遗传算法程序示例
- 格式:docx
- 大小:12.64 KB
- 文档页数:2
遗传算法代码python一、简介遗传算法是一种通过模拟自然选择和遗传学原理来寻找最优解的优化算法。
它广泛应用于各种领域,包括优化问题、搜索和机器学习等。
二、代码概述以下是一个简单的遗传算法的Python代码示例,用于解决简单的优化问题。
该算法使用一个简单的二进制编码方式,并使用适应度函数来评估每个个体的适应度。
三、代码实现```pythonimportnumpyasnp#遗传算法参数POPULATION_SIZE=100#种群规模CROSSOVER_RATE=0.8#交叉概率MUTATION_RATE=0.1#变异概率MAX_GENERATIONS=100#最大迭代次数#适应度函数deffitness(individual):#在这里定义适应度函数,评估每个个体的适应度#这里简单地返回个体值的平方,可以根据实际问题进行调整returnnp.sum(individual**2)#初始种群生成pop=np.random.randint(2,size=(POPULATION_SIZE,))#迭代过程forgenerationinrange(MAX_GENERATIONS):#评估种群中每个个体的适应度fitness_values=np.apply_along_axis(fitness,1,pop)#选择种群selected_idx=np.random.choice(np.arange(POPULATION_SIZE), size=POPULATION_SIZE,replace=True,p=fitness_values/fitness_va lues.sum())selected_pop=pop[selected_idx]#交叉操作ifCROSSOVER_RATE>np.random.rand():cross_points=np.random.rand(POPULATION_SIZE,2)<0.5#随机选择交叉点cross_pop=np.array([np.hstack((individual[cross_points[i, 0]:cross_points[i,1]]+individual[cross_points[i,1]:],other))f ori,otherinenumerate(selected_pop)]).T#合并个体并随机交叉得到新的个体cross_pop=cross_pop[cross_points]#将交叉后的个体重新排列成原始种群大小selected_pop=np.vstack((selected_pop,cross_pop))#将新个体加入种群中#变异操作ifMUTATION_RATE>np.random.rand():mutated_pop=selected_pop+np.random.randn(POPULATION_SIZE, 1)*np.sqrt(np.log(POPULATION_SIZE))*(selected_pop!=pop).astyp e(np.float)#根据变异概率对个体进行变异操作,得到新的个体种群mutated_pop=mutated_pop[mutated_pop!=0]#将二进制种群中值为0的个体去掉,因为这些个体是随机的二进制串,不是解的一部分,不应该参与变异操作selected_pop=mutated_pop[:POPULATION_SIZE]#将新种群中除最后一个以外的部分加入原始种群中(即新的种群被排除了适应度最差的个体)#选择当前最好的个体(用于更新最优解)best_idx=np.argmax(fitness_values)best_solution=selected_pop[best_idx]print(f"Generation{generation}:Bestsolution:{best_solutio n}")```四、使用示例假设要解决一个简单的优化问题:求一个一维函数的最小值。
第七章遗传算法应用举例遗传算法是一种模拟自然选择和遗传机制的计算方法,它可以用来解决很多实际问题。
以下是几个遗传算法应用的实例。
1.旅行商问题(TSP):旅行商问题是一个经典的组合优化问题,目标是找到最短路径来访问一系列城市并返回原始城市。
遗传算法可以通过编码城市序列,并使用交叉、变异和选择操作进行优化。
通过进行迭代,遗传算法可以更优的路径,并得到近似最优的解。
2.机器学习特征选择:在机器学习中,特征选择是一种减少特征集合维度的方法,以提高模型的性能和泛化能力。
遗传算法可以用来选择最佳的特征子集,通过优化目标函数(例如分类准确率或回归误差)来评估子集的优劣,并通过交叉和变异操作不断改进。
3.组合优化问题:遗传算法也广泛应用于组合优化问题,如背包问题、任务调度、物流路径规划等。
通过定义适应度函数和优化目标,遗传算法可以最优的组合并提供近似解。
4.神经网络训练:神经网络是一种模拟人脑神经元相互连接和传递信息的计算模型。
训练神经网络需要调整网络权重和参数,以最小化损失函数。
遗传算法可以用作优化算法,通过定义染色体编码网络参数,并通过交叉和变异操作对网络进行进化,以找到更好的网络结构和参数。
5.机器调参:机器学习算法通常包含许多超参数需要调优,例如决策树的深度、神经网络的学习率等。
遗传算法可以用来超参数的最佳组合,并通过交叉和变异操作对超参数进行优化。
6.图像处理:遗传算法被广泛应用于图像处理领域,如图像增强、目标检测、图像分割等。
通过定义适应度函数和优化目标,遗传算法可以优化图像处理算法的参数和参数组合,以提高图像质量和算法效果。
7.电力系统优化:电力系统优化包括电力负荷优化、电力设备配置优化、电力网路规划等。
遗传算法可以用来优化电力系统的各种参数和变量,以提高电力系统的效率和可靠性。
总之,遗传算法是一种强大而灵活的优化算法,在许多领域都可以应用。
它通过模拟生物进化过程,通过选择、交叉和变异操作,问题的解空间,并找到最优或近似最优的解。
遗传算法求解优化问题实例
一个常见的优化问题是旅行商问题(Traveling Salesman Problem,TSP)。
给定一组城市和每对城市之间的距离,旅行商问题要求找到一条经过所有城市一次且回到起点的最短路径。
以下是使用遗传算法求解TSP的实例:
1. 随机生成一个初始种群,种群中的每个个体表示一条路径。
每个个体由一个城市序列表示,例如[1, 2, 3, ..., n],其中n是城市的数量。
2. 计算种群中每个个体的适应度。
适应度可以定义为路径的总长度,即经过所有城市的距离之和。
3. 选择适应度较高的个体作为父代,进行交叉和变异操作以生成新的子代。
交叉操作可以是将两条路径的一部分交换,变异操作可以是随机改变路径中的一个或多个城市顺序。
4. 计算新生成的子代的适应度。
5. 重复步骤3和4,直到达到终止条件(例如达到最大迭代次数)。
6. 返回适应度最好的个体作为最优解,即最短路径。
遗传算法的优势在于可以在大规模问题中寻找较好的解,虽然不一定能找到最佳解,但可以得到相对较优的解。
遗传算法经典实例遗传算法是一种从若干可能的解决方案中自动搜索最优解的算法,它可以用来解决各种复杂的优化问题,是进化计算的一种。
它的基本过程是:对初始种群的每个个体都估计一个适应度值,并从中选择出最优的个体来作为新一代的父本,从而实现进化的自然演化,经过几代的迭代最终得到最优的解。
在许多复杂的优化问题中,遗传算法能产生比其它方法更优的解。
下面,我们将列出几个典型的遗传算法经典实例,以供参考。
1.包问题背包问题可以分解为:在一定的物品中选择出最优的物品组合需求,在有限的背包中装入最大价值的物品组合。
针对这个问题,我们可以使用遗传算法来求解。
具体而言,首先,需要构建一个描述染色体的数据结构,以及每个染色体的适应度评估函数。
染色体的基本单元是每个物品,使用0-1二进制编码表示该物品是否被选取。
然后,需要构建一个初始种群,可以使用随机生成的方式,也可以使用经典进化方法中的锦标赛选择、轮盘赌选择或者较优概率选择等方法生成。
最后,使用遗传算法的基本方法进行迭代,直至得出最优解。
2.着色问题图着色问题是一个比较复杂的问题,它涉及到一个无向图的节点和边的颜色的分配。
其目的是为了使相邻的节点具有不同的颜色,从而尽可能减少图上边的总数。
此问题中每种可能的颜色可以看作一个个体。
染色体中每个基因对应一条边,基因编码可以表示边上节点的着色颜色。
求解这个问题,我们可以生成一个初始群体,通过计算它们的适应度量,然后使用遗传算法的基本方法进行迭代,直至收敛于最优解。
3.舍尔旅行商问题费舍尔旅行商问题是一个求解最短旅行路径的问题,它可以分解为:从起点到终点访问给定的一组城市中的每一个城市,并且回到起点的一个最短旅行路径的搜索问题。
用遗传算法求解费舍尔旅行商问题,通常每个个体的染色体结构是一个由城市位置索引构成的序列,每个索引对应一个城市,表示在旅行路径中的一个节点,那么该路径的适应度就是城市之间的距离和,通过构建一个初始种群,然后结合遗传算法中的进化方法,如变异、交叉等进行迭代,最终得出最优解。
第七章 遗传算法应用举例遗传算法提供了一种求解非线性、多模型、多目标等复杂系统优化问题的通用框架,它不依赖于问题具体的领域。
随着对遗传算法技术的不断研究,人们对遗传算法的实际应用越来越重视,它已经广泛地应用于函数优化、组合优化、自动控制、机器人学、图象处理、人工生命、遗传编码、机器学习等科技领域。
遗传算法已经在求解旅行商问题、背包问题、装箱问题、图形划分问题等多方面的应用取得了成功。
本章通过一些例子,介绍如何利用第五章提供的遗传算法通用函数,编写MATLAB 程序,解决实际问题。
7.1 简单一元函数优化实例利用遗传算法计算下面函数的最大值:()sin(10) 2.0[1,2]f x x x x π=⋅+∈-,选择二进制编码,种群中个体数目为40,每个种群的长度为20,使用代沟为0.9,最大遗传代数为25。
下面为一元函数优化问题的MA TLAB 代码。
figure(1);fplot ('variable.*sin(10*pi*variable)+2.0',[-1,2]); %画出函数曲线% 定义遗传算法参数NIND= 40; % 个体数目(Number of individuals)MAXGEN = 25; % 最大遗传代数(Maximum number of generations)PRECI = 20; % 变量的二进制位数(Precision of variables)GGAP = 0.9; % 代沟(Generation gap)trace=zeros (2, MAXGEN); % 寻优结果的初始值FieldD = [20;-1;2;1;0;1;1]; % 区域描述器(Build field descriptor) Chrom = crtbp(NIND, PRECI); % 初始种群gen = 0; % 代计数器variable=bs2rv(Chrom,FieldD); % 计算初始种群的十进制转换 ObjV = variable.*sin (10*pi*variable)+2.0; % 计算目标函数值while gen < MAXGEN,FitnV = ranking (-ObjV); % 分配适应度值(Assign fitness values) SelCh = select ('sus', Chrom, FitnV , GGAP); % 选择SelCh = recombin ('xovsp',SelCh,0.7); % 重组SelCh = mut(SelCh); % 变异variable=bs2rv(SelCh,FieldD); % 子代个体的十进制转换ObjVSel =variable.*sin(10*pi*variable)+2.0; % 计算子代的目标函数值[Chrom ObjV]=reins(Chrom,SelCh,1,1,ObjV ,ObjVSel); % 重插入子代的新种群 gen = gen+1; % 代计数器增加% 输出最优解及其序号,并在目标函数图象中标出,Y 为最优解,I 为种群的序号[Y,I]=max(ObjV),hold on;plot (variable (I),Y, 'bo');trace (1,gen)=max (ObjV); %遗传算法性能跟踪trace (2,gen)=sum (ObjV)/length (ObjV);endvariable=bs2rv (Chrom,FieldD); %最优个体的十进制转换hold on,grid;plot (variable',ObjV','b*');figure (2);plot (trace (1,:)');hold on;plot (trace (2,:)','-.');grid;legend ('解的变化','种群均值的变化')使用基于适应度的重插入确保四个最适应的个体总是被连续传播到下一代。
%-----------------------------------------------%---------------------------------------------------遗传算法程序(一):说明: fga.m 为遗传算法的主程序; 采用二进制Gray编码,采用基于轮盘赌法的非线性排名选择, 均匀交叉,变异操作,而且还引入了倒位操作!function [BestPop,Trace]=fga(FUN,LB,UB,eranum,popsize,pCross,pMutation,pInversion,options) % [BestPop,Trace]=fmaxga(FUN,LB,UB,eranum,popsize,pcross,pmutation)% Finds a maximum of a function of several variables.% fmaxga solves problems of the form:% max F(X) subject to: LB <= X <= UB% BestPop - 最优的群体即为最优的染色体群% Trace - 最佳染色体所对应的目标函数值% FUN - 目标函数% LB - 自变量下限% UB - 自变量上限% eranum - 种群的代数,取100--1000(默认200)% popsize - 每一代种群的规模;此可取50--200(默认100)% pcross - 交叉概率,一般取0.5--0.85之间较好(默认0.8)% pmutation - 初始变异概率,一般取0.05-0.2之间较好(默认0.1)% pInversion - 倒位概率,一般取0.05-0.3之间较好(默认0.2)% options - 1*2矩阵,options(1)=0二进制编码(默认0),option(1)~=0十进制编%码,option(2)设定求解精度(默认1e-4)%% ------------------------------------------------------------------------T1=clock;if nargin<3, error('FMAXGA requires at least three input arguments'); endif nargin==3, eranum=200;popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];endif nargin==4, popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];endif nargin==5, pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];endif nargin==6, pMutation=0.1;pInversion=0.15;options=[0 1e-4];endif nargin==7, pInversion=0.15;options=[0 1e-4];endif find((LB-UB)>0)error('数据输入错误,请重新输入(LB<UB):');ends=sprintf('程序运行需要约%.4f 秒钟时间,请稍等......',(eranum*popsize/1000));disp(s);global m n NewPop children1 children2 VarNumbounds=[LB;UB]';bits=[];VarNum=size(bounds,1);precision=options(2);%由求解精度确定二进制编码长度bits=ceil(log2((bounds(:,2)-bounds(:,1))' ./ precision));%由设定精度划分区间[Pop]=InitPopGray(popsize,bits);%初始化种群[m,n]=size(Pop);NewPop=zeros(m,n);children1=zeros(1,n);children2=zeros(1,n);pm0=pMutation;BestPop=zeros(eranum,n);%分配初始解空间BestPop,TraceTrace=zeros(eranum,length(bits)+1);i=1;while i<=eranumfor j=1:mvalue(j)=feval(FUN(1,:),(b2f(Pop(j,:),bounds,bits)));%计算适应度end[MaxValue,Index]=max(value);BestPop(i,:)=Pop(Index,:);Trace(i,1)=MaxValue;Trace(i,(2:length(bits)+1))=b2f(BestPop(i,:),bounds,bits);[selectpop]=NonlinearRankSelect(FUN,Pop,bounds,bits);%非线性排名选择[CrossOverPop]=CrossOver(selectpop,pCross,round(unidrnd(eranum-i)/eranum));%采用多点交叉和均匀交叉,且逐步增大均匀交叉的概率%round(unidrnd(eranum-i)/eranum)[MutationPop]=Mutation(CrossOverPop,pMutation,VarNum);%变异[InversionPop]=Inversion(MutationPop,pInversion);%倒位Pop=InversionPop;%更新pMutation=pm0+(i^4)*(pCross/3-pm0)/(eranum^4);%随着种群向前进化,逐步增大变异率至1/2交叉率p(i)=pMutation;i=i+1;endt=1:eranum;plot(t,Trace(:,1)');title('函数优化的遗传算法');xlabel('进化世代数(eranum)');ylabel('每一代最优适应度(maxfitness)');[MaxFval,I]=max(Trace(:,1));X=Trace(I,(2:length(bits)+1));hold on; plot(I,MaxFval,'*');text(I+5,MaxFval,['FMAX=' num2str(MaxFval)]);str1=sprintf ('进化到%d 代,自变量为%s 时,得本次求解的最优值%f\n对应染色体是:%s',I,num2str(X),MaxFval,num2str(BestPop(I,:)));disp(str1);%figure(2);plot(t,p);%绘制变异值增大过程T2=clock;elapsed_time=T2-T1;if elapsed_time(6)<0elapsed_time(6)=elapsed_time(6)+60; elapsed_time(5)=elapsed_time(5)-1;endif elapsed_time(5)<0elapsed_time(5)=elapsed_time(5)+60;elapsed_time(4)=elapsed_time(4)-1;end %像这种程序当然不考虑运行上小时啦str2=sprintf('程序运行耗时%d 小时%d 分钟%.4f 秒',elapsed_time(4),elapsed_time(5),elapsed_time(6));disp(str2);%初始化种群%采用二进制Gray编码,其目的是为了克服二进制编码的Hamming悬崖缺点function [initpop]=InitPopGray(popsize,bits)len=sum(bits);initpop=zeros(popsize,len);%The whole zero encoding individualfor i=2:popsize-1pop=round(rand(1,len));pop=mod(([0 pop]+[pop 0]),2);%i=1时,b(1)=a(1);i>1时,b(i)=mod(a(i-1)+a(i),2)%其中原二进制串:a(1)a(2)...a(n),Gray串:b(1)b(2)...b(n)initpop(i,:)=pop(1:end-1);endinitpop(popsize,:)=ones(1,len);%The whole one encoding individual%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%解码function [fval] = b2f(bval,bounds,bits)% fval - 表征各变量的十进制数% bval - 表征各变量的二进制编码串% bounds - 各变量的取值范围% bits - 各变量的二进制编码长度scale=(bounds(:,2)-bounds(:,1))'./(2.^bits-1); %The range of the variablesnumV=size(bounds,1);cs=[0 cumsum(bits)];for i=1:numVa=bval((cs(i)+1):cs(i+1));fval(i)=sum(2.^(size(a,2)-1:-1:0).*a)*scale(i)+bounds(i,1);end%选择操作%采用基于轮盘赌法的非线性排名选择%各个体成员按适应值从大到小分配选择概率:%P(i)=(q/1-(1-q)^n)*(1-q)^i, 其中P(0)>P(1)>...>P(n), sum(P(i))=1function [selectpop]=NonlinearRankSelect(FUN,pop,bounds,bits)global m nselectpop=zeros(m,n);fit=zeros(m,1);for i=1:mfit(i)=feval(FUN(1,:),(b2f(pop(i,:),bounds,bits)));%以函数值为适应值做排名依据endselectprob=fit/sum(fit);%计算各个体相对适应度(0,1)q=max(selectprob);%选择最优的概率x=zeros(m,2);x(:,1)=[m:-1:1]';[y x(:,2)]=sort(selectprob);r=q/(1-(1-q)^m);%标准分布基值newfit(x(:,2))=r*(1-q).^(x(:,1)-1);%生成选择概率newfit=cumsum(newfit);%计算各选择概率之和rNums=sort(rand(m,1));fitIn=1;newIn=1;while newIn<=mif rNums(newIn)<newfit(fitIn)selectpop(newIn,:)=pop(fitIn,:);newIn=newIn+1;elsefitIn=fitIn+1;endend%交叉操作function [NewPop]=CrossOver(OldPop,pCross,opts)%OldPop为父代种群,pcross为交叉概率global m n NewPopr=rand(1,m);y1=find(r<pCross);y2=find(r>=pCross);len=length(y1);if len>2&mod(len,2)==1%如果用来进行交叉的染色体的条数为奇数,将其调整为偶数y2(length(y2)+1)=y1(len);y1(len)=[];endif length(y1)>=2for i=0:2:length(y1)-2if opts==0[NewPop(y1(i+1),:),NewPop(y1(i+2),:)]=EqualCrossOver(OldPop(y1(i+1),:),OldPop(y1(i+2),:));else[NewPop(y1(i+1),:),NewPop(y1(i+2),:)]=MultiPointCross(OldPop(y1(i+1),:),OldPop(y1(i+2),:));endendendNewPop(y2,:)=OldPop(y2,:);%采用均匀交叉function [children1,children2]=EqualCrossOver(parent1,parent2)global n children1 children2hidecode=round(rand(1,n));%随机生成掩码crossposition=find(hidecode==1);holdposition=find(hidecode==0);children1(crossposition)=parent1(crossposition);%掩码为1,父1为子1提供基因children1(holdposition)=parent2(holdposition);%掩码为0,父2为子1提供基因children2(crossposition)=parent2(crossposition);%掩码为1,父2为子2提供基因children2(holdposition)=parent1(holdposition);%掩码为0,父1为子2提供基因%采用多点交叉,交叉点数由变量数决定function [Children1,Children2]=MultiPointCross(Parent1,Parent2)global n Children1 Children2 VarNumChildren1=Parent1;Children2=Parent2;Points=sort(unidrnd(n,1,2*VarNum));for i=1:VarNumChildren1(Points(2*i-1):Points(2*i))=Parent2(Points(2*i-1):Points(2*i));Children2(Points(2*i-1):Points(2*i))=Parent1(Points(2*i-1):Points(2*i));end%变异操作function [NewPop]=Mutation(OldPop,pMutation,VarNum)global m n NewPopr=rand(1,m);position=find(r<=pMutation);len=length(position);if len>=1for i=1:lenk=unidrnd(n,1,VarNum); %设置变异点数,一般设置1点for j=1:length(k)if OldPop(position(i),k(j))==1OldPop(position(i),k(j))=0;elseOldPop(position(i),k(j))=1;endendendendNewPop=OldPop;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%倒位操作function [NewPop]=Inversion(OldPop,pInversion)global m n NewPopNewPop=OldPop;r=rand(1,m);PopIn=find(r<=pInversion);len=length(PopIn);if len>=1for i=1:lend=sort(unidrnd(n,1,2));if d(1)~=1&d(2)~=nNewPop(PopIn(i),1:d(1)-1)=OldPop(PopIn(i),1:d(1)-1);NewPop(PopIn(i),d(1):d(2))=OldPop(PopIn(i),d(2):-1:d(1));NewPop(PopIn(i),d(2)+1:n)=OldPop(PopIn(i),d(2)+1:n);endendend遗传算法程序(二):function youhuafunD=code;N=50; % Tunablemaxgen=50; % Tunablecrossrate=0.5; %Tunablemuterate=0.08; %Tunablegeneration=1;num = length(D);fatherrand=randint(num,N,3);score = zeros(maxgen,N);while generation<=maxgenind=randperm(N-2)+2; % 随机配对交叉A=fatherrand(:,ind(1:(N-2)/2));B=fatherrand(:,ind((N-2)/2+1:end));% 多点交叉rnd=rand(num,(N-2)/2);ind=rnd tmp=A(ind);A(ind)=B(ind);B(ind)=tmp;% % 两点交叉% for kk=1:(N-2)/2% rndtmp=randint(1,1,num)+1;% tmp=A(1:rndtmp,kk);% A(1:rndtmp,kk)=B(1:rndtmp,kk);% B(1:rndtmp,kk)=tmp;% endfatherrand=[fatherrand(:,1:2),A,B];% 变异rnd=rand(num,N);ind=rnd [m,n]=size(ind);tmp=randint(m,n,2)+1;tmp(:,1:2)=0;fatherrand=tmp+fatherrand;fatherrand=mod(fatherrand,3);% fatherrand(ind)=tmp;%评价、选择scoreN=scorefun(fatherrand,D);% 求得N个个体的评价函数score(generation,:)=scoreN;[scoreSort,scoreind]=sort(scoreN);sumscore=cumsum(scoreSort);sumscore=sumscore./sumscore(end);childind(1:2)=scoreind(end-1:end);for k=3:Ntmprnd=rand;tmpind=tmprnd difind=[0,diff(tmpind)];if ~any(difind)difind(1)=1;endchildind(k)=scoreind(logical(difind));endfatherrand=fatherrand(:,childind);generation=generation+1;end% scoremaxV=max(score,[],2);minV=11*300-maxV;plot(minV,'*');title('各代的目标函数值');F4=D(:,4);FF4=F4-fatherrand(:,1);FF4=max(FF4,1);D(:,5)=FF4;save DData Dfunction D=codeload youhua.mat% properties F2 and F3F1=A(:,1);F2=A(:,2);F3=A(:,3);if (max(F2)>1450)||(min(F2)<=900)error('DATA property F2 exceed it''s range (900,1450]')end% get group property F1 of data, according to F2 valueF4=zeros(size(F1));for ite=11:-1:1index=find(F2<=900+ite*50);F4(index)=ite;endD=[F1,F2,F3,F4];function ScoreN=scorefun(fatherrand,D)F3=D(:,3);F4=D(:,4);N=size(fatherrand,2);FF4=F4*ones(1,N);FF4rnd=FF4-fatherrand;FF4rnd=max(FF4rnd,1);ScoreN=ones(1,N)*300*11;% 这里有待优化for k=1:NFF4k=FF4rnd(:,k);for ite=1:11F0index=find(FF4k==ite);if ~isempty(F0index)tmpMat=F3(F0index);tmpSco=sum(tmpMat);ScoreBin(ite)=mod(tmpSco,300);endendScorek(k)=sum(ScoreBin);endScoreN=ScoreN-Scorek;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%遗传算法程序(三):%IAGAfunction best=gaclearMAX_gen=200; %最大迭代步数best.max_f=0; %当前最大的适应度STOP_f=14.5; %停止循环的适应度RANGE=[0 255]; %初始取值范围[0 255]SPEEDUP_INTER=5; %进入加速迭代的间隔advance_k=0; %优化的次数popus=init; %初始化for gen=1:MAX_genfitness=fit(popus,RANGE); %求适应度f=fitness.f;picked=choose(popus,fitness); %选择popus=intercross(popus,picked); %杂交popus=aberrance(popus,picked); %变异if max(f)>best.max_fadvance_k=advance_k+1;x_better(advance_k)=fitness.x;best.max_f=max(f);best.popus=popus;best.x=fitness.x;endif mod(advance_k,SPEEDUP_INTER)==0RANGE=minmax(x_better);RANGEadvance=0;endendreturn;function popus=init%初始化M=50;%种群个体数目N=30;%编码长度popus=round(rand(M,N));return;function fitness=fit(popus,RANGE)%求适应度[M,N]=size(popus);fitness=zeros(M,1);%适应度f=zeros(M,1);%函数值A=RANGE(1);B=RANGE(2);%初始取值范围[0 255]for m=1:Mx=0;for n=1:Nx=x+popus(m,n)*(2^(n-1));endx=x*((B-A)/(2^N))+A;for k=1:5f(m,1)=f(m,1)-(k*sin((k+1)*x+k));endendf_std=(f-min(f))./(max(f)-min(f));%函数值标准化fitness.f=f;fitness.f_std=f_std;fitness.x=x;return;function picked=choose(popus,fitness)%选择f=fitness.f;f_std=fitness.f_std;[M,N]=size(popus);choose_N=3; %选择choose_N对双亲picked=zeros(choose_N,2); %记录选择好的双亲p=zeros(M,1); %选择概率d_order=zeros(M,1);%把父代个体按适应度从大到小排序f_t=sort(f,'descend');%将适应度按降序排列for k=1:Mx=find(f==f_t(k));%降序排列的个体序号d_order(k)=x(1);endfor m=1:Mpopus_t(m,:)=popus(d_order(m),:);endpopus=popus_t;f=f_t;p=f_std./sum(f_std); %选择概率c_p=cumsum(p)'; %累积概率for cn=1:choose_Npicked(cn,1)=roulette(c_p); %轮盘赌picked(cn,2)=roulette(c_p); %轮盘赌popus=intercross(popus,picked(cn,:));%杂交endpopus=aberrance(popus,picked);%变异return;function popus=intercross(popus,picked) %杂交[M_p,N_p]=size(picked);[M,N]=size(popus);for cn=1:M_pp(1)=ceil(rand*N);%生成杂交位置p(2)=ceil(rand*N);p=sort(p);t=popus(picked(cn,1),p(1):p(2));popus(picked(cn,1),p(1):p(2))=popus(picked(cn,2),p(1):p(2));popus(picked(cn,2),p(1):p(2))=t;endreturn;function popus=aberrance(popus,picked) %变异P_a=0.05;%变异概率[M,N]=size(popus);[M_p,N_p]=size(picked);U=rand(1,2);for kp=1:M_pif U(2)>=P_a %如果大于变异概率,就不变异continue;endif U(1)>=0.5a=picked(kp,1);elsea=picked(kp,2);endp(1)=ceil(rand*N);%生成变异位置p(2)=ceil(rand*N);if popus(a,p(1))==1%0 1变换popus(a,p(1))=0;elsepopus(a,p(1))=1;endif popus(a,p(2))==1popus(a,p(2))=0;elsepopus(a,p(2))=1;endendreturn;function picked=roulette(c_p) %轮盘赌[M,N]=size(c_p);M=max([M N]);U=rand;if U<c_p(1)picked=1;return;endfor m=1:(M-1)if U>c_p(m) & U<c_p(m+1)picked=m+1;break;endend全方位的两点杂交、两点变异的改进的加速遗传算法(IAGA)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%。
遗传算法应用实例及matlab程序遗传算法是一种模拟自然进化过程的优化算法,在多个领域都有广泛的应用。
下面将以一个经典的实例,车间调度问题,来说明遗传算法在实际问题中的应用,并给出一个基于MATLAB的实现。
车间调度问题是一个经典的组合优化问题,它是指在给定一系列任务和一台机器的情况下,如何安排任务的执行顺序,以便最小化任务的完成时间或最大化任务的完成效率。
这个问题通常是NP困难问题,因此传统的优化算法往往难以找到全局最优解。
遗传算法能够解决车间调度问题,其基本思想是通过模拟生物进化的过程,不断演化和改进任务的调度顺序,以找到最优解。
具体步骤如下:1. 初始种群的生成:生成一批初始调度方案,每个方案都表示为一个染色体,一般采用随机生成的方式。
2. 个体适应度的计算:根据染色体中任务的执行顺序,计算每个调度方案的适应度值,一般使用任务完成时间作为适应度度量。
3. 选择操作:根据个体的适应度,采用选择策略选择一部分优秀个体作为父代。
4. 交叉操作:对选中的个体进行交叉操作,生成新的子代个体。
5. 变异操作:对子代个体进行变异操作,引入随机性,增加搜索空间的广度。
6. 替换操作:用新的个体替换原来的个体,形成新一代的种群。
7. 迭代过程:重复执行选择、交叉、变异和替换操作,直到达到预定的终止条件。
下面给出基于MATLAB的实现示例:matlabfunction [best_solution, best_fitness] =genetic_algorithm(num_generations, population_size) % 初始化种群population = generate_population(population_size);for generation = 1:num_generations% 计算适应度fitness = calculate_fitness(population);% 选择操作selected_population = selection(population, fitness);% 交叉操作crossed_population = crossover(selected_population);% 变异操作mutated_population = mutation(crossed_population);% 替换操作population = replace(population, selected_population, mutated_population);end% 找到最优解[~, index] = max(fitness);best_solution = population(index,:);best_fitness = fitness(index);endfunction population = generate_population(population_size) % 根据问题的具体要求,生成初始种群population = randi([1, num_tasks], [population_size, num_tasks]); endfunction fitness = calculate_fitness(population)% 根据任务执行顺序,计算每个调度方案的适应度% 这里以任务完成时间作为适应度度量fitness = zeros(size(population, 1), 1);for i = 1:size(population, 1)solution = population(i,:);% 计算任务完成时间completion_time = calculate_completion_time(solution);% 适应度为任务完成时间的倒数fitness(i) = 1 / completion_time;endendfunction selected_population = selection(population, fitness) % 根据适应度值选择父代个体% 这里采用轮盘赌选择策略selected_population = zeros(size(population));for i = 1:size(population, 1)% 计算选择概率prob = fitness / sum(fitness);% 轮盘赌选择selected_population(i,:) = population(find(rand <= cumsum(prob), 1),:);endendfunction crossed_population = crossover(selected_population) % 对选中的个体进行交叉操作% 这里采用单点交叉crossed_population = zeros(size(selected_population));for i = 1:size(selected_population, 1) / 2parent1 = selected_population(2*i-1,:);parent2 = selected_population(2*i,:);% 随机选择交叉点crossover_point = randi([1, size(parent1,2)]);% 交叉操作crossed_population(2*i-1,:) = [parent1(1:crossover_point), parent2(crossover_point+1:end)];crossed_population(2*i,:) = [parent2(1:crossover_point), parent1(crossover_point+1:end)];endendfunction mutated_population = mutation(crossed_population) % 对子代个体进行变异操作% 这里采用单点变异mutated_population = crossed_population;for i = 1:size(mutated_population, 1)individual = mutated_population(i,:);% 随机选择变异点mutation_point = randi([1, size(individual,2)]);% 变异操作mutated_population(i,mutation_point) = randi([1, num_tasks]);endendfunction new_population = replace(population, selected_population, mutated_population)% 根据选择、交叉和变异得到的个体替换原来的个体new_population = mutated_population;for i = 1:size(population, 1)if ismember(population(i,:), selected_population, 'rows')% 保留选择得到的个体continue;else% 随机选择一个父代个体进行替换index = randi([1, size(selected_population,1)]);new_population(i,:) = selected_population(index,:);endendend该示例代码实现了车间调度问题的遗传算法求解过程,具体实现了种群的初始化、适应度计算、选择、交叉、变异和替换等操作。
python 遗传算法求解ft06案例FT06问题是一个著名的优化问题,其目标是在给定一组权重的情况下,寻找一组权重和最小的权重的值。
在遗传算法中,我们使用“基因”来表示每个个体的特性,并使用“染色体”来表示个体的完整特性。
在FT06问题中,我们可以将每个个体的基因设置为一个实数,并使用一组权重来定义每个基因的重要性。
然后,我们使用遗传算法来找到一组权重和最小的染色体。
以下是一个使用Python编写的简单遗传算法求解FT06问题的示例代码:```pythonimport numpy as np定义适应度函数def fitness(chromosome):weights = (chromosome)return (weights)定义交叉函数def crossover(parent1, parent2):child = [x for x in parent1] + [x for x in parent2]return child定义变异函数def mutation(chromosome):prob = ()if prob < : 1%的概率发生变异i = (0, len(chromosome)) 随机选择一个基因chromosome[i] = 1 - chromosome[i] 翻转基因的值return chromosome初始化种群pop_size = 100 种群大小chrom_length = 10 染色体长度pop = (2, size=(pop_size, chrom_length)) 随机生成初始种群遗传算法主循环for generation in range(100): 迭代100代计算适应度值并排序种群fitness_values = [fitness(chromosome) for chromosome in pop] pop_sorted = ([pop[i] for i in (fitness_values)])选择操作:轮盘赌选择法for i in range(pop_size):if i < pop_size : 前80%的个体采用轮盘赌选择法选择fitness_values_sum = (fitness_values[:i + 1])prob = () fitness_values_sum / sum(fitness_values)j = 0while j < i and prob > sum(fitness_values[:j]):prob -= fitness_values[j]j += 1pop[i] = pop_sorted[j] 选择适应度值最高的个体else: 后20%的个体采用均匀选择法选择pop[i] = pop_sorted[(0, len(pop_sorted))]交叉操作:单点交叉法new_pop = []for i in range(int(pop_size ), pop_size): 前70%的个体不参与交叉操作parent1, parent2 = pop[(0, pop_size)], pop[(0, pop_size)]child = crossover(parent1, parent2)new_(child)new_pop += pop[:int(pop_size )] 将未参与交叉操作的个体加入新种群中pop = (new_pop) 更新种群变异操作:均匀变异法for i in range(int(pop_size )): 前10%的个体不参与变异操作chromosome = pop[(0, pop_size)]mutation(chromosome) 对染色体进行变异操作pop = ([mutation(chromosome) for chromosome in pop]) 对所有染色体进行变异操作,并更新种群```。
遗传算法及几个例子遗传算法(Genetic Algorithms)是一种借鉴生物界自然选择和自然遗传机制的随机、高度并行、自适应搜索算法。
遗传算法是多学科相互结合与渗透的产物。
目前它已发展成一种自组织、自适应的多学科技术。
针对各种不同类型的问题,借鉴自然界中生物遗传与进化的机理,学者们设计了不同的编码方法来表示问题的可行解,开发出了许多不同环境下的生物遗传特征。
这样由不同的编码方法和不同的遗传操作方法就构成了各种不同的遗传算法。
但这些遗传算法有共同的特点,即通过对生物的遗传和进化过程中的选择、交叉、变异机理的模仿来完成对最优解的自适应搜索过程。
基于此共同点,人们总结出了最基本的遗传算法——基本遗传算法。
基本遗传算法只使用选择、交叉、变异三种基本遗传操作。
遗传操作的过程也比较简单、容易理解。
同时,基本遗传算法也是其他一些遗传算法的基础与雏形。
1.1.1 编码方法用遗传算法求解问题时,不是对所求解问题的实际决策变量直接进行操作,而是对表示可行解的个体编码的操作,不断搜索出适应度较高的个体,并在群体中增加其数量,最终寻找到问题的最优解或近似最优解。
因此,必须建立问题的可行解的实际表示和遗传算法的染色体位串结构之间的联系。
在遗传算法中,把一个问题的可行解从其解空间转换到遗传算法所能处理的搜索空间的转换方法称之为编码。
反之,个体从搜索空间的基因型变换到解空间的表现型的方法称之为解码方法。
编码是应用遗传算法是需要解决的首要问题,也是一个关键步骤。
迄今为止人们已经设计出了许多种不同的编码方法。
基本遗传算法使用的是二进制符号0和1所组成的二进制符号集{0,1},也就是说,把问题空间的参数表示为基于字符集{0,1}构成的染色体位串。
每个个体的染色体中所包含的数字的个数L 称为染色体的长度或称为符号串的长度。
一般染色体的长度L 为一固定的数,如X=10011100100011010100表示一个个体,该个体的染色体长度L=20。
遗传算法实例1. 引言遗传算法是一种启发式优化算法,常用于解决复杂的优化问题。
其模拟了自然界中的进化过程,通过遗传操作(选择、交叉和变异)对候选解进行搜索和改进,以找到最优解。
本文将介绍一个遗传算法的实例,该实例将应用于解决一个经典的旅行商问题(TSP)。
2. 问题描述旅行商问题是一个经典的组合优化问题,其目标是寻找一条最短的路径,使得旅行商能够访问所有给定的城市并回到起始城市。
在该问题中,我们假设每个城市之间的距离是已知的,并且每个城市只能被访问一次。
3. 算法步骤遗传算法通常包括以下步骤:3.1 初始化种群首先,我们需要初始化一个包含多个个体的种群。
每个个体代表了一个可能的解,即一条路径。
3.2 评估适应度对于每个个体,我们需要计算其适应度值,以评估其好坏程度。
在旅行商问题中,适应度值可以定义为路径的总距离。
适应度越小表示路径越短,个体越优秀。
3.3 选择操作选择操作的目的是为了选择优秀的个体进入下一代种群。
常用的选择方法有轮盘赌选择和排名选择等。
选择过程中,适应度值好的个体被选中的概率较大。
3.4 交叉操作交叉操作模拟了生物进化过程中的杂交。
通过交换两个个体的染色体片段,产生新的个体。
在旅行商问题中,我们可以随机选择两个个体,并选择一个交叉点,将两个个体的染色体在交叉点之后进行互换。
3.5 变异操作变异操作模拟了生物基因突变的过程。
通过随机改变个体的某个基因值,产生一个新的个体。
3.6 更新种群将选择和变异操作生成的个体加入新的种群中,并取代原来的个体。
这样,我们就得到了新的种群,继续进行下一代的迭代。
3.7 终止条件算法的终止条件可以是满足一定迭代次数或者找到了满足问题要求的最优解。
4. 遗传算法代码实现以下是一个使用Python实现的遗传算法的伪代码:# 初始化种群population = initialize_population()# 迭代计算for generation in range(max_generations):# 评估适应度fitness_values = evaluate_fitness(population)# 选择操作selected_population = selection(population, fitness_values)# 交叉操作offspring_population = crossover(selected_population)# 变异操作mutated_population = mutation(offspring_population)# 更新种群population = mutated_population# 检查终止条件if check_termination_condition():break# 获取最优解best_solution = get_best_solution(population)上述伪代码中的函数可以根据具体问题进行实现,而具体问题中的距离计算、初始化种群等操作也需要根据实际情况进行编写。
以下是一个简单的遗传算法的C语言代码示例:c#include <stdio.h>#include <stdlib.h>#include <time.h>#include <math.h>#define POPULATION_SIZE 100#define GENE_LENGTH 10#define MAX_GENERATIONS 1000#define MUTATION_RATE 0.01#define CROSSOVER_RATE 0.8typedef struct Individual {char genes[GENE_LENGTH];double fitness;} Individual;double calculate_fitness(Individual* individual) {// 计算适应度函数,这里使用简单的二进制字符串中1的个数作为适应度 int count = 0;for (int i = 0; i < GENE_LENGTH; i++) {if (individual->genes[i] == '1') {count++;}}return count;}void initialize_population(Individual* population) {// 初始化种群for (int i = 0; i < POPULATION_SIZE; i++) {for (int j = 0; j < GENE_LENGTH; j++) {population[i].genes[j] = rand() % 2 ? '0' : '1';}population[i].fitness = calculate_fitness(&population[i]); }}void selection(Individual* population, Individual* parents) {// 选择操作,采用轮盘赌算法选择两个父代个体double total_fitness = 0;for (int i = 0; i < POPULATION_SIZE; i++) {total_fitness += population[i].fitness;}double rand1 = rand() / (double)RAND_MAX * total_fitness;double rand2 = rand() / (double)RAND_MAX * total_fitness;double cumulative_fitness = 0;int parent1_index = -1, parent2_index = -1;for (int i = 0; i < POPULATION_SIZE; i++) {cumulative_fitness += population[i].fitness;if (rand1 < cumulative_fitness && parent1_index == -1) {parent1_index = i;}if (rand2 < cumulative_fitness && parent2_index == -1) {parent2_index = i;}}parents[0] = population[parent1_index];parents[1] = population[parent2_index];}void crossover(Individual* parents, Individual* offspring) {// 交叉操作,采用单点交叉算法生成两个子代个体int crossover_point = rand() % GENE_LENGTH;for (int i = 0; i < crossover_point; i++) {offspring[0].genes[i] = parents[0].genes[i];offspring[1].genes[i] = parents[1].genes[i];}for (int i = crossover_point; i < GENE_LENGTH; i++) {offspring[0].genes[i] = parents[1].genes[i];offspring[1].genes[i] = parents[0].genes[i];}offspring[0].fitness = calculate_fitness(&offspring[0]);offspring[1].fitness = calculate_fitness(&offspring[1]);}void mutation(Individual* individual) {// 变异操作,以一定概率翻转基因位上的值for (int i = 0; i < GENE_LENGTH; i++) {if (rand() / (double)RAND_MAX < MUTATION_RATE) {individual->genes[i] = individual->genes[i] == '0' ? '1' : '0'; }}individual->fitness = calculate_fitness(individual);}void replace(Individual* population, Individual* offspring) {// 替换操作,将两个子代个体中适应度更高的一个替换掉种群中适应度最低的一个个体int worst_index = -1;double worst_fitness = INFINITY;for (int i = 0; i < POPULATION_SIZE; i++) {if (population[i].fitness < worst_fitness) {worst_index = i;worst_fitness = population[i].fitness;}}if (offspring[0].fitness > worst_fitness || offspring[1].fitness > worst_fitness) {if (offspring[0].fitness > offspring[1].fitness) {population[worst_index] = offspring[0];} else {population[worst_index] = offspring[1];}}}。
% 下面举例说明遗传算法%% 求下列函数的最大值%% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %% 将x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01 。
%% 将变量域[0,10] 离散化为二值域[0,1023], x=0+10*b/1023, 其中b 是[0,1023] 中的一个二值数。
% 编程2.1初始化(编码)% initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。
%遗传算法子程序%Name: initpop.m%初始化function pop=initpop(popsize,chromlength)pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为{0,1} 行数为popsize,列数为chromlength的矩阵,% round对矩阵的每个单元进行圆整。
这样产生的初始种群。
2.2 计算目标函数值% 2.2.1 将二进制数转化为十进制数(1)%遗传算法子程序%Name: decodebinary.m%产生[2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制function pop2=decodebinary(pop)[px,py]=size(pop); %求pop行和列数for i=1:pypop1(:,i)=2.^(py-i).*pop(:,i);endpop2=sum(pop1,2); %求pop1的每行之和1表示每列相加,2表示每行相加% 2.2.2 将二进制编码转化为十进制数(2)% decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置% (对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。
实验一、过河问题一、问题描述有三个牧师和三个野人过河,只有一条能装下两个人的船,在河的任何一方或者船上,如果野人的人数大于牧师的认输,那么牧师就会有危险.找出一种按的渡河方法。
将该问题转变为:假如有n个牧师和n个野人准备渡河,但只有一条能容纳c个人的小船,为了防止野人侵犯牧师,要求无论在何处,牧师的人数不得少于野人的人数(除非牧师人数为0),且假定两种人都会划船,试设计一个算法,确定它们能否渡过河去,若能,则给出一只小船来回次数最少的最佳方案。
二、基本要求输入:牧师人数(即野人人数)n,小船一次至多载客人数c。
输出:若问题无解,则显示“渡河失败”信息,否则,输出一组最佳方案,用三组(X1,X2,X3)表示渡河过程中的状态。
并用箭头输出这些状态之间的迁移:目的状态<- <-中间状态<- <-初始状态。
例:当n=2,c=2时,输出000<-021<-211<-110<-221上述(X1,X1,X2)表示渡河过程中各个状态。
其中:X1表示始岸上牧师人数,X2表示始岸上野人人数,X3表示小船位置,(0-在目的岸,1-在起始岸)三、算法描述(1)算法基本思想的文字描述;从初始状态S(n,n,1)出发,形成的有合法且未达状态S11、S12、……、Sli。
再分别从S11、S12、……、Sli出发形成所有合法而未达状态S111、S112、……、Sli1、Sli2、Sli ……最终达到目标(0,0,0)(有解),或者找不到合法而未达状态(无解)。
若有解,则从目标返回找前趋状态,前趋状态的前趋状态……直到初始状态。
(2)判别(X1,X2,X3)为合法状态条件:X1=0或X1=n或X1=X2。
(3)数据结构:1 栈STACK ,记下“已达”状态及踪迹,并兼作队列。
2 STATE[X1][X2]=(4)算法基本思想的具体实现:1 初始化:置STATE[N+1][N+1][2]中的有状态为“未达”置队列STACK 空,cond 为当前是否已达到目标: cond= cond 置初值 2 以S (n,n,1)为始点,置STATE 为“已达”。
遗传算法的程序实例如求下列函数的最大值f(x)=10*sin(5x)+7*cos(4x) x∈[0,10]一、初始化(编码)initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),长度大小取决于变量的二进制编码的长度(在本例中取10位)。
代码:%Name: initpop.m%初始化function pop=initpop(popsize,chromlength)pop=round(rand(popsize,chromlength));% rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵,% roud对矩阵的每个单元进行圆整。
这样产生的初始种群。
二、计算目标函数值1、将二进制数转化为十进制数(1)代码:%Name: decodebinary.m%产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制function pop2=decodebinary(pop)[px,py]=size(pop); %求pop行和例数for i=1:pypop1(:,i)=2.^(py-1).*pop(:,i);py=py-1;endpop2=sum(pop1,2); %求pop1的每行之和2、将二进制编码转化为十进制数(2)decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置。
(对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。
本例为1),参数1ength表示所截取的长度(本例为10)。
代码:%Name: decodechrom.m%将二进制编码转换成十进制function pop2=decodechrom(pop,spoint,length)pop1=pop(:,spoint:spoint+length-1);pop2=decodebinary(pop1);3、计算目标函数值calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。
遗传算法简单实例为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各个主要执行步骤。
例:求下述二元函数的最大值:(1) 个体编码遗传算法的运算对象是表示个体的符号串,所以必须把变量x1, x2 编码为一种符号串。
本题中,用无符号二进制整数来表示。
因 x1, x2 为 0 ~ 7之间的整数,所以分别用3位无符号二进制整数来表示,将它们连接在一起所组成的6位无符号二进制数就形成了个体的基因型,表示一个可行解。
例如,基因型 X=101110 所对应的表现型是:x=[ 5,6 ]。
个体的表现型x和基因型X之间可通过编码和解码程序相互转换。
(2) 初始群体的产生遗传算法是对群体进行的进化操作,需要给其淮备一些表示起始搜索点的初始群体数据。
本例中,群体规模的大小取为4,即群体由4个个体组成,每个个体可通过随机方法产生。
如:011101,101011,011100,111001(3) 适应度汁算遗传算法中以个体适应度的大小来评定各个个体的优劣程度,从而决定其遗传机会的大小。
本例中,目标函数总取非负值,并且是以求函数最大值为优化目标,故可直接利用目标函数值作为个体的适应度。
(4) 选择运算选择运算(或称为复制运算)把当前群体中适应度较高的个体按某种规则或模型遗传到下一代群体中。
一般要求适应度较高的个体将有更多的机会遗传到下一代群体中。
本例中,我们采用与适应度成正比的概率来确定各个个体复制到下一代群体中的数量。
其具体操作过程是:•先计算出群体中所有个体的适应度的总和fi ( i=1.2,…,M );•其次计算出每个个体的相对适应度的大小 fi / fi ,它即为每个个体被遗传到下一代群体中的概率,•每个概率值组成一个区域,全部概率值之和为1;•最后再产生一个0到1之间的随机数,依据该随机数出现在上述哪一个概率区域内来确定各个个体被选中的次数。
(5) 交叉运算交叉运算是遗传算法中产生新个体的主要操作过程,它以某一概率相互交换某两个个体之间的部分染色体。
遗传算法程序示例
%% I. 清空环境变量
%optimtool solver 中选择GA
%添加gaot工具箱
clear all
clc
%% II. 绘制函数曲线
x = 0:0.01:9;
y = x + 10*sin(5*x)+7*cos(4*x);
figure
plot(x, y)
xlabel('自变量')
ylabel('因变量')
title('y = x + 10*sin(5*x) + 7*cos(4*x)')
grid
%% III. 初始化种群
initPop = initializega(50,[0 9],'fitness'); %种群大小;变量变化范围;适应度函数的名称
%看一下initpop 第二列代表适应度函数值
%% IV. 遗传算法优化
[x endPop bpop trace] = ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,...
'normGeomSelect',0.08,'arithXover',2,'nonUnifMutation',[2 25 3]);
%变量范围上下界;适应度函数;适应度函数的参数;初始种群;精度和显示方式;终止函数的名称;
%终止函数的参数;选择函数的名称;选择函数的参数;交叉函数的名称;交叉函数的参数;变异函数的
%名称;变异函数的参数
% X 最优个体endpop 优化终止的最优种群bpop 最优种群的进化轨迹trace 进化迭代过程中
%最优的适应度函数值和适应度函数值矩阵
%% V. 输出最优解并绘制最优点
x
hold on
plot (endPop(:,1),endPop(:,2),'ro')
%% VI. 绘制迭代进化曲线
figure(2)
plot(trace(:,1),trace(:,3),'b:')
hold on
plot(trace(:,1),trace(:,2),'r-')
xlabel('Generation'); ylabel('Fittness'); legend('Mean Fitness', 'Best Fitness')。