离,可以沿河岸作一条直线MN ,且使MN AB ⊥于点B ,在BN 上截取BC CD =,过点D 作DE MN ⊥,使点A 、C 、E 在同一直线上,则DE 的长就是A 、B 两建筑物之间的距离,请说明理由.【答案】见解析【解析】【分析】根据已知条件证明在ABC ∆和EDC ∆全等,即可证明AB DE =.【详解】解:AB MN ⊥∵,=90ABC ∠︒∴,同理=90EDC ∠︒,=ABC EDC ∠∠∴,在ABC ∆和EDC ∆中,==ABC EDC BC CDBCA DCE ∠∠⎧⎪=⎨⎪∠∠⎩()ACB ECD ASA ∆∆∴≌,AB DE ∴=.【点睛】本题考查全等三角形的应用,关键是证明三角形全等,从而得到线段相等,得到结论.70.在Rt △ABC 中,AB =AC ,OB =OC ,∠A =90°,∠MON =α,分别交直线AB 、AC 于点M 、N .(1)如图1,当α=90°时,求证:AM =CN ;(2)如图2,当α=45°时,问线段BM 、MN 、AN 之间有何数量关系,并证明;(3)如图3,当α=45°时,旋转∠MON ,问线段之间BM 、MN 、AN 有何数量关系?并证明.【答案】(1)证明见解析;(2)BM =AN +MN ,理由见解析;(3)MN=AN+BM.理由见解析.【解析】【分析】是一个等腰直角三角(1)根据题意AB=AC,∠BAC=90°,得出ABC形,再根据三线合一得出OA=OB=OC,从而∠ABO=∠ACO=∠BAO=∠CAO=45°,且AO⊥BC,从而得出∠MON=∠AOC=90°,再又因为等角的余角相等,所以∠AOM=∠CON,所以通过证明△AOM≌△CON得出AM=CN(2)根据题意,在BA上截取BG=AN,连接GO,AO,先证明△BGO≌△AON,再证明△GMO≌△NMO得出GM=MN,从而证明出BM =AN+MN(3)根据题意,过点O作OG⊥ON,连接AO,先证明△NAO≌△GBO,得到AN=GB,GO=ON,再证明△MON≌△MOG得到MN=MG,从而进一步证明出MN=AN+BM【详解】证明:(1)如图1,连接OA,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∴∠MON=∠AOC=90°,∴∠AOM=∠CON,且AO=CO,∠BAO=∠ACO=45°,∴△AOM≌△CON(ASA)∴AM=CN;(2)BM=AN+MN,理由如下:如图2,在BA上截取BG=AN,连接GO,AO,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∵BG=AN,∠ABO=∠NAO=45°,AO=BO,∴△BGO≌△AON(SAS)∴OG=ON,∠BOG=∠AON,∵∠MON=45°=∠AOM+∠AON,∴∠AOM+∠BOG=45°,且∠AOB=90°,∴∠MOG=∠MON=45°,且MO=MO,GO=NO,∴△GMO≌△NMO(SAS)∴GM=MN,∴BM=BG+GM=AN+MN;(3)MN=AN+BM,理由如下:如图3,过点O作OG⊥ON,连接AO,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∴∠GBO=∠NAO=135°,∵MO⊥GO,∴∠NOG=90°=∠AOB,∴∠BOG=∠AON,且AO=BO,∠NAO=∠GBO,∴△NAO≌△GBO(ASA)∴AN=GB,GO=ON,∵MO=MO,∠MON=∠GOM=45°,GO=NO,∴△MON≌△MOG(SAS)∴MN=MG,∵MG=MB+BG,∴MN=AN+BM.【点睛】本题主要考查了全等三角形的综合运用与证明,充分熟悉相关概念及作出正确的辅助线是关键。
人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题二(含答案)如图,已知直线//AB 射线CD ,0100CEB ∠=。
P 是射线EB 上一动点,过点P 作//PQ EC 交射线CD 于点Q ,连结CP 。
作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠。
(1)若点,,P F G 都在点E 的右侧。
①求PCG ∠的度数;②若040EGC ECG ∠-∠=,求CPQ ∠的度数。
(2)在点P 的运动过程中,是否存在这样的情形,使32EGC EFC ∠=∠,若存在,求出CPQ ∠的度数;若不存在,请说明理由。
【答案】(1)①40°;②60°;(2)60°或15°.【解析】【分析】(1)①根据平行线的性质可知080ECQ ∠=,再结合角平分线的性质可求得1122PCG PCF FCG QCF FCE ∠=∠+∠=∠+∠,进而求解即可. ②根据平行线性质可得QCG EGC ∠=∠,结合已知条件040EGC ECG ∠-∠=且QCG ECG ECQ ∠+∠=∠可求得020EGC GCF FCP ∠=∠=∠=,根据平行线性质进而可求得060CPQ ECP EGC GCF FCP ∠=∠=∠+∠+∠=. (2)根据已知条件设3,2EGC x EFC x ∠=∠=,则GCF x ∠=,分①当点G F 、在点E 的右侧时②当点G F 、在点E 的左侧时两种情况,结合已知条件进行求解即可.【详解】(1)①∵0100CEB ∠=,//AB CD ,∴080ECQ ∠=,∵PCF PCQ ∠=∠,CG 平分ECF ∠, ∴1122PCG PCF FCG QCF FCE ∠=∠+∠=∠+∠ 01402ECQ =∠=②∵//AB CD∴QCG EGC ∠=∠,080QCG ECG ECQ ∠+∠=∠=,∴080EGC ECG ∠+∠=又∵040EGC ECG ∠-∠=,∴0060,20EGC ECG ∠=∠=∴020ECG GCF ∠=∠=()00018040202PCF PCQ ∠=∠=-= ∵//PQ CE ∴060CPQ ECP ∠=∠=(2)设3,2EGC x EFC x ∠=∠=,则GCF x ∠=,①当点G F 、在点E 的右侧时,则ECG PCF PCD x ∠=∠=∠=,∵080ECD ∠=,∴0480x =,解得020x =,∴0360CPQ x ∠==②当点G F 、在点E 的左侧时,则ECG GCF x ∠=∠=,∵01803CGF x ∠=-,080GCQ x ∠=+,∴00180380x x -=+,解得025x =,∴0005080130FCQ ECF ECQ ∠=∠+∠=+= ∴01652PCQ FCQ ∠=∠= ∴000655015CPQ ECP ∠=∠=-=【点睛】此题主要考查平行线的性质和角平分线的性质,解题在于熟练掌握平行线和角平分线的性质运用以及分情况讨论问题.62.如图,已知:OA OB =,OC OD =.(1)请找出图中一对全等的三角形,并说明理由;(2)若90O ︒∠=,25C ︒∠=,求BED ∠的度数.【答案】(1)△OAD ≌△OBC ,证明见解析;(2)∠BED=40°【解析】【分析】(1)由SAS 可以判定△OAD ≌△OBC(2)△OAD ≌△OBC 可得∠D=∠C=25°利用三角形内角和为180°可得∠OBC=65°利用三角形的外角等于与它不相邻的两个内角的和,可得∠BED 的度数.【详解】解(1)△OAD ≌△OBC理由:在△OAD 与△OBC 中OA=OB O=O OD=OC ⎧⎪∠∠⎨⎪⎩∴△OAD ≌△OBC (SAS )(2)由(1)可知:△OAD ≌△OBC∴∠D=∠C∵∠C=25°∴∠D=25°∵∠O=90°∴∠OBC=180°-∠O-∠C=180°-90°-25°=65°在△BDE中,∠OBC=∠D+∠BED∴∠BED=∠OBC-∠D=65°-25°=40°【点睛】本题考查了全等的判定及性质,以及三角形内角和和外角和的性质,掌握全等的判定是解题的关键.63.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一侧岸边B点,选对岸正对的一棵树A;②沿河岸直走20米有一树C,继续前行20米到达D处;③从D处沿与河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求河流的宽度是多少?并说明理由.【答案】河流的宽度是5m ,证明见解析【解析】【分析】)根据全等三角形对应角相等可得AB=DE ;利用“角边角”证明Rt △ABC 和Rt △EDC 全等,再根据全等三角形对应边相等解答.【详解】解:河的宽度是5m ;证明如下:由作法知,BC=DC ,∠ABC=∠EDC=90°,在Rt △ABC 和Rt △EDC 中,ABC=EDC=90BC=DC ACB=ECD ⎧∠∠⎪⎨⎪∠∠⎩∴Rt △ABC ≌Rt △EDC (ASA ),∴AB=ED=5,即河流的宽度是5m【点睛】本题考查了全等三角形的应用,正确理解题中的测量距离是解题的关键.64.背景知识:如图,在Rt ABC 中,90ACB ∠=︒,若AC BC =,则:AB ==.(1)解决问题:如图(1),90ACD ∠=︒,AC DC =,MN 是过点A 的直线,过点D 作DB MN ⊥于点B ,连接CB ,现尝试探究线段BA 、BC 、BD 之间的数量关系:过点C 作CE CB ⊥,与MN 交于点E ,易发现图中出现了一对全等三角形,即 ≌,由此可得线段BA 、BC 、BD 之间的数量关系是: ;(2)类比探究:将图(1)中的MN 绕点A 旋转到图(2)的位置,其它条件不变,试探究线段BA 、BC 、BD 之间的数量关系,并证明;(3)拓展应用:将图(1)中的MN 绕点A 旋转到图 (3)的位置,其它条件不变,若2BD =,BC =AB 的长为 (直接写结果). 【答案】(1)△EAC ≌△BDC ;;(2)BD −,证明见解析;(3)4.【解析】【分析】(1)利用ASA 证明出△EAC ≌△BDC ,从而得出AE=BD ,EB=AE+AB=BD+AB ,根据EB =进一步得出答案即可;(2)过C 作EC ⊥CB 交MN 于E ,利用ASA 证明△ACE ≌△DCB ,进而求得线段之间的关系,进一步求证即可;(3)过C 作EC ⊥CB 于MN 于E ,利用ASA 证明△ACE ≌△DCB ,然后进一步即可求出AB 的长.【详解】(1)∵CE CB ⊥,∴∠ACE+∠ACB=90°,∵90ACD ∠=︒,∴∠BCD+∠ACB=90°∴∠ACE=∠BCD ,在四边形ACDB 中,∵DB MN ⊥,90ACD ∠=︒,∴∠CAB+∠D=180°,∵∠CAB+∠EAC=180°∴∠D=∠EAC ,在△EAC 与△BDC 中,∵∠EAC=∠D ,AC=DC ,∠ACE=∠DCB ,∴△EAC ≌△BDC(ASA),∴AE=BD ,EC=BC ,∴EB=AE+AB=BD+AB ,在Rt△ECB中,∵EC=BC,∴EB ,∴,故答案为:△EAC≌△BDC;;(2)BD−,证明:如图(2),过C作EC⊥CB交MN于E,则∠ECB=90°,∴∠ECB+∠BCA=∠ACD+∠BCA,∴∠ECA=∠BCD,∵DB⊥MN,∴∠ABD=∠ACD=90°,记AC与BD的交点为F,则∠BFA=∠DFC,∴∠BAF=∠FDC,在△ACE与△DCB中,∵∠BAF=∠FDC,AC=DC,∠ECA=∠BCD,∴△ACE≌△DCB(ASA),∴AE=BD,CE=CB,∴在Rt△BCE中,,∴,即:BD−;(3)如图(3)过C作EC⊥CB于MN于E,MN与CD相交于F,∵∠ACD=∠ACF=90°,∠ECB=90°,∴∠ACB+∠BCF=∠BCF+∠ECF,∴∠ACB=∠ECF,∴∠ACB+90°=∠ECF+90°,∴∠ACE=∠BCD,∵DB⊥MN,∴∠CAE=90°−∠AFC,∠D=90°−∠BFD,∵∠AFC=∠BFD,∴∠CAE=∠D,在△ACE与△DCB中,∵∠ACE=∠BCD,AC=DC,∠CAE=∠D,∴△ACE≌△DCB(ASA),∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴,又∵BE=AB−AE=AB−BD,∴AB−,∵BD=2,,∴AB=4.【点睛】本题主要考查了全等三角形性质与判定的综合运用,熟练掌握相关概念是解题关键.65.如图,四边形ABCD中,AB=BC=2CD,AB∥CD,∠C=90°,E 是BC的中点,AE与BD相交于点F,连接DE.(1)求证:△ABE≌△BCD;(2)判断线段AE与BD的数量关系及位置关系,并说明理由;(3)若CD=1,试求△AED的面积.【答案】(1)见解析;(2)AE=BD,AE⊥BD,理由见解析;(3)△AED 的面积为3.2【解析】【分析】(1)由已知条件可推导得到AB BC ABE C BE CD =∠=∠=,,,由SAS 即可证明△ABE ≌△BCD ;(2)由(1)可得△ABE ≌△BCD 可得AE =BD ,再由角的转化可得∠AFB =90°,即可证明AE ⊥BD ;(3)因为 △AED 的面积=梯形ABCD 的面积﹣△ABE 的面积﹣△CDE 的面积,即可求解△AED 的面积.【详解】(1)证明:∵AB ∥CD ,∴∠ABE +∠C =180°,∵∠C =90°,∴∠ABE =90°=∠C ,∵E 是BC 的中点,∴BC =2BE ,∵BC =2CD ,∴BE =CD ,在△ABE 和△BCD 中,AB BC ABE C BE CD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△BCD (SAS );(2)解:AE =BD ,AE ⊥BD ,理由如下:由(1)得:△ABE ≌△BCD ,∴AE =BD ,∵∠BAE =∠CBD ,∠ABF +∠CBD =90°,∴∠ABF+∠BAE=90°,∴∠AFB=90°,∴AE⊥BD;(3)解:∵△ABE≌△BCD,∴BE=CD=1,∵AB=BC=2CD=2,∴CE=BC﹣BE=1,∴CE=CD,∴△AED的面积=梯形ABCD的面积﹣△ABE的面积﹣△CDE的面积=1 2(1+2)×2﹣12×2×1﹣12×1×1=32【点睛】此题考查全等三角形的判定与性质,解题关键在于掌握性质证明三角形全等.66.如图,△ABC 中,AB=BC,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF.(1)求证:AE⊥CF;(2)若∠CAE=25°,求∠ACF 的度数.【答案】(1)见解析;(2)65°.【解析】【分析】(1)运用HL 定理直接证明△ABE ≌△CBF ,即可解决问题.(2)证明∠BAE=∠BCF=25°;求出∠ACB=45°,即可解决问题.【详解】如图,延长AE 交CF 于点H ,在Rt △ABE 与Rt △CBF 中,AE CF AB BC ⎧⎨⎩== ∴△ABE ≌△CBF (HL )∴∠BAE=∠BCF ,∵∠F+∠BCF=90°,∴∠BAE+∠F=90°,∴∠AHF=90°,∴AE ⊥CF(2)∵AB=BC ,∠ABC=90°,∴∠ACB=45°=∠BAC ,且∠CAE=25°,∴∠BAE=20°,∵△ABE ≌△CBF ,∴∠BAE=∠BCF=20°,∴∠ACF=65°.【点睛】此题考查全等三角形的判定及其性质的应用问题,准确找出图形中隐含的相等或全等关系是解题的关键.67.如图1,在△ABC中,点D、点E分别在边AB、BC上,DE=AE,且∠B=∠C=∠DEA=β。
人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题二(含答案)某中学七年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.有一位同学设计了如下测量方案:先在平地上取一个可直接到达A、B的点E(A、B为池塘的两端),连接AE、BE并分别延长AE 至D,BE至C,使ED=AE,EC=EB,测出CD的长作为AB之间的距离.(1)他的方案可行吗?请说明理由.(2)若测得CD=10m,则池塘两端的距离是多少?【答案】(1)该方案可行;理由见解析;(2)10【解析】【分析】(1)这种设计方案利用了“边角边”判断两个三角形全等,利用对应边相等,得AB=CD.方案的操作性强,需要测量的线段和角度在陆地一侧即可实施;(2)利用全等三角形的性质即可得.【详解】(1)可行,理由如下:在△AEB和△DEC中AE ED AEB DEC EB CE =⎧⎪∠=∠⎨⎪=⎩∴△AEB ≌△DEC (SAS );∴AB=CD (全等三角形的对应边相等).(2)测得CD=10m ,则池塘两端的距离AB=10m ,答:池塘两端的距离是10米.【点睛】本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.42.在直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点.(1)如图①,以A 点为顶点,AB 为腰在第三象限作等腰Rt △ABC .若已知A (﹣2,0)B (0,﹣4),试求C 点的坐标;(2)如图②,若点A 的坐标为(﹣0),点B 的坐标为(0,a ),点D 的纵坐标为b ,以B 为顶点,BA 为腰作等腰Rt △ABD ,当B 点沿y 轴负半轴向下运动且其他条件都不变时,求b ﹣a 的值;(3)如图③,E 为x 轴负半轴上的一点,且OB =OE ,OF ⊥EB 于点F ,以OB 为边在第四象限作等边△OBM ,连接EM 交OF 于点N ,探究EM-ON 与EN 的数量关系.【答案】(1)C(﹣6,﹣2);(2)(3)EN=1(EM﹣ON),理由见解析【解析】【分析】(1)作CQ⊥OA于点Q,可以证明△AQC≌△BOA,由QC=AO,AQ=BO,再由条件就可以求出C的坐标;(2)作DP⊥OB于点P,可以证明△AOB≌△BPD,则有AO=BP=OB-PO=-a-(-b)=b-a为定值;(3)作BH⊥EB于B,由条件可以得出∠1=30°,∠2=∠3=∠EMO=15°,∠EOF=∠BMG=45°,EO=BM,可以证明△ENO≌△BGM,则GM=ON,就有EM-ON=EM-GM=EG,最后由平行线分线段成比例定理就可以得出EN=EM-ON的一半.【详解】(1)如图(1)作CQ⊥OA于点Q,∴∠AQC=90°∵△ABC是等腰Rt△,∴AC=AB,∠CAB=90°,∴∠ACQ=∠BAO,在△AQC 与△BOA 中,AQC AOB QAC ABO AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AQC ≌△BOA ,∴CQ =AO ,AQ =BO .∵A (﹣2,0),B (0,﹣4),∴OA =2,OB =4,∴CQ =2,AQ =4,∴OQ =6,∴C (﹣6,﹣2).(2)如图(2)作DP ⊥OB 于点P ,∴∠BPD =90°,∵△ABD 是等腰Rt △,∴AB =BD ,∠ABD =∠ABO+∠OBD =90°,∴∠ABO =∠BDP ,在△AOB 与△BPD 中,AOB DPB ABO PDB AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOB≌△BPD,∴AO=BP,∵BP=OB﹣PO=﹣a﹣(﹣b)=b﹣a,∴A(﹣0),∴OA=∴b﹣a=2,∴当B点沿y轴负半轴向下运动时AO=BP=b﹣a=(3)如图(3)在ME上截取MG=ON,连接BG,∵△OBM是等边三角形,∴BO=BM=MO,∠OBM=∠OMB=∠BOM=60°,∴EO=MO,∠EBM=105°,∠1=30°,∵OE=OB,∴OE=OM=BM.∴∠3=∠EMO=15°,∴∠BEM=30°,∠BME=45°,∵OF⊥EB,∴∠EOF=45°∴∠EOF=∠BME,在△ENO与△BGM中,0E BM EON BMG ON MG =⎧⎪∠=∠⎨⎪=⎩, ∴△ENO ≌△BGM ,∴BG =EN .∵ON =MG ,∴∠2=∠3,∴∠2=15°,∴∠EBG =90°∴BG =12EG , ∴EN =12EG , ∵EG =EM ﹣GM ,∴EN =12(EM ﹣GM ), ∴EN =12(EM ﹣ON ). 【点睛】本题考查了等腰直角三角形的性质,等边三角形的性质,等腰三角形的性质,三角形的外角与内角的关系,全等三角形的判定与性质,正确的作出辅助线是解题的关键.43.(问题)(1)如图1,锐角△ABC 中分别以AB 、AC 为边向外作等腰△ABE 和等腰△ACD ,使AE =AB ,AD =AC ,∠BAE =∠CAD ,连接BD 、CE ,试猜想BD 与CE 的大小关系,并说明理由.(迁移)(2)如图2,四边形ABCD中,AB=7cm,BC=3cm,∠ABC =∠ACD=∠ADC=45°,求BD的长.甲同学受到第一问的启发构造了如图所示的一个和△ABD全等的三角形,将BD进行转化再计算,请你准确的叙述辅助线的作法,再计算。
2022年人教版初中数学8年级上册【巩固练习】一、选择题1.(2020•奉贤区二模)如图,已知AD是△ABC的边BC上的高,下列能使△ABD≌△ACD的条件是()A.∠B=45° B.∠BAC=90° C.BD=AC D.AB=AC2.如图,已知AB=CD,AD=BC,则下列结论中错误的是()A.AB∥DCB.∠B=∠DC.∠A=∠CD.AB=BC3.下列判断正确的是()A.两个等边三角形全等B.三个对应角相等的两个三角形全等C.腰长对应相等的两个等腰三角形全等D.直角三角形与锐角三角形不全等4.如图,AB、CD、EF相交于O,且被O点平分,DF=CE,BF=AE,则图中全等三角形的对数共有()A.1对B.2对C.3对D.4对5.如图,∠1=∠2,∠3=∠4,下面结论中错误的是()A.△ADC≌△BCD B.△ABD≌△BACC.△ABO≌△CDO D.△AOD≌△BOC6.如图,已知AB⊥BD于B,ED⊥BD于D,AB=CD,BC=ED,以下结论不正确的是()A.EC⊥ACB.EC=ACC.ED+AB=DBD.DC=CB二、填空题7.如图,AB=CD,AC=DB,∠ABD=25°,∠AOB=82°,则∠DCB=_________.8.如图,已知:∠1=∠2,∠3=∠4,要证BD=CD,需先证△AEB≌△AEC,根据是,再证△BDE≌△,根据是.9.(2020秋•大同期末)如下图∠1=∠2,由AAS判定△ABD≌△ACD,则需添加的条件是.10.如图,AC=AD,CB=DB,∠2=30°,∠3=26°,则∠CBE=_______.11.如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若∠B=20°,则∠C=_______.12.已知,如图,AB=CD,AC=BD,则△ABC≌,△ADC≌.三、解答题13.(2020•通辽)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.14.如图,已知D、E、B三点共线,AE=CE,AE⊥CE,∠D=∠B=90°.求证:CD+AB=DB.15.如图,已知AB=DC,AC=DB,BE=CE求证:AE=DE.【答案与解析】一.选择题1.【答案】D;【解析】解:当AB=AC时,△ABD≌△ACD,∵AD是△ABC的边BC上的高,AB=AC,∴BD=CD,∵在△ABD 和△ADC 中,∴△ABD≌△ACD(SSS).2.【答案】D;【解析】连接AC 或BD 证全等.3.【答案】D;4.【答案】C;【解析】△DOF≌△COE,△BOF≌△AOE,△DOB≌△COA.5.【答案】A;【解析】将两根钢条'AA ,'BB 的中点O 连在一起,说明OA='OA ,OB='OB ,再由对顶角相等可证.6.【答案】D;【解析】△ABC≌△EDC,∠ECD+∠ACB=∠CAB+∠ACB=90°,所以EC⊥AC,ED +AB =BC+CD=DB.二.填空题7.【答案】66°;【解析】可由SSS 证明△ABC≌△DCB,∠OBC=∠OCB=82412︒=︒,所以∠DCB=∠ABC=25°+41°=66°.8.【答案】ASA,CDE,SAS;【解析】△AEB ≌△AEC 后可得BE=CE.9.【答案】∠B=∠C.【解析】解:由图可知,只能是∠B=∠C,才能组成“AAS”.故填∠B=∠C.10.【答案】56°;【解析】∠CBE=26°+30°=56°.11.【答案】20°;【解析】△ABE≌△ACD(SAS).12.【答案】△DCB,△DAB;【解析】注意对应顶点写在相应的位置上.三.解答题13.【解析】解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD 中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC 和△DEC 中,,∴△ABC≌△DEC(AAS).14.【解析】证明:∵AE⊥CE,∴∠AEB+∠CED=90°,又∵∠B=90°∴∠A+∠AEB=90°,∴∠A=∠CED,在△AEB 与△ECD 中,A CEDB DAE CE ∠=∠∠=∠=⎧⎪⎨⎪⎩∴△AEB≌△ECD(AAS)∴AB=DE ,BE=CD∵DE+BE=DB∴CD+AB=DB15.【解析】证明:在△ABC 和△DCB 中AB DC AC DB BC =CB ⎧⎪⎨⎪⎩==∴△ABC≌△DCB(SSS)∴∠ABC=∠DCB,在△ABE 和△DCE 中ABC DCB AB DC BE CE =∠=∠=⎧⎪⎨⎪⎩∴△ABE≌△DCE(SAS)∴AE=DE.全等三角形的判定二(SSS,AAS)(基础)【学习目标】1.理解和掌握全等三角形判定方法3——“边边边”,和判定方法4——“角角边”;2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定3——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).要点诠释:如图,如果''A B =AB,''A C =AC,''B C =BC,则△ABC≌△'''A B C .要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:已知条件可选择的判定方法一边一角对应相等SAS AAS ASA 两角对应相等ASA AAS 两边对应相等SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定3——“边边边”1、已知:如图,△RPQ 中,RP=RQ,M 为PQ 的中点.求证:RM平分∠PRQ.【思路点拨】由中点的定义得PM=QM,RM 为公共边,则可由SSS 定理证明全等.【答案与解析】证明:∵M 为PQ 的中点(已知),∴PM=QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边∴△RPM≌△RQM(SSS).∴∠PRM=∠QRM(全等三角形对应角相等).即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中.把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.举一反三:【变式】已知:如图,AD=BC,AC=BD.试证明:∠CAD=∠DBC.【答案】证明:连接DC,在△ACD 与△BDC 中()AD BC AC BD CD DC ⎧=⎪=⎨⎪=⎩公共边∴△ACD≌△BDC(SSS)∴∠CAD=∠DBC(全等三角形对应角相等)类型二、全等三角形的判定4——“角角边”2、已知:如图,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.【思路点拨】要证AC=AD,就是证含有这两个线段的三角形△BAC≌△EAD.【答案与解析】证明:∵AB⊥AE,AD⊥AC,∴∠CAD=∠BAE=90°∴∠CAD+∠DAB=∠BAE+∠DAB ,即∠BAC=∠EAD在△BAC 和△EAD 中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC≌△EAD(AAS)∴AC=AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.举一反三:【变式】如图,AD 是△ABC 的中线,过C、B 分别作AD 及AD 的延长线的垂线CF、BE.求证:BE=CF.【答案】证明:∵AD 为△ABC 的中线∴BD=CD∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BED 和△CFD 中BED CFD BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩(对顶角相等)∴△BED≌△CFD(AAS)∴BE=CF3、(2020春•雅安期末)如图:AB=A′B′,∠A=∠A′,若△ABC≌△A′B′C′,则还需添加的一个条件有()种.A.1B.2C.3D.4【思路点拨】本题要证明△ABC≌△A′B′C′,已知了AB=A′B′,∠A=∠A′,可用的判别方法有ASA,AAS,及SAS,所以可添加一对角∠B=∠B′,或∠C=∠C′,或一对边AC=A′C′,分别由已知与所添的条件即可得证.【答案与解析】解:添加的条件可以为:∠B=∠B′;∠C=∠C′;AC=A′C′,共3种.若添加∠B=∠B′,证明:在△ABC 和△A′B′C′中,,∴△ABC≌△A′B′C′(ASA);若添加∠C=∠C′,证明:在△ABC 和△A′B′C′中,,∴△ABC≌△A′B′C′(AAS);若添加AC=A′C′,证明:在△ABC 和△A′B′C′中,,∴△ABC≌△A′B′C′(SAS).故选C.【总结升华】此题考查了全等三角形的判定,是一道条件开放型问题,需要由因索果,逆向推理,逐步探求使结论成立的条件,解决这类问题要注意挖掘隐含的条件,如公共角、公共边、对顶角相等,这类问题的答案往往不唯一,只有合理即可.熟练掌握全等三角形的判定方法是解本题的关键.类型三、全等三角形判定的实际应用4、“三月三,放风筝”.下图是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH.请你用所学的知识证明.【答案与解析】证明:在△DEH 和△DFH 中,DE DF EH FH DH DH ⎧⎪⎨⎪=⎩==∴△DEH≌△DFH(SSS)∴∠DEH=∠DFH.【总结升华】证明△DEH≌△DFH,就可以得到∠DEH=∠DFH,我们要善于从实际问题中抽离出来数学模型,这道题用“SSS”定理就能解决问题.举一反三:【变式】(2020秋•紫阳县期末)雨伞的中截面如图所示,伞骨AB=AC,支撑杆OE=OF,AE=AB,AF=AC,当O 沿AD 滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD 与∠CAD 有何关系?说明理由.【答案】解:雨伞开闭过程中二者关系始终是:∠BAD=∠CAD,理由如下:∵AB=AC,AE=AB,AF=AC,∴AE=AF,在△AOE 与△AOF 中,,∴△AOE≌△AOF(SSS),∴∠BAD=∠CAD.【巩固练习】一、选择题1.如图,∠A=∠D,∠B=∠E,BF=CE,下列结论错误的是()A.△ABC≌△DEFB.BF=ECC.AC∥DED.AC=DF2.如图,AB∥EF,DE∥AC,BD=CF,则图中不是全等三角形的是()A.△BAC≌FEDB.△BDA≌FCEC.△DEC≌CADD.△BAC≌FCE3.如图,AB=BD,∠1=∠2,要用AAS判定△ABC≌△DBE,则添加的条件是()A.AE=ECB.∠D=∠AC.BE=BCD.∠DEB=∠C4.下列判断中错误的是()A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等5.(2020•滕州市校级模拟)如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC6.如图,点A在DE上,AC=CE,∠1=∠2=∠3,则DE的长等于()A.DC B.BC C.AB D.AE+AC二、填空题7.(2020春•鹤岗校级期末)如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件________________时,就可得到△ABC≌△FED.(只需填写一个即可)8.如图,点D在AB上,点E在AC上,且∠B=∠C,在条件①AB=AC,②AD=AE,③BE=CD,④∠AEB=∠ADC中,不能使△ABE≌△ACD的是_______.(填序号)9.已知,如图,AB∥CD,AF∥DE,AF=DE,且BE=2,BC=10,则EF=________.10.如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有______对.11.如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离分别是1和2,则EF的长是___________.12.在△ABC 和△DEF 中(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F 从这六个条件中选取三个条件可判定△ABC 与△DEF 全等的方法共有________种.三、解答题13.(2020秋•景洪市校级期中)如图,O 为码头,A,B 两个灯塔与码头的距离相等,OA,OB 为海岸线,一轮船离开码头,计划沿∠AOB 的平分线航行,在航行途中,测得轮船与灯塔A 和灯塔B 的距离相等,试问轮船航行时是否偏离预定航线,请说明理由.14.已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE AC ⊥于E ,BE 与CD 相交于点F .求证:BF AC =.15.如图,DC∥AB,∠BAD 和∠ADC 的角平分线相交于E,过E 的直线分别交DC、AB 于C、B 两点.求证:AD=AB+DC.【答案与解析】一、选择题1.【答案】C;2.【答案】D;3.【答案】D;【解析】满足判定定理AAS的只有D选项.4.【答案】B;【解析】C选项和D选项都可以由SSS定理证全等.5.【答案】D;【解析】解:A、∵在△ABD和△ACD中,∴△ABD≌△ACD(SSS),故本选项错误;B、∵在△ABD和△ACD中,∴△ABD≌△ACD(SAS),故本选项错误;C、∵在△ABD和△ACD中,∴△ABD≌△ACD(AAS),故本选项错误;D、不符合全等三角形的判定定理,不能推出△ABD≌△ACD,故本选项正确;故选D.6.【答案】C;【解析】可证∠BAC=∠E,∠BCA=∠DCE,所以△ABC≌△EDC,DE=AB.二、填空题7.【答案】BC=ED.8.【答案】④【解析】三个角对应相等不能判定三角形全等.9.【答案】6;【解析】△ABF≌△CDE,BE=CF=2,EF=10-2-2=6.10.【答案】6;【解析】△ABO≌△CDO,△AFO≌△CEO,△DFO≌△BEO,△AOD≌△COB,△ABD≌△CDB,△ABC≌△CDA.11.【答案】3;【解析】由AAS证△ABF≌△CBE,EF=FB+BE=CE+AF=2+1=3.12.【答案】13;【解析】ASA类型3种,AAS类型6种,SAS类型3种,SSS类型一种,共13种.三、解答题13.【解析】解:此时轮船没有偏离航线.理由:由题意知:假设轮船在D处,则DA=DB,AO=BO,在△ADC和△BDC中,,∴△ADO≌△BDO(SSS),∴∠AOD=∠BOD,即DO 为∠AOB 的角平分线,∴此时轮船没有偏离航线.14.【解析】证明:∵CD AB⊥∴90BDC CDA ∠=∠=︒∵45ABC ∠=︒∴45DCB ABC ∠=∠=︒∴DB DC=∵BE AC⊥∴90AEB ∠=︒∴90A ABE ∠+∠=︒∵90CDA ∠=︒∴90A ACD ∠+∠=︒∴ABE ACD∠=∠在BDF ∆和CDA ∆中BDC CDADB DC ABE ACD∠=∠⎧⎪=⎨⎪∠=∠⎩∴BDF ∆≌CDA ∆(AAS)∴BF AC =.15.【解析】证明:延长DE 交AB 的延长线于F∴∠CDE=∠F,∠CDA+∠BAD=180º∵DE 平分∠CDA,AE 平分∠DAB ∴∠CDE=∠ADE=21∠CDA,∠DAE=∠EAF=21∠BAD∴∠ADE=∠F,∠EDA+∠DAE=90º∴∠AED=∠AEF=90º在△ADE 与△AFE 中⎪⎩⎪⎨⎧=∠=∠∠=∠AE AE FEA DEA F ADE ∴△ADE≌△AFE (AAS)∴DE=EF,AD=AF在△DCE 与△FBE 中,⎪⎩⎪⎨⎧∠=∠=∠=∠FEB DEC FE DE F CDE ∴△DCE≌△FBE(ASA)∴DC=BF,∴AD=AB+DC.全等三角形的判定二(SSS,AAS)(提高)【学习目标】1.理解和掌握全等三角形判定方法3——“边边边”,和判定方法4——“角角边”;2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定3——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).要点诠释:如图,如果''A B =AB,''A C =AC,''B C =BC,则△ABC≌△'''A B C.要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:已知条件可选择的判定方法一边一角对应相等SAS AAS ASA 两角对应相等ASA AAS 两边对应相等SASSSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定3——“边边边”1、如图,在△ABC 和△ADE 中,AB=AC,AD=AE,BD=CE,求证:∠BAD=∠CAE.【答案与解析】证明:在△ABD 和△ACE 中,AB AC AD AE BD CE =⎧⎪=⎨⎪=⎩∴△ABD≌△ACE(SSS)∴∠BAD=∠CAE(全等三角形对应角相等).【总结升华】把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的判定和性质.要证∠BAD=∠CAE,先找出这两个角所在的三角形分别是△BDA 和△CAE,然后证这两个三角形全等.【变式】(2020•静海县模拟)已知点A、D、C、F 在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需添加一个条件是.【答案】AC=DF.解:理由是:∵在△ABC 和△DEF中,∴△ABC≌△DEF(SSS),故答案为:AC=DF.类型二、全等三角形的判定4——“角角边”2、已知:如图,∠ACB=90°,AC=BC,CD 是经过点C 的一条直线,过点A、B 分别作AE⊥CD、BF⊥CD,垂足为E、F.求证:CE=BF【答案与解析】证明:∵AE⊥CD、BF⊥CD,∴∠AEC=∠BFC=90°∴∠BCF+∠B=90°∵∠ACB=90°,∴∠BCF+∠ACF=90°∴∠ACF=∠B在△BCF 和△CAE 中⎪⎩⎪⎨⎧=∠=∠∠=∠BC AC B ACE BFC AEC ∴△BCF≌△CAE(AAS)∴CE=BF.【总结升华】要证CE=BF,只需证含有这两个线段的△BCF≌△CAE.同角的余角相等是找角3、平面内有一等腰直角三角板(∠ACB=90°)和一直线MN.过点C 作CE⊥MN 于点E,过点B 作BF⊥MN 于点F.当点E 与点A 重合时(如图1),易证:AF+BF=2CE.当三角板绕点A 顺时针旋转至图2的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.【思路点拨】过B 作BH⊥CE 与点H,易证△ACE≌△CBH,根据全等三角形的对应边相等,即可证得AF+BF=2CE.【答案与解析】解:图2,AF+BF=2CE 仍成立,证明:过B 作BH⊥CE 于点H,∵∠CBH+∠BCH=∠ACE+∠BCH=90°∴∠CBH=∠ACE在△ACE 与△CBH 中,90ACH CBH AEC CHB AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ACE≌△CBH.(AAS)∴CH=AE,BF=HE,CE=EF,∴AF+BF=AE+EF+BF=CH+EF+HE=CE+EF=2EC.【总结升华】正确作出垂线,构造全等三角形是解决本题的关键.举一反三:【变式】已知Rt△ABC 中,AC=BC,∠C=90°,D 为AB 边的中点,∠EDF=90°,∠EDF 绕D 点旋转,它的两边分别交AC、CB 于E、F.当∠EDF 绕D 点旋转到DE⊥AC 于E 时(如图1),易证12DEF CEF ABC S S S +=△△△;当∠EDF 绕D 点旋转到DE 和AC 不垂直时,在图2情况下,上述结论是否成立?若成立,请给予证明;若不成立,请写出你的猜想,不需证明.图2ADBC E M N F 【答案】解:图2成立;证明图2:过点D 作DM AC DN BC⊥⊥,则90DME DNF MDN ∠=∠=∠=°在△AMD 和△DNB 中,AMD=DNB=90A B AD BD ∠∠︒⎧⎪∠=∠⎨⎪=⎩∴△AMD≌△DNB(AAS)∴DM=DN∵∠MDE+∠EDN=∠NDF+∠EDN=90°,∴∠MDE=∠NDF在△DME 与△DNF 中,90EMD FDN DM DN MDE NDF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴△DME≌△DNF(ASA)∴DME DNFS S =△△∴DEF CEF DMCN DECF S =S =S S .+△△四边形四边形可知ABC DMCN 1S =S 2△四边形,∴12DEF CEF ABC S S S +=△△△.类型三、全等三角形判定的实际应用4、(2020秋•内丘县期中)如图,AD 是一段斜坡,AB 是水平线,现为了测斜坡上一点D 的竖直高度DB 的长度,欢欢在D 处立上一竹竿CD,并保证CD⊥AD,然后在竿顶C 处垂下一根绳CE,与斜坡的交点为点E,他调整好绳子CE 的长度,使得CE=AD,此时他测得DE=2米,求DB 的长度.【思路点拨】延长CE交AB于F,根据等角的余角相等求出∠A=∠C,再利用“角角边”证明△ABD和△CDE全等,根据全等三角形对应边相等可得DB=DE.【答案与解析】解:如图,延长CE交AB于F,则∠A+∠1=90°,∠C+∠2=90°,∵∠1=∠2(对顶角相等),∴∠A=∠C,在△ABD和△CDE中,,∴△ABD≌△CDE(AAS),∴DB=DE,∵DE=2米,∴DB的长度是2米.【总结升华】本题考查了全等三角形的应用,仔细观察图形求出∠A=∠C是解题的关键.。
第2讲全等三角形的判定和性质知识定位讲解用时:5分钟A、适用范围:人教版初二,基础较好;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习三角形的判定和性质,这是一节非常重要的内容,是中考大题考查的重点,所占分值也是非常高的,因此通过本节课的学习我们要掌握全等三角形的几种判定方法和性质,学会处理这一类的几何题目。
知识梳理讲解用时:20分钟全等三角形1、全等形:在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形,或者可以表述为直线对称的两个图形是全等形2、全等三角形:能够完全重合的两个三角形称为全等三角形形状大小两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
A DB C E F3、对应顶点:A与D B与E C与F对应边:AB对应DE BC对应EF AC对应DF对应角:∠A对应∠D ∠B对应∠E ∠C对应∠F4、符号:△ABC≌△DEF “≌”读作“全等于”(注意:对应的顶点的字母写在对应的位置上)三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)(1) AB=DE (2)∠A=∠D∠B=∠E AB=DEBC=EF ∠B=∠E 则△ABC≌△DEF(SAS)则△ABC≌△DEF(ASA)(3) AB=DE (4)∠A=∠DBC=EF ∠B=∠EAC=DF BC=EF则△ABC≌△DEF(SSS)则△ABC≌△DEF(AAS)A DB C E F(5)AC=DFAB=DE则Rt△ABC≌Rt△DEF(HL)注意:AAA和SSA都不成立全等三角形的性质全等三角形的性质:全等三角形的对应角相等、对应边相等因为△ABC≌△DEF所以∠A=∠D ∠B=∠E ∠C=∠FAB=DE BC=EF AC=DF课堂精讲精练【例题1】选择题下列条件,不能使两个三角形全等的是()A.两边一角对应相等B.两角一边对应相等C.直角边和一个锐角对应相等 D.三边对应相等【答案】A【解析】全等三角形的判定定理有“边角边”,“角边角”,“边边边”“角角边”,“HL”,根据此可判断正误找出答案.解:A、“边边角”不能证明两个三角形全等,故本选项错误.B、两角一边对应相等能证明三角形全等.故本选项正确.C、直角边和一个锐角对应相等能证明三角形全等.故本选项正确.D、三边对应相等能证明三角形全等.故本选项正确.故选:A.讲解用时:3分钟解题思路:本题考查全等三角形的判定定理,关键是熟记这些“边角边”,“角边角”,“边边边”“角角边”,“HL”,判定定理.教学建议:熟练掌握全等三角形的几种判定,有效区分.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习1.1】如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE【答案】A【解析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误.故选:A.讲解用时:3分钟解题思路:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.教学建议:注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题2】如图,点A在DE上,AC=CE,∠1=∠2=∠3,则DE的长等于()A.DC B.BC C.AB D.AE+AC【答案】C【解析】欲证DE=AB,需根据题中所给角之间的关系证明出∠ACB=∠DCE和∠BAC=∠CAE,又AC=CE,即可证明出△ABC≌△EDC,由全等三角形的性质可得出DE=AB.解:∵∠2=∠3,∴∠DCE=∠3+∠ACD=∠2+∠ACD=∠ACB,即:∠ACB=∠DCE,又∵AC=CE,∴∠E=∠CAE,∠1+∠BAC=∠DAC=∠3+∠CEA,∵∠1=∠3,∴∠BAC=∠CEA在△ABC和△EDC中,∠ACB=∠DCE,AC=CE,∠BAC=∠E,∴△ABC≌△EDC,∴DE=AB.故选:C.讲解用时:3分钟解题思路:本题主要考查了全等三角形的判定以及全等三角形的性质;巧妙地利用∠1是解决本题的关键.教学建议:熟练掌握全等三角形的几种判定,有效区分.难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习2.1】如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=7,则CD的长为()A.5.5 B.4 C.4.5 D.3【答案】B【解析】先证明△ABC≌△EFD,得出AC=ED=7,再求出AD=AE﹣ED=3,即可得出CD=AC﹣AD=4解:∵AB∥EF,∴∠A=∠E,在△ABC和△EFD中,,∴△ABC≌△EFD(ASA),∴AC=ED=7,∴AD=AE﹣ED=10﹣7=3,∴CD=AC﹣AD=7﹣3=4.讲解用时:3分钟解题思路:本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键.教学建议:学会判定全等三角形,再利用全等三角形的性质证明边相等.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题3】如图,AC⊥BC,AD⊥DB,下列条件中,能使△ABC≌△BAD的有(把所有正确结论的序号都填在横线上)①∠ABD=∠BAC;②∠DAB=∠CBA;③AD=BC;④∠DAC=∠CBD.【答案】①②③【解析】先得到∠C=∠D=90°,若添加∠ABD=∠BAC,则可根据“AAS”判断△ABC≌△BAD;若添加∠DAB=∠CBA,则可先利用“AAS”证明△ABC≌△BAD;若添加AD=BC,则可利用“HL”判断ABC≌△BAD;若添加∠DAC=∠CBD,则不能判断ABC≌△BAD.解:∵AC⊥BC,AD⊥BD,∴∠C=∠D=90°,①在△ABC和△BAD中,∴△ABC≌△BAD(AAS),所以①正确;②在△ABC和△BAD中,,∴△ABC≌△BAD(AAS),所以②正确;③在Rt△ABC和Rt△BAD中,∴△ABC≌△BAD(HL),所以③正确;④∠C=∠D和∠DAC=∠CBD两个条件不能判定△ABC≌△DCB,所以④错误.所以正确结论的序号为①②③,故答案为①②③.讲解用时:4分钟解题思路:本题考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”、“HL”.教学建议:熟练掌握全等三角形的几种判定,有效区分.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习3.1】如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.【答案】55°【解析】求出∠BAD=∠EAC,证△BAD≌△CAE,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.讲解用时:3分钟解题思路:本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△CAE.教学建议:掌握全等三角形的判定和性质,综合利用做题.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题4】如图,已知AB=AC,∠ABE=∠ACD,BE与CD相交于O,求证:△ABE≌△ACD.【答案】△ABE≌△ACD【解析】由条件AB=AC,∠ABE=∠ACD,再加上公共角∠A=∠A,直接利用ASA 定理判定△ABE≌△ACD即可.证明:在△ABE与△ACD中,,∴△ABE≌△ACD(ASA).讲解用时:3分钟解题思路:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.教学建议:通过等腰三角形判定角相等,利用“ASA”判定方法来证明.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习4.1】已知:如图,BC∥EF,点C,点F在AD上,AF=DC,BC=EF.求证:△ABC≌△DEF.【答案】△ABC≌△DEF【解析】首先利用等式的性质可得AC=DF,根据平行线的性质可得∠ACB=∠DFE,然后再利用SAS判定△ABC≌△DEF即可.证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,∵BC∥EF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).讲解用时:3分钟解题思路:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.教学建议:注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题5】如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC≌△DEC.【答案】△ABC≌△DEC【解析】由∠BAE=∠BCE=∠ACD=90°,可求得∠DCE=∠ACB,且∠B+∠CEA=∠CEA+∠DEC=180°,可求得∠DEC=∠ABC,再结合条件可证明△ABC≌△DEC.证明:∵∠BAE=∠BCE=∠ACD=90°,∴∠DCE+∠ECA=∠ECA+∠ACB,∴∠DCE=∠ACB,且∠B+∠CEA=180°,又∠DEC+∠CEA=180°,∴∠B=∠DEC,在△ABC和△DEC中∴△ABC≌△DEC(ASA).讲解用时:4分钟解题思路:本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.教学建议:本题关键是通过∠BAE=∠BCE=90°,判断∠B=∠DEC,从而判定两个三角形全等.难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习5.1】如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD,求证:AE=FB.【答案】AE=FB【解析】根据CE∥DF,可得∠ECA=∠FDB,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.证明:∵CE∥DF∴∠ECA=∠FDB,在△ECA和△FDB中,∴△ECA≌△FDB,∴AE=FB.讲解用时:3分钟解题思路:此题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.教学建议:熟练掌握全等三角形的判定和性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题6】如图所示,点B、F、C、E在同一直线上,AB⊥BE,DE⊥BE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE.【答案】AB=DE【解析】欲证明AB=DE,只要证明Rt△ABC≌Rt△DEF(HL)即可;证明:∵BF=EC∴BC=EF∵AB⊥BE,DE⊥BE∴∠B=∠E=90°在Rt△ABC和Rt△DEF中∴Rt△ABC≌Rt△DEF(HL)∴AB=DE讲解用时:3分钟解题思路:本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.教学建议:熟练掌握直角三角形全等的判定.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习6.1】如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.【答案】(1)全等;(2)是【解析】(1)根据∠1=∠2,得DE=CE,利用“HL”可证明Rt△ADE≌Rt△BEC;(2)是直角三角形,由Rt△ADE≌Rt△BEC得,∠3=∠4,从而得出∠4+∠5=90°,则△CDE是直角三角形.解:(1)全等,理由是:∵∠1=∠2,∴DE=CE,∵∠A=∠B=90°,AE=BC,∴Rt△ADE≌Rt△BEC;(2)是直角三角形,理由是:∵Rt△ADE≌Rt△BEC,∴∠3=∠4,∵∠3+∠5=90°,∴∠4+∠5=90°,∴∠DEC=90°,∴△CDE是直角三角形.讲解用时:3分钟解题思路:考查了直角三角形的判定,全等三角形的性质,做题时要结合图形,在图形上找条件.教学建议:熟练掌握直角三角形全等的判定.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题7】已知:△ABC中,BD、CE分别是AC、AB边上的高,BQ=AC,点F在CE的延长线上,CF=AB,求证:AF⊥AQ.【答案】AF⊥AQ【解析】首先证明出∠ABD=∠ACE,再有条件BQ=AC,CF=AB可得△ABQ≌△ACF,进而得到∠F=∠BAQ,然后再根据∠F+∠FAE=90°,可得∠BAQ+∠FAE═90°,进而证出AF⊥AQ.证明:∵BD、CE分别是AC、AB边上的高,∴∠ADB=90°,∠AEC=90°,∴∠ABQ+∠BAD=90°,∠BAC+∠ACE=90°,∴∠ABD=∠ACE,在△ABQ和△ACF中,∴△ABQ≌△ACF(SAS),∴∠F=∠BAQ,∵∠F+∠FAE=90°,∴∠BAQ+∠FAE═90°,∴AF⊥AQ.讲解用时:4分钟解题思路:此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定方法,以及全等三角形的性质定理.教学建议:熟练掌握全等三角形的判定和性质.难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习7.1】如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是()A.4 B.5 C.1 D.2【答案】C【解析】由AD垂直于BC,CE垂直于AB,利用垂直的定义得到一对角为直角,再由一对对顶角相等,利用三角形的内角和定理得到一对角相等,再由一对直角相等,以及一对边相等,利用AAS得到三角形AEH与三角形EBC全等,由全等三角形的对应边相等得到AE=EC,由EC﹣EH,即AE﹣EH即可求出HC的长.解:∵AD⊥BC,CE⊥AB,∴∠ADB=∠AEH=90°,∵∠AHE=∠CHD,∴∠BAD=∠BCE,∵在△HEA和△BEC中,,∴△HEA≌△BEC(AAS),∴AE=EC=4,则CH=EC﹣EH=AE﹣EH=4﹣3=1.故选:C.讲解用时:3分钟解题思路:此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.教学建议:熟练掌握全等三角形的判定和性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题8】在△ABC中,AB=AC,点D是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE= 度;(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明)【答案】(1)90°;(2)α+β=180°;α=β【解析】(1)易证∠BAD=∠CAE,即可证明△BAD≌△CAE,可得∠ACE=∠B,即可解题;(2)易证∠BAD=∠CAE,即可证明△BAD≌△CAE,可得∠ACE=∠B,根据∠B+∠ACB=180°﹣α即可解题;(3)易证∠BAD=∠CAE,即可证明△BAD≌△CAE,可得∠ACE=∠B,根据∠ADE+∠AED+α=180°,∠CDE+∠CED+β=180°即可解题;【解答】解:(1)∵∠BAD+∠DAC=90°,∠DAC+∠CAE=90°,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠B,∵∠B+∠ACB=90°,∴∠DCE=∠ACE+∠ACB=90°;故答案为 90.(2)∵∠BAD+∠DAC=α,∠DAC+∠CAE=α,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠B,∵∠B+∠ACB=180°﹣α,∴∠DCE=∠ACE+∠ACB=180°﹣α=β,∴α+β=180°;(3)作出图形,∵∠BAD+∠BAE=α,∠BAE+∠CAE=α,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠AEC=∠ADB,∵∠ADE+∠AED+α=180°,∠CDE+∠CED+β=180°,∠CED=∠AEC+∠AED,∴α=β.讲解用时:8分钟解题思路:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BAD≌△CAE是解题的关键.教学建议:熟练掌握全等三角形的判定和性质.难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习8.1】如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:AE=BD.【答案】AE=BD【解析】要证AE=BD,经过观察分析我们可以将这两条线段放在三角形ACE和三角形BCD中,证其全等即可.首先我们根据△ACB和△ECD都是等腰直角三角形,得出两对对应边的相等,然后又根据∠ACB=∠ECD,都减去中间的公共角ACD 再得一对对应角的相等,根据SAS证三角形ACE和三角形BCD的全等,最后根据全等三角形的对应边相等即可得证.证明:∵△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,∴EC=CD,AC=CB,∠ACB﹣∠ACD=∠ECD﹣∠ACD.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD.讲解用时:3分钟解题思路:解此题时要充分利用等腰直角三角形的性质,熟练掌握三角形全等的证明以及对全等三角形的性质的理解掌握.教学建议:熟练掌握全等三角形的判定和性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018课后作业【作业1】如图,AB=DE,∠B=∠E,使得△ABC≌△DEC,请你添加一个适当的条件(填一个即可).【答案】BC=EC【解析】解:添加条件是:BC=EC,在△ABC与△DEC中,,∴△ABC≌△DEC.故答案为:BC=EC.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业2】如图,点E,H,G,N在一条直线上,∠F=∠M,EH=GN,MH∥FG.求证:△EFG ≌△NMH.【答案】△EFG≌△NMH【解析】根据等式的性质得出EG=NH,再利用全等三角形的判定证明即可.证明:∵EH=GN,∴EG=NH,∵MH∥FG,∴∠EGF=∠NHM,∴在△EFG和△NMH中∴△EFG≌△NMH.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业3】如图,已知在△ABC和△ABD中,AD=BC,∠DAB=∠CBA,求证:∠C=∠D.【答案】∠C=∠D【解析】根据“SAS”可证明△ADB≌△BAC,由全等三角形的性质即可证明∠C=∠D.证明:在△ADB和△BAC中,,∴△ADB≌△BAC(SAS),∴∠C=∠D讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业4】如图所示,AB⊥BC,DC⊥AC,垂足分别为B,C,过D点作BC的垂线交BC于F,交AC于E,AB=EC,试判断AC和ED的长度有什么关系并说明理由.【答案】AC=ED【解析】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理.解:AC=ED,理由如下:∵AB⊥BC,DC⊥AC,ED⊥BC,∴∠B=∠EFC=∠DCE=90°.∴∠A+∠ACB=90°,∠CEF+∠ACB=90°.∴∠A=∠CEF.在△ABC和△ECD中,∴△ABC≌△ECD(ASA).∴AC=ED(全等三角形的对应边相等).讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业5】已知:如图,AB∥ED,点F、C在AD上,AB=DE,AF=DC,求证:BC=EF.【答案】EF=BC【解析】由已知AB∥ED,AF=DC可以得出∠A=∠D,AC=DF,又因为AB=DE,则我们可以运用SAS来判定△ABC≌△DEF,根据全等三角形的对应边相等即可得出EF=BC.证明:∵AB∥ED,∴∠A=∠D,又∵AF=DC,∴AC=DF.在△ABC与△DEF中,,∴△ABC≌△DEF.∴EF=BC讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018。
全等三角形判定-专题复习50题(含答案)全等三角形判定一、选择题:1.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA2.方格纸中,每个小格顶点叫做一个格点,以格点连线为边的三角形叫做格点三角形.如图,在4×4的方格纸中,有两个格点三角形△ABC、△DEF,下列说法中成立的是()A.∠BCA=∠EDF B.∠BCA=∠EFDC.∠BAC=∠EFD D.这两个三角形中,没有相等的角3.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等 B.△ABD和△A.∠EDB B.∠BEDC.∠AFB D.2∠ABF4.在△ABC和△A/B/C/中,已知∠A=∠A/,AB=A/B/,在下面判断中错误的是( )A.若添加条件AC=A/C/,则△ABC≌△△A/B/C/B.若添加条件BC=B/C/,则△ABC≌△△A/B/C/C.若添加条件∠B=∠B/,则△ABC≌△△A/B/C/D.若添加条件∠C=∠C/,则△ABC≌△△A/B/C/5.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF ()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F6.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm7.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形个数是()A.1 B.2 C.3 D.48.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a29.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B 地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.二、填空题:10.如图所示,有一块三角形的镜子,小明不小心弄破裂成1、2两块,现需配成同样大小的一块.为了方便起见,需带上块,其理由是.11.如图示,点B在AE上,∠CBE=∠DBE,要使ΔABC≌ΔABD, 还需添加一个条件是__________.(填上你认为适当的一个条件即可)12.如图,已知∠1=∠2,AC=AD,请增加一个条件,使△ABC≌△AED,你添加的条件是.13.如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是(只添一个条件即可).14.如图,在△ABC中,AB=AC,AD⊥BC于D点,E、F 分别为DB、DC的中点,则图中共有全等三角形对.15.如图,△ABD≌△BAC,若AD=BC,则∠BAD的对应角是.16.如图,已知AB⊥BD,垂足为B,ED⊥BD,垂足为D,AB=CD,BC=DE,则∠ACE= 度.17.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是.三、解答题:18.如图,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A.B.试说明AD+AB=BE.19.如图,E、A.C三点共线,AB∥CD,∠B=∠E,,AC=CD。
全等三角形的判定(二)一.全等三角形的判定方法:三边对应相等的两个三角形全等即:如果,那么△ABC≌△DEF(SSS)两边和它们的夹角对应相等的两个三角形全等即:如果,那么△ABC≌△DEF(SAS)两角和它们的夹边对应相等的两个三角形全等即:如果,那么△ABC≌△DEF(ASA)两个角和其中一个角的对边对应相等的两个三角形全等即:如果,那么△ABC≌△DEF(AAS)斜边和一条直角边对应相等的两个直角三角形全等即:如果,或那么Rt△ABC≌Rt△DEF(HL)4.“AAS”与“ASA”易混,要注意区分“边”“角”的位置关系5. 错用“AAA”,“SSA”证三角形全等.一.考点:全等三角形的判定二.重难点:全等三角形的判定三.易错点:1.边边角(SSA)在一般情况下是不能证明两个三角形全等的;2.斜边、直角边定理(HL)必须是在直角三角形中才能使用;3.在使用判定定理证明两个三角形全等时要注意条件的顺序必须和判定定理要求的一样.题模一:ASA例1.1.1如图,∠C=∠D,DE=EC,则以下说法错误的是()A.AD=BCB.OA=ACC.∠OAD=∠OBCD.△OAD≌△OBC例1.1.2如图,90=, 1.7DE cm=,求BE⊥于D, 2.5AD cm⊥,AD CE∠=︒,AC BCACB=,BE CE的长.题模二:AAS例1.2.1如图,CE∥BF,CE=BF.则添加下列条件还不能使△EAC≌△FDB.()A.AB =CDB.AE ∥DFC.∠E =∠FD.AE =DF例1.2.2 已知△ABN 和△ACM 位置如图所示,AB =AC ,AD =AE ,∠1=∠2.(1)求证:BD =CE ;(2)求证:∠M =∠N .例1.2.3 已知:如图,在四边形ABCD 中,E 是AC 上一点,∠1=∠2,∠3=∠4.求证:∠5=∠6.题模三:HL例1.3.1 如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,交CB 于点D ,过点D 作DE ⊥AB 于点E . (1)求证:△ACD ≌△AED ;(2)若∠B =30°,CD =1,求BD 的长.例1.3.2 如图,已知AB CD =,AE BD ⊥,CF BD ⊥,垂足分别为E ,F ,BF DE =,求证://AB CD .随练1.1如图所示,在△ABC中,AB=AC,D、E分别是AC、AB的中点,且BD,CE相交于O点,某一位同学分析这个图形后得出以下结论:①△BCD≌△CBE;②△BDA≌△CEA;③△BOE≌△COD;④△BAD≌△BCD;⑤△ACE≌△BCE,上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④随练1.2如图所示,已知AC=BD,∠CAB=∠DBA.求证:(1)△CAB≌△DBA;(2)△CAO≌△DBO.随练1.3如图,AB∥CD,OA=OD,点F、D、O、A、E在同一直线上,AE=DF,求证:EB∥CF.随练1.4如图,BE⊥AC、CF⊥AB于点E、F,BE与CF交于点D,AD平分∠BAC,求证:AB=AC.随练 1.6如图,D、C、F、B四点在一条直线上,AB DE⊥,垂足分别为点=,AC BD⊥,EF BD=.C、点F,CD BF求证:(1)ABC EDF∆≅∆;(2)AB DE∥.随练1.7如图,DF⊥AC于F,BE⊥AC于E,AD=BC,AE=CF.求证:AD∥BC.拓展1如图,已知△ABC与△CDE都是等腰直角三角形,连结AE与BD,试探究线段AE与BD的数量关系和位置关系.拓展2如图,在△ABC中,AD平分∠BAC,CD⊥AD于点D,∠DCB=∠B.若AC=10,AB=25,求CD的长.拓展3如图,AD=AB,∠D=∠B,∠EAC=∠DAB,求证:AE=AC.拓展4如图,在△ABC中,D是AB的中点,分别过点A、B作CD的垂线,交CD及其延长线于E、F,求证:AE=BF.拓展5如图,在同一平面内∠ABC=45°,过点B的直线l⊥BC,点P为直线l上一动点(1)如图1,连接PC交AB于点Q,若BP=2,BC=3,求PQCQ的值.(2)如图2,连接PC交AB于点Q,过点B作BD⊥PC于点D,当∠BPC=3∠C时,判断线段BD与线段CQ的数量关系,并证明你的结论.(3)如图3,过点C作BC的垂线交BA于点A,过点C作CH⊥CP,并使CH=CP,连接AH交射线BC于点I.当点P在直线l上移动时,若AC=m,BI=n,线段BP的长度为________(直接用m、n表示)拓展6如图,已知点B、E、F、D在同一直线上,BF=DE,∠1=∠2,∠3=∠4.求证:AE=CF.拓展7如图,在△ABC和△DBC中,∠ACB=∠DBC=90°,E是BC的中点,DE⊥AB,垂足为点F,且AB=DE.(1)求证:BD=BC;(2)若BD=6,则△CDE的面积为________.拓展8如图,已知:△ABC中,AB=AC,∠BAC=90°,分别过B,C向经过点A的直线EF作垂线,垂足为E,F.(1)当EF与斜边BC不相交时,请证明EF=BE+CF(如图1);(2)如图2,当EF与斜边BC这样相交时,其他条件不变,证明:EF=BE﹣CF;(3)如图3,当EF与斜边BC这样相交时,猜想EF、BE、CF之间的关系,不必证明.拓展9如图,已知∠A=90゜,AB=BD,ED⊥BC于D,求证:DE+CE=AC.答案解析全等三角形的判定题模一:ASA例1.1.1【答案】B【解析】在△DEB 与△CEA 中, BED AECDE EC D C∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DEB ≌△CEA (ASA )∴BE =EA ,∴AD =BC ,在△OAD 与△OCB 中,D CO O BC AD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OAD ≌△OBC ,∴∠OAD =∠OBC ,OA =OB .例1.1.2【答案】0.8cm【解析】BE CE ⊥Q 于E ,AD CE ⊥于D90E ADC ∴∠=∠=︒90BCE ACE DAC ACE ∠+∠=∠+∠=︒Q BCE DAC ∴∠=∠,在ACD ∆与CBE ∆中,ADC EBC AC BCE CAD∠=∠⎧⎪=⎨⎪∠=∠⎩,()ACD CBE ASA ∴∆≅∆.2.5CE AD cm ∴==,BE DC =, 2.5 1.70.8DC CE DE cm ∴=-=-= 0.8BE cm ∴=.题模二:AAS例1.2.1【答案】D【解析】∵AB =CD ,∴AC =DB ,∴△EAC ≌△FDB (SAS );∵AE ∥DF ,∴∠A =∠D ,∴△EAC ≌△FDB (AAS );∵∠E =∠F ,∴△EAC ≌△FDB (AAS );当AE =DF 时,不能使△EAC ≌△FDB .例1.2.2【答案】见解析【解析】(1)在△ABD 和△ACE 中,12AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴BD =CE ;(2)∵∠1=∠2,∴∠1+∠DAE =∠2+∠DAE ,即∠BAN =∠CAM ,由(1)得:△ABD ≌△ACE ,∴∠B =∠C ,在△ACM 和△ABN 中,C B AC AB CAM BAN ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACM ≌△ABN (ASA ),∴∠M =∠N .例1.2.3【答案】见解析【解析】∵1234AC CA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC ≌△ABC (ASA ).∴DC =BC .又∵34DC BC EC CE =⎧⎪∠=∠⎨⎪=⎩,∴△CED ≌△CEB (SAS ).∴∠5=∠6.题模三:HL例1.3.1【答案】(1)见解析(2)2【解析】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C =90°,∴CD =ED ,∠DEA =∠C =90°,∵在Rt △ACD 和Rt △AED 中AD AD CD DE =⎧⎨=⎩, ∴Rt △ACD ≌Rt △AED (HL );(2)∵DC =DE =1,DE ⊥AB ,∴∠DEB =90°,∵∠B =30°,∴BD =2DE =2例1.3.2【答案】见解析【解析】AE BD ⊥Q ,CF BD ⊥,90AEB CFD ∴∠=∠=︒,BF DE =Q ,BF EF DE EF ∴+=+,BE DF ∴=.在Rt AEB ∆和Rt CFD ∆中,AB CD BE DF =⎧⎨=⎩, Rt Rt (HL)AEB CFD ∴∆≅∆,B D ∴∠=∠,//AB CD ∴.随练1.1【答案】A【解析】∵AB =AC ,∴∠ABC =∠ACB .∵BD 平分∠ABC ,CE 平分∠ACB ,∴∠ABD =∠CBD =∠ACE =∠BCE .∴①△BCD ≌△CBE (ASA );②△BDA ≌△CEA (ASA );③△BOE ≌△COD (AAS 或ASA ).随练1.2【答案】见解析【解析】(1)在△AOC 和△BOD 中,CAO DBOAOC BOD AC BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CAO ≌△DBO ,∴∠C =∠D ,OA =OB ,∴∠OBA =∠OAB ,在△CAB 和△DBA 中,C DCA DB CBA DBA∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CAB ≌△DBA .(2)在△AOC 和△BOD 中,CAO DBOAOC BOD AC BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CAO ≌△DBO ,随练1.3【答案】见解析【解析】证明:∥AB∥CD ,∥∥DCO=∥ABO ,∥CDO=∥BAO ,在∥AOB 和∥DOC 中,ABO DCOBAO CDO OA OD=∠⎧⎪∠=∠⎨⎪=⎩ ,∥∥AOB∥∥DOC (AAS ),∥OC=OB ,∥OA=OD ,AE=DF ,∥OA+AE=OD+DF ,即OA=OF ,在∥COF 和∥BOE 中,OC OB COF BOE OF OE =⎧⎪∠=∠⎨⎪=⎩,∥∥COF∥∥BOE (SAS ),∥∥F=∥E ,∥BE∥CF .随练1.4【答案】见解析【解析】证明:∵BE ⊥AC 、CF ⊥AB 于点E 、F ,∴∠BEA=∠CFA=90°.∵AD 平分∠BAC ,∴∠DAE=∠DAF .在∥ADE 和∥ADF 中,DAE DAF AED AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△ADF (AAS ),∴AE=AF .在Rt∥ABE 和Rt∥ACF 中,BAE CAF AEB AFC AE AF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴Rt∥ABE ≌Rt∥ACF (ASA ),∴AB=AC .随练1.6【答案】见解析【解析】(1)AC BD ⊥Q ,EF BD ⊥,ABC ∴∆和EDF ∆为直角三角形,CD BF =Q ,CF BF CF CD ∴+=+,即BC DF =,在Rt ABC ∆和Rt EDF ∆中,AB DE BC DF =⎧⎨=⎩Rt ABC Rt EDF(HL)∴∆≅∆;(2)由(1)可知ABC EDF ∆≅∆,B D ∴∠=∠,AB DE ∴∥.随练1.7【答案】见解析【解析】∵DF ⊥AC ,BE ⊥AC ,∴∠AFD =∠CEB =90°,∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE ,在Rt △ADF 和Rt △CBE 中,AD BC AF CE =⎧⎨=⎩, ∴Rt △ADF ≌Rt △CBE (HL ),∴∠DAF =∠BCE ,∴AD ∥BC .拓展1【答案】∠EAC +∠BDC =∠DBC +∠BDC =90°,即AE ⊥BD【解析】利用SAS 证明△AEC ≌△BCD ,可以得到AE =BD ,∠EAC =∠DBC ,进而可得:∠EAC +∠BDC =∠DBC +∠BDC =90°,即AE ⊥BD拓展2【答案】7.5【解析】如图,延长CD 交AB 于点E .∵AD 平分∠BAC ,∴∠1=∠2.∵CD ⊥AD ,∴∠ADE=∠ADC=90°.∵在△ADE 与△ADC 中,12AD AD ADE ADC ∠=∠∠=∠⎧⎪=⎨⎪⎩, ∴△ADE ≌△ADC (ASA ).∴AE=AC=10,DE=DC .∵∠DCB=∠B ,∴BE=CE=2DC .∴AB=AE+BE=10+2DC=25.∴DC=7.5.拓展3【答案】见解析【解析】∵∠EAC =∠DAB ,∴∠EAC +∠CAD =∠CAD +∠DAB ,即∠EAD =∠CAB ,在△EAD 和△CAB 中D B AD ABEAD CAB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△EAD ≌△CAB (ASA ),∴AE =AC .拓展4【答案】见解析【解析】∵D 是AB 的中点,且AF ⊥EF ,AE ⊥EF ,∴AD =BD ,∠F =∠AED =90°;在△AED 与△BFD 中,ADE BDF AD BDAED BFD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AED ≌△BFD (ASA ),∴AE =BF .拓展5【答案】(1)23(2)CQ =2BD ,证明见解析(3)2|m -n|【解析】(1)如图1中,作QE ⊥PB ,QF ⊥BC 垂足分别为E 、F .∵∠PBC =90°,∠ABC =45°,∴∠ABC =∠ABP ,∴QE =QF ,∵S △PBQ ︰S △BCQ =PQ ︰QC , ∴11::22PB QE BC QF PQ QC =g g g g , ∴PQ ︰QC =2︰3, 即23PQ CQ =.(2)结论CQ=2BD ,理由如下:如图2中,作CF ⊥AB 垂足为F 交BD 的延长线于E .∵∠CFB =∠BFE =90°,∠ABC =45°,∴∠FBC =∠FCB =45°,∴FB =FC ,∵BD ⊥CD ,∴∠BDQ =∠QFC =90°,∵∠DQB =∠FQC ,∴∠DBQ =∠QCF ,在△CFQ 和△BFE 中,FCQ EBFCF BF CFQ BFE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CFQ ≌△BFE ,∴CQ =BE ,∵∠BPC =3∠C ,∠C +∠BPC =90°,∴∠PCB =∠FCQ =22.5°,∴∠CBD =∠CED =67.5°,∴CB =CE ,∵CD ⊥EB ,∴DB =ED ,∴CQ =2BD .(3)如图3中,作HE ⊥BC 垂足为E .∵∠PCH =∠PBC =90°,∴∠CPB +∠PCB =90°,∠PCB +∠HCE =90°,∴∠CPB =∠HCE ,在△PCB 和△CHE 中,CPB HCEPBC HEC CP CH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PCB ≌△CHE ,∴BC =EH ,PB =EC ,∠ACB =90°,∠ABC =45°,∴∠ABC =∠BAC =45°,∴AC =BC =EH ,在△ACI 和△HEI 中,ACI HEI AIC EIH AC EH ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACI ≌△HEI ,∴EI =IC ,∴IC =BC -BI =AC -BI =m -n ,BP =2EI =2(m -n ),当点I 在BC 的延长线时,IC =BI -BC =BI -AC =n -m ,BP =2IC =2(n -m ). 综上所述:BP =2|m -n|.拓展6【答案】见解析【解析】∵BF =DE ,∴BE =DF ,在△ABE 和△CDF 中,1234BE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CDF (AAS ),∴AE =CF .拓展7【答案】(1)见解析(2)9【解析】(1)∵DE ⊥AB ,∴∠BFE =90°,∴∠ABC +∠DEB =90°,∵∠ACB =90°,∴∠ABC +∠A =90°,∴∠A =∠DEB .在△ABC 和△EDB 中,ACB EBDA DEB AB ED∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△EDB ,∴BD =BC ;(2)∵E 是BC 中点,BD =6,BD =BC , ∴11322CE BC BD ===, ∴1136922CDE CE BD =⋅=⨯⨯=△的面积.拓展8【答案】见解析【解析】(1)∵BE ⊥EA ,CF ⊥AF , ∴∠BAC =∠BEA =∠CFE =90°,∴∠EAB +∠CAF =90°,∠EBA +∠EAB =90°, ∴∠CAF =∠EBA ,在△ABE 和△CAF 中,BEA AFCEBA FAC AB AC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BEA ≌△AFC ,∴EA =FC ,BE =AF ,∴EF =EA +AF =BE +CF .(2)∵BE ⊥EA ,CF ⊥AF ,∴∠BAC =∠BEA =∠CFE =90°,∴∠EAB +∠CAF =90°,∠ABE +∠EAB =90°, ∴∠CAF =∠ABE ,在△ABE 和△ACF 中,EBA FACBEA CFA AB AC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BEA ≌△AFC ,∴EA =FC ,BE =AF ,∵EF =AF ﹣AE ,∴EF =BE ﹣CF .(3)EF =CF ﹣BE ,∵BE ⊥EA ,CF ⊥AF ,∴∠BAC =∠BEA =∠CFA =90°,∴∠EAB +∠CAF =90°,∠ABE +∠EAB =90°,∴∠CAF =∠ABE ,在△ABE 和△ACF 中,EBA FACBEA CFA AB AC∠=∠⎧⎪∠=∠⎨⎪=⎩ ∴△BEA ≌△AFC ,∴EA =FC ,BE =CF ,∵EF=EA﹣AF,∴EF=CF﹣BE.拓展9【答案】见解析【解析】证明:连BE,∵ED⊥BC,∴∠EDB=90°,在Rt△ABE和Rt△DBE中AB BD EB EB=⎧⎨=⎩,∴△ABE≌△DBE (HL),∴DE=AE.∴DE+CE=AC.。
章末复习(二) 全等三角形分点突破命题点1 全等三角形的概念及性质1.如图,△ABC≌△DEC,∠A=70°,∠ACB=60°,则∠E的度数为( )A.70° B.50° C.60° D.30°2.(柳州中考)如图,△ABC≌△DEF,则EF=________.命题点2 全等三角形的判定与性质3.(安顺中考)如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是() A.∠A=∠C B.AD=CBC.BE=DF D.AD∥BC4.如图,在△ABC和△FED中,AD=FC,AB=FE,当添加条件______________时,即可以得到△ABC≌△FED.(只需填写一个你认为正确的条件)5.如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.命题点3 角平分线6.(来宾中考)如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是________.7.如图,DE⊥AB于点E,DF⊥BC于点F,且DE=DF,若∠DBC=50°,则∠ABC=________.8.如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路到公路的距离相等,且离铁路与公路交叉处B点700米,如果你红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置,并简要说明理由.综合训练9.(宜昌中考)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个C.3个 D.4个10.(宜昌中考)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=12AC;③△ABD≌△CBD,其中正确的结论有()A.0个 B.1个C.2个 D.3个11.(石家庄中考)如图,O是△ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若∠BAC=70°,则∠BOC=________.12.为参加学校举行的风筝设计比赛,小明用四根竹棒扎成如图所示的风筝框架,已知AB=CD,AC=DB,AC,BD交于点E,你认为小明扎的风筝两脚的大小相同吗?(即∠B=∠C吗),试说明理由.13.如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,求证:PM=PN.14.(通辽中考)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE.求证:△ABC与△DEC全等.15.如图,OP平分∠MON , PE⊥OM于E,PF⊥ON于F,OA=OB, 则图中有几对全等三角形,并说明理由.参考答案1.B2.53.B4.BC =DE 或∠A =∠F 或AB ∥EF5.(1)证明:∵AC ⊥BC 于点C ,DF ⊥EF 于点F , ∴∠ACB =∠DFE =90°.在△ABC 和△DEF 中,⎩⎪⎨⎪⎧BC =EF ,∠ACB =∠DFE ,AC =DF ,∴△ABC ≌△DEF(SAS). (2)证明:∵△ABC ≌△DEF , ∴∠B =∠DEF. ∴AB ∥DE. 6.4 7. 100°8.如图所示.在两条路所夹角的平分线上,由比例尺算出到B 点的距离为3.5 cm. 9.C 10.D 11.125°12.∠B =∠C ;理由:连接AD ,∵在△ADB 和△DAC 中,⎩⎪⎨⎪⎧AD =DA ,AB =DC ,BD =AC ,∴△ADB ≌△DAC(SSS). ∴∠B =∠C.13.证明:∵BD 为∠ABC 的平分线, ∴∠ABD =∠CBD.在△ABD 和△CBD 中,⎩⎪⎨⎪⎧AB =CB ,∠ABD =∠CBD ,BD =BD ,∴△ABD ≌△CBD(SAS).∴∠ADB =∠CDB ,即BD 平分∠ADC. ∵点P 在BD 上,PM ⊥AD ,PN ⊥CD , ∴PM =PN.14.证明:∵∠BCE =∠ACD =90°, ∴∠BCA +∠ACE =∠ACE +∠ECD. ∴∠BCA =∠ECD.在△ACD 中,∠ACD =90°,∴∠CAE +∠D =90°.∵∠BAE =∠BAC +∠CAE =90°,∴∠BAC =∠D.在△ABC 和△DEC 中,⎩⎪⎨⎪⎧∠BAC =∠D ,∠BCA =∠ECD ,BC =CE ,∴△ABC ≌△DEC(AAS).15.图中共有3对全等的三角形.理由如下:∵∠POE =∠POF, ∠PEO =∠PFO =90°,OP =OP ,∴△POE ≌△POF(AAS).∴PE =PF.又∵OA =OB ,∠POA =∠POB ,OP =OP ,∴△POA ≌△POB(SAS).∴PA =PB.∵PE =PF ,∴Rt △PAE ≌Rt △PBF(HL).别浪费一分一秒——如何利用零散时间学人们常说,时间是公平的,每个人的一天只有24个小时,所以应该珍惜时间去充实自己。
第十二章《全等三角形》检测试题(二)一.选择题1.下列条件中,能判定两个直角三角形全等的是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等2.如图,已知∠DCE=90°,∠DAC=90°,BE⊥AC于B,且DC=EC,若BE=7,AB =3,则AD的长为()A.3 B.5 C.4 D.不确定3.如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需()A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC 4.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.65.如图,用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A.SAS B.ASA C.AAS D.SSS6.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE7.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°8.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB 9.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D10.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.AAS11.如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BAC C.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC12.如图,AD为∠CAF的角平分线,BD=CD,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正确结论的序号有()A.①②③④B.②③④C.①②③D.①②④二.填空题13.已知△ABC≌△DEF,∠A=50°,∠B=60°,则∠F=.14.如图,在直线l上有三个正方形m、q、n,若m、q的面积分别为4和9,则n的面积为.15.如图,△ABC中,点D、E在BC边上,∠BAD=∠CAE请你添加一对相等的线段或一对相等的角的条件,使△ABD≌△ACE.你所添加的条件是.16.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=°.17.如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交BD的延长线于点E,若BD=8,则CE=.18.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′=.三.解答题19.在∠MAN内有一点D,过点D分别作DB⊥AM,DC⊥AN,垂足分别为B,C.且BD =CD,点E,F分别在边AM和AN上.(1)如图1,若∠BED=∠CFD,请说明DE=DF;(2)如图2,若∠BDC=120°,∠EDF=60°,猜想EF,BE,CF具有的数量关系,并说明你的结论成立的理由.20.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BDC的度数.21.如图,AD是△ABC的角平分线,点F、E分别在边AC、AB上,连接DE、DF,且∠AFD+∠B=180°.(1)求证:BD=FD;(2)当AF+FD=AE时,求证:∠AFD=2∠AED.22.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).23.如图,在△ABC中,AB=AC=8,BC=12,点D从B出发以每秒2个单位的速度在线段BC上从点B向点C运动,点E同时从C出发以每秒2个单位的速度在线段CA上向点A运动,连接AD、DE,设D、E两点运动时间为t秒(0<t<4)(1)运动秒时,AE=DC;(2)运动多少秒时,△ABD≌△DCE能成立,并说明理由;(3)若△ABD≌△DCE,∠BAC=α,则∠ADE=(用含α的式子表示).参考答案一.选择题1.解:两直角三角形隐含一个条件是两直角相等,要判定两直角三角形全等,起码还要两个条件,故可排除A、C;而B构成了AAA,不能判定全等;D构成了SAS,可以判定两个直角三角形全等.故选:D.2.解:∵∠DCE=90°,∴∠ACD+∠BCE=90°,∵BE⊥AC,∴∠CBE=90°,∠E+∠BCE=90°,∴∠ACD=∠E,在△ACD和△BCE中,,∴△ACD≌△BEC(AAS),∴AD=BC,AC=BE=7,∵AB=3,∴BC=AC﹣AB=7﹣3=4.故选:C.3.解:A、AB=DC,不能根据SAS证两三角形全等,故本选项错误;B、∵在△AOB和△DOC中,∴△AOB≌△DOC(SAS),故本选项正确;C、两三角形相等的条件只有OA=OD和∠AOB=∠DOC,不能证两三角形全等,故本选项错误;D、根据∠AOB=∠DOC和OA=OD,不能证两三角形全等,故本选项错误;故选:B.4.解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD=AB•DE=×10•DE=15,解得DE=3,∴CD=3.故选:A.5.解:从角平分线的作法得出,△AFD与△AED的三边全部相等,则△AFD≌△AED.故选:D.6.解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.7.解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.8.解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据AAS判定△ABC≌△DBE,故正确.故选:B.9.解:∵△ABC≌△CDE,AB=CD∴∠ACB=∠CED,AC=CE,∠BAC=∠ECD,∠B=∠D∴第三个选项∠ACB=∠ECD是错的.故选:C.10.解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.11.解:A、符合AAS,能判断△ABD≌△BAC;B、符合ASA,能判断△ABD≌△BAC;C、不能判断△ABD≌△BAC;D、符合SSS,能判断△ABD≌△BAC.故选:C.12.解:∵AD平分∠CAF,DE⊥AC,DF⊥AB,∴DE=DF,在Rt△CDE和Rt△BDF中,,∴Rt△CDE≌Rt△BDF(HL),故①正确;∴CE=AF,在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴CE=AB+AF=AB+AE,故②正确;∵Rt△CDE≌Rt△BDF,∴∠DBF=∠DCE,∵∠AOB=∠COD,(设AC交BD于O),∴∠BDC=∠BAC,故③正确;∴∠DAE=∠DCB,∵∠DBC=∠DCB,∴∠DAE=∠DBC,∵Rt△ADE≌Rt△ADF,∴∠DAE=∠DAF,∴∠DAF=∠CBD,故④正确;综上所述,正确的结论有①②③④共4个.故选:A.二.填空题(共6小题)13.解:∵∠A=50°,∠B=60°,又∵∠A+∠B+C=180°,∴∠C=70°,∵△ABC≌△DEF,∴∠F=∠C,即:∠F=70°.故答案为:70°.14.解:由于m、q、n都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,∴∠BAC=∠DCE,且AC=CD,∠ABC=∠DEC=90°∴△ACB≌△DCE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S n=S m+S q=4+9=13,∴正方形n的面积为13,故答案为:13.15.解:添加AB=AC,∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,∴△ABD≌△ACE(ASA),故答案为:AB=AC.16.解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故答案为:135.17.解:如图,延长BA、CE相交于点F,∵BD平分∠ABC,∴∠ABD=∠CBD,在△BCE和△BFE中,,∴△BCE≌△BFE(ASA),∴CE=EF,∵∠BAC=90°,CE⊥BD,∴∠ACF+∠F=90°,∠ABD+∠F=90°,∴∠ABD=∠ACF,在△ABD和△ACF中,,∴△ABD≌△ACF(ASA),∴BD=CF,∵CF=CE+EF=2CE,∴BD=2CE=8,∴CE=4.故答案为:4.18.解:∵AA′∥BC,∴∠A′AB=∠ABC=70°,∵△ABC≌△A′BC′,∴BA=BA′,∠A′BC=∠ABC=70°,∴∠A′AB=∠AA′B=70°,∴∠A′BA=40°,∴∠ABC′=30°,∴∠CBC′=40°,故答案为:40°.三.解答题(共5小题)19.解:(1)∵DB⊥AM,DC⊥AN,∴∠DBE=∠DCF=90°,在△BDE和△CDF中,∵∴△BDE≌△CDF(AAS).∴DE=DF;(2)EF=FC+BE,理由:过点D作∠CDG=∠BDE,交AN于点G,在△BDE和△CDG中,,∴△BDE≌△CDG(ASA),∴DE=DG,BE=CG.∵∠BDC=120°,∠EDF=60°,∴∠BDE+∠CDF=60°.∴∠FDG=∠CDG+∠CDF=60°,∴∠EDF=∠GDF.在△EDF和△GDF中,,∴△EDF≌△GDF(SAS).∴EF=GF,∴EF=FC+CG=FC+BE.20.(1)证明:∵∠ABC=90°,∴∠DBC=90°,在△ABE和△CBD中∴△ABE≌△CBD(SAS);(2)解:∵AB=CB,∠ABC=90°,∴∠BCA=45°,∴∠AEB=∠CAE+∠BCA=30°+45°=75°,∵△ABE≌△CBD,∴∠BDC=∠AEB=75°.21.证明:(1)过点D作DM⊥AB于M,DN⊥AC于N,如图1所示:∵DM⊥AB,DN⊥AC,∴∠DMB=∠DNF=90°,又∵AD平分∠BAC,∴DM=DN,又∵∠AFD+∠B=180°,∠AFD+∠DFN=180°,∴∠B=∠DFN,在△DMB和△DNF中,∴△DMB≌△DNF(AAS)∴BD=FD;(2)在AB上截取AG=AF,连接DG.如图2所示,∵AD平分∠BAC,∴∠DAF=∠DAG,在△ADF和△ADG中.,∴△ADF≌△ADG(SAS).∴∠AFD=∠AGD,FD=GD又∵AF+FD=AE,∴AG+GD=AE,又∵AE=AG+GE,∴FD=GD=GE,∴∠GDE=∠GED又∵∠AGD=∠GED+∠GDE=2∠GED.∴∠AFD=2∠AED22.(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ANB,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②理由:作BK⊥AE于K,BJ⊥CD于J.∵△ABE≌△CBD,∴AE=CD,S△ABE=S△CDB,∴•AE•BK=•CD•BJ,∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,∴BM平分∠AMD.不妨设①成立,则△CBM≌△EBM,则AB=BD,显然不可能,故①错误.故答案为②.23.解:(1)由题可得,BD=CE=2t,∴CD=12﹣2t,AE=8﹣2t,∴当AE=DC,时,8﹣2t=(12﹣2t),解得t=3,故答案为:3;(2)当△ABD≌△DCE成立时,AB=CD=8,∴12﹣2t=8,解得t=2,∴运动2秒时,△ABD≌△DCE能成立;(3)当△ABD≌△DCE时,∠CDE=∠BAD,又∵∠ADE=180°﹣∠CDE﹣∠ADB,∠B=∠180°﹣∠BAD﹣∠ADB,∴∠ADE=∠B,又∵∠BAC=α,AB=AC,∴∠ADE=∠B=(180°﹣α)=90°﹣α.故答案为:90°﹣α.。
初二数学第十一章全等三角形综合复习第十一章全等三角形复习(一)全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。
理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。
2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。
理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(2)全等三角形的周长相等、面积相等。
(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)1、性质:角的平分线上的点到角的两边的距离相等.2、判定:角的内部到角的两边的距离相等的点在角的平分线上。
(三)学习全等三角形应注意以下几个问题:(1) 要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2 表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等; (4)时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角” (5)截长补短法证三角形全等。
【切记】:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。
例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。
求证:ACF BDE ∆≅∆。
例 2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。
求证:21C ∠=∠+∠。
例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=。
F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。
人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题二(含答案)一、单选题1.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带()去.A.第1块B.第2块C.第3块D.第4块【答案】B【解析】【分析】根据三角形全等的判定方法作出判断即可.【详解】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选B.【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.2.如图,已知AB=AC,现添加以下哪个条件不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【答案】D【解析】【分析】已知条件为AB=AC,∠A=∠A,根据全等三角形的判定定理可知,再添加一个条件可以用AAS,ASA,SAS进行判定,分别将四个选项与已知条件结合进行判断.【详解】A. ∠B=∠C与已知条件AB=AC,∠A=∠A组合可用SAS判定∠ABE∠∠ACD;B. AD=AE与已知条件AB=AC,∠A=∠A组合可用SAS判定∠ABE∠∠ACD;C. 由BD=CE和AB=AC可推出AD=AE,同B选项,可用SAS判定∠ABE∠∠ACD;D. BE=CD与已知条件AB=AC,∠A=∠A组合是“边边角”,无法判定∠ABE∠∠ACD;故选D.【点睛】本题考查全等三角形的判定定理,熟练掌握判定定理是解题的关键.3.如图,已知OD=OC,添加下列四个条件中的一个,仍不能得到△ODA与△OCB全等的是()A.∠D=∠C B.OA=OB C.BD=AC D.AD=BC【答案】D【解析】【分析】三角形全等条件中必须是三个元素,并且一定有一组对应边相等.在△ODA 与△OCB中,已知OD=OC,公共角∠O,因此只需添加一组对应角相等或OA=OB即可判定两三角形全等.【详解】解:已知OD=OC,公共角∠O,,A、如添加∠D=∠C,利用ASA即可证明△ODA≌△OCB;B、如添加OA=OB,利用SAS即可证明△ODA≌△OCB;C、如添加BD=AC,因为OD=OC,则OA=OB,利用SAS能证明△ODA≌△OCB;D、如添AD=BC,因为SSA,不能证明△ODA≌△OCB,所以此选项不能作为添加的条件.故选:D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.如图,已知点A、D、C、F在同一条直线上,AB=DE,∠A=∠EDF,的是再添加一个条件,可使△ABC≌△DEF,下列条件不符合...A.∠B=∠E B.BC∥EF C.AD=CF D.AD=DC【答案】D【解析】【分析】根据各个选项中的条件和全等三角形的判定可以解答本题.【详解】解:A. 添加的一个条件是∠B=∠E,可以根据ASA可以证明△ABC≌△DEF,故不符合题意;B. 添加的一个条件是BC∥EF,可以得到∠F=∠BCA根据AAS可以证明△ABC≌△DEF,故不符合题意;C. 添加的一个条件是AD=CF,可以得到AC=DF根据SAS可以证明△ABC≌△DEF,故不符合题意;D.添加的一个条件是AD=DC,不可以证明△ABC≌△DEF,故符合题意.故选D.【点睛】本题主要考查了全等三角形的判定,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.5.如图△ABC和△DEF,下列条件中①∠B=∠E=90°,AC=DF;②∠B=∠E,AB=DE,AC=DF;③在Rt△ABC和Rt△DEF中,BC=EF,AC=DF;④∠A=∠D,∠B=∠E,∠C=∠F;⑤∠A=∠D,BC=EF,∠C=∠F,能证明△ABC≌△DEF 的是()A.③⑤B.①③⑤C.①②③⑤D.①②③④⑤【答案】A【解析】【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)逐个判断即可.【详解】解:①∠B=∠E=90°,AC=DF;两三角形只有两个相等的条件,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项错误;②∠B=∠E,AB=DE,AC=DF中∠B=∠E不是夹角,不能判定两三角形全等,故本选项错误;③在Rt△ABC和Rt△DEF中,BC=EF,AC=DF,可以用HL判定两个三角形全等;④∠A=∠D,∠B=∠E,∠C=∠F,三角对应相等,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项错误;⑤∠A=∠D,BC=EF,∠C=∠F,可以用AAS判定两个三角形全等;故可以判定两个三角形全等的是:③⑤故选:A【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.6.如图,在△ABC和△DCB中,若∠ACB=∠DBC,则不能证明两个三角形全等的条件是( )A.∠ABC=∠DCB B.∠A=∠D C.AB=DCD.AC=DB【答案】C【解析】【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【详解】A、∠ACB=∠DBC,∠ABC=∠DCB,BC=CB,符合ASA,即能推出△ABC≌△DCB,故本选项错误;B、∠A=∠D,BC=CB,∠ACB=∠DBC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;C、∠ACB=∠DBC,AB=DC,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AC=DB,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误.故选C.【点睛】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.7.如图,在△ABC中,∠ABC=45°,BC=4,以AC为直角边,点A为直角顶点向△ABC的外侧作等腰直角三角形ACD,连接BD,则△DBC的面积为( ) .A.8 B.10 C.D.【答案】A【解析】【分析】将△ABD 绕着点A 顺时针旋转90°得到△AEC ,BD 与EC 交于点O ,连接BE ,根据旋转的性质得到AE=AB ,∠BAE=∠DOC=90°,过D 点作DF ⊥BC ,证△EBC ≌BFD ,可得DF=BC=4,再用三角形面积公式即可得出答案.【详解】解:如下图所示,将△ABD 绕着点A 顺时针旋转90°得到△AEC ,BD 与EC 交于点O ,连接BE ,根据旋转的性质可知EC=BD ,AE=AB ,∠BAE=∠DOC=90°, ∴△ABE 是等腰直角三角形,∴∠ABE=45°,又∵∠ABC=45°,∴∠EBC=90°,∵∠BDF+∠DBF=90°,∠ECB+∠DBF=90°,∴∠BDF=∠ECB在△EBC 和△BFD 中EBC=BFD=90ECB=BDF EC=BD ⎧∠∠⎪∠∠⎨⎪⎩∴△EBC ≌△BFD (AAS )∴DF=BC=4∴△DBC的面积=11BC DF=44=8 22⋅⨯⨯故选A.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定,是一道综合性较强的题,难度较大,关键是正确的作出辅助线构造全等三角形.8.如图,已知∠1=∠2,AC=AE,下列条件无法确定△ABC≌△ADE 的( ) .A.∠C=∠E B.BC=DE C.AB=AD D.∠B=∠D【答案】B【解析】【分析】分别将4个选项的条件与题目条件结合,看是否根据全等三角形的判定定理进行判定即可.【详解】∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,即∠CAB=∠EAD,A选项∠C=∠E,与题目条件组合为“角边角”,可判定全等,B选项BC=DE,与题目条件组合是“边边角”,不能判定全等,C选项AB=AD,与题目条件组合为“边角边”,可判定全等,D选项∠B=∠D,与题目条件组合为“角角边”,可判定全等.故选B.【点睛】本题考查全等三角形的判定定理,熟练掌握几个判定定理是解题的关键.9.如图,已知AB⊥BC 于B,CD⊥BC 于C,BC=12,AB=5,且E 为BC 上一点,∠AED=90°,AE=DE,则BE=()A.13 B.8 C.7 D.5【答案】C【解析】【分析】先根据题意证明△ABE≌△ECD,再根据全等三角形的性质得到CE值,即可求出BE.【详解】解:∵AB⊥BC,CD⊥BC∴∠B=90°=∠C∴∠A+∠AEB=90°∵∠AED=90°∴∠DEC+∠AEB=90°∴∠A=∠DEC在△ABE和△ECD中90B C A DEC AE DE ∠∠︒⎧⎪∠∠⎨⎪⎩==== ∴△ABE ≌△ECD (AAS ).∴CE=AB=5.∴BE=BC-CE=12-5=7.故选:C .【点睛】本题考查全等三角形的判定(AAS )和性质,解题关键在于掌握判定定理.10.如图,ABC △和BCD ,BD CA 、分别平分ABC ∠和BCD ∠,BD 与AC 相交于点E ,若89D ∠=,BC AB CD =+,则ABC ∠等于( )A .60B .62C .58D .59【答案】C【解析】【分析】 在BC 上截取BF=AB, 连接EF,易证,△ABE ≌△FBE(SAS),△DCE ≌△FCE(SAS),得出∠EFC=∠D=89, ∠A=∠EFB=180°-89°=91°,设∠ABE=x ,由三角形的内角和定理得到方程,求解可得答案.【详解】解:在BC 上截取BF=AB ,连接EF,∵BC AB CD =+∴DC=FC∵BD CA 、分别平分ABC ∠和BCD ∠,∴△ABE ≌△FBE(SAS), △DCE ≌△FCE(SAS),∴∠EFC=∠D=89, ∠A=∠EFB=180°-89°=91°∴∠A-∠D=2°又∠AEB=∠CED,∴∠ABE=∠DCE-2°设∠ABE=x ,则∠ABC=2x, ∠EBC=x, ∠DCB=2x+4°在△BCD 中,∠EBC+∠DCB+∠D=180°,即x+2x+4°+89°=180°解得x=29°∴∠ABC=2x=58°,故选:C【点睛】本题考查了全等三角形,角平分线的性质,三角形的内角和定理,注意运用数形结合的思想解几何计算题.。
学生做题前请先回答以下问题
问题1:
(1)全等三角形的性质:全等三角形的____________相等,____________相等.
(2)一般三角形全等的判定:________,________,________,________.
(3)直角三角形的判定:________,________,________,________,________.
问题2:要证明两个三角形全等,需要找______组条件,其中必须有一组______.
问题3:SSA能不能证明两个三角形全等?请画图说明.
全等三角形的判定综合复习(二)(人教版)
一、单选题(共12道,每道8分)
1.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )
A.150°
B.180°
C.210°
D.225°
答案:B
解题思路:
试题难度:三颗星知识点:全等三角形的判定
2.已知:如图,CD⊥AB,BE⊥AC,垂足分别为D,E,BE,CD相交于点O,连接OA,若∠1=∠2,则图中全等的三角形共有( )
A.4对
B.3对
C.2对
D.1对
答案:A
解题思路:
试题难度:三颗星知识点:全等三角形的判定
3.如图,已知∠α,∠β,线段a,求作△ABC,使BC=a,∠B=∠α,∠C=∠β.作法的合理顺序为( )(请用尺规作出对应的图形,保留作图痕迹,提交试卷后,我们将提供参考答案)
①以B为顶点,以BC为一边,作角∠DBC=∠α;②作一条线段BC=a;
③以C为顶点,以CB为一边,在BC的同一侧,作角∠ECB=∠β,CE交BD于点A;④△ABC 即为所求.
A.①③④②
B.①②③④
C.②①③④
D.①③②④
答案:C
解题思路:
试题难度:三颗星知识点:尺规作图
4.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=3,则PQ 的最小值为( )
A.1
B.2
C.3
D.4
答案:C
解题思路:
试题难度:三颗星知识点:垂线段最短
5.如图,已知点O是△ABC内一点,且点O到△ABC三边的距离相等.若∠A=40°,则∠BOC 等于( )
A.110°
B.120°
C.130°
D.140°
答案:A
解题思路:
试题难度:三颗星知识点:角平分线的性质与判定
6.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为( )
A.11
B.5.5
C.7
D.3.5
答案:B
解题思路:
试题难度:三颗星知识点:三角形的面积
7.如图所示,P,Q分别是BC,AC上的点,作PR⊥AB于点R,作PS⊥AC于点S,若AQ=PQ,PR=PS,有下面三个结论:①AS=AR;②QP∥AR;③△BRP≌△CSP,其中正确的是( )
A.①③
B.②③
C.①②
D.①②③
答案:C
解题思路:
试题难度:三颗星知识点:全等三角形的判定
8.如图,点B,C,E在同一条直线上,△ABC与△CDE都是等边三角形,连接AD,BD,AE,BD交AC于点G,AE交CD于点F.则下列结论不一定成立的是( )
A.△ACE≌△BCD
B.△BGC≌△AFC
C.△DCG≌△ECF
D.△ADB≌△CEA
答案:D
解题思路:
试题难度:三颗星知识点:全等三角形的判定
9.如图,在△ABC中,AB=AC,∠ABC,∠ACB的平分线BD,CE相交于点O,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;
②△BAD≌△BCD;
③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;其中一定正确的是( )
A.①②③
B.②③④
C.①③⑤
D.①③④
答案:D
解题思路:
试题难度:三颗星知识点:全等三角形的判定
10.已知:如图,在Rt△ACB中,∠ACB=90°,AC=BC,点D是AB边上一点,BF⊥CD于点F,AE⊥CD交CD的延长线于点E.
求证:△ACE≌△CBF.
证明:如图,
∵BF⊥CD
∴∠BFC=90°
∴∠1+∠2=90°
__________________________
在△ACE和△CBF中
∴__________________________
请你仔细观察下列序号所代表的内容:
①;②;
③△ACE≌△CBF(AAS);④△ACE≌△BCF(ASA);⑤△ACE≌△CBF(HL).以上空缺处依次填写最恰当的是( )
A.①⑤
B.①③
C.②③
D.②④
答案:C
解题思路:
试题难度:三颗星知识点:全等三角形的判定
11.已知:如图,在等边三角形ABC中,∠C=∠ABD=60°,AB=BC=AC,点D,E分别为BC,AC边上一点且AE=CD,连接AD,BE相交于点F.
求证:∠1=∠2.
证明:如图,
____________________________
在△ABD和△BCE中
____________________________
∴△ABD≌△BCE(SAS)
∴____________________________
请你仔细观察下列序号所代表的内容:
①BD=CE;②;
③;④;
⑤∠2=∠1(对应角相等);⑥∠1=∠2(全等三角形对应角相等).
以上空缺处依次所填最恰当的是( )
A.①③⑥
B.②④⑤
C.②③⑥
D.①④⑥
答案:C
解题思路:
试题难度:三颗星知识点:全等三角形的性质与判定
12.如图,四边形ABCD为正方形,∠ABC=∠BCD=90°,AB=BC=CD=AD,E为BC边上一点,且AE=DE,AE与对角线BD交于点F,∠ABF=∠CBF,连接CF,交DE于点G.判断CF与ED 的位置关系,并说明理由.
解:垂直.理由如下:
在△ABF与△CBF中
_________________
∴_______________
∴∠BAF=∠BCF
在Rt△ABE和Rt△DCE中
______________________
∴___________________
∴∠BAE=∠CDE
∴∠BCF=∠CDE
∵∠CDE+∠DEC=90°
∴∠BCF+∠DEC=90°
∴DE⊥CF
请你仔细观察下列序号所代表的内容:
①,②,③,④,
⑤Rt△ABE≌Rt△DCE(HL),⑥△ABE≌△DCE(SAS),⑦△ABF≌△CBF(SAS),⑧△ABF≌△CBF(SSS).
以上空缺处依次填写正确的是( )
A.①⑦④⑥
B.②⑧③⑤
C.①⑦③⑤
D.②⑧④⑥
答案:C
解题思路:
试题难度:三颗星知识点:全等三角形证明过程训练。