第3章 概率密度函数
- 格式:ppt
- 大小:4.17 MB
- 文档页数:64
第三章 多维随机变量及其分布第一节二维随机变量的概念1.二维随机变量定义:设(X,Y)是二维随机变量,记为:(,){()()}=≤⋂≤F x y P X x Y y (,)=≤≤P X x Y y (,)-∞<<∞-∞<<∞x y称(,)F x y 为X 与Y 的分布函数,或称X 与Y 的联合分布函数}}(){{(,lim (,)→+∞=≤=≤≤+∞=X y F x P X x P X x Y F x y}}(){{,lim (,)→+∞=≤=≤+∞≤=Y x F y P Y y P X Y y F x y分布函数(,)F x y 性质:1)(,)F x y 是变量x 和变量y 的不减函数,(分别关于x 和y 有单调不减性) 2)0(,)1≤≤F x y ,任意一边趋于-∞=0.F(∞,∞)=1(用来确定未知参数).3)(,)(0,)(0,0)=+=++F x y F x y F x y ,即(,)F x y 分别关于x 右连续,关于y 也右连续,4)对于任意11221212(,),(,),,,<<x y x y x x y y 下述不等式成立(可用于判定二元函数(,)F x y 是不是某二维随机变量的分布函数):22211112(,)(,)(,)(,)0-+-≥F x y F x y F x y F x y 2.二维离散型随机变量:定义:如果二维随机变量(X,Y)只取有限对或可列无穷多对,则称(X,Y)是二维离散型随机变量其概率{,},,1,2,====i i ij P X x Y y p i j …为二维离散型随机变量(X,Y)的分布律,或随机变量X 和Y 是联合分布律 性质:1.0,(i,j 1.2.....)≥=ij P2.1≤≤=∑∑i i ijx x y yp满足以上两条,即为二维离散型随机变量的分布律. 注;步骤:定取值,求概率,验证1.离散型随机变量X 和Y 的联合分布函数为(,)≤≤=∑∑i i ijx x y yF x y p,其中和式是对一切满足,≤≤i i x x y y 的i,j 来求和的边缘分布定义:对于离散型随机变量(X,Y),分量X 和Y 的分布律(), 1.2...(), 1.2..的边缘分布律:的边缘分布律:••========∑∑i i ij jJ i ij iX p P X x p i Y p P Y y p i ,0,0(, 1.2....)1•••≥≥===∑∑i j jiip p i j pi p联合确定边缘,但一般情况,边缘不能确定的联合,除非相互独立. 比如;有放回的摸球,就是X ,Y 相互独立. 不放回地摸球,是条件分布.3.二维连续型随机变量的概率密度和边缘概率密度. 对比一维的: 概率密度:()()1∞-∞==⎰f x f x dx ,分布律:{}(),≤≤=⎰b aP a x b f x dx 分布函数:()()-∞=⎰xF x f t dt二维:定义:设二维随机变量(X,Y)的分布函数为(,)F x y ,若存在非负可积函数(,)f x y ,使得对于任意实数x,y 有(,)(,)-∞-∞=⎰⎰xyF x y f u v dudv ,则称(X,Y)为二维连续型随机变量,(,)f x y 称为(X,Y)的概率密度,或联合概率密度.概率密度的性质: 1.(,)F x y ≥0 2.(,)1∞∞-∞-∞=⎰⎰f x y dxdy只要具有以下两条性质,必可作为某二维随机变量的概率密度.3.已知(X,Y)的概率密度(,)f x y ,则(X,Y)在平面区域D 内取值的概率为:{(,)}(,)∈=⎰⎰DP X Y D f x y dxdy (作二重积分)(随机点(X,Y)落在平面区域D 上的概率等于以平面区域D 为底,以曲面(,)=z f x y 顶的典顶的体积) 4.若(,)F x y 在点(x,y)连续,则有2(,)(,)∂=∂∂F x y f x y x y(连续就能根据分布律求概率密度)1) 当求()=P X Y 时,它只是一条线,所以:()0==P X Y2) 一个方程有无实根:20++=ax bx c ,即求:22240,40,40,一个实根无实根两个实根+=+<+>b ac b ac b ac均匀分布:定义:设D 为平面上的有界区域,其面积为S ,且0>S ,如果二维随机变量(X,Y)的概率密度为1,(x,y)(,)0,其它⎧∈⎪=⎨⎪⎩Df x y S,则称(X,Y)服从区域D 上的均匀分布(或叫(X,Y)在D 上服从均匀分布,记作(X,Y )D U . 两种特殊情形:1) D 为矩形,,c )≤≤≤≤a x b y d 时,1,()()(,),c )0,其它⎧⎪--=≤≤≤≤⎨⎪⎩b a dc f x y a x b y d2) D 为圆形,如(X,Y)在以原点为圆心,R 为半径的圆域上服从均匀分布,则(X,Y)的概率密度为:22221,(,))0,其它π⎧⎪=+≤⎨⎪⎩f x y x y R R定义:对连续型随机变量(X,Y),分量X,Y 的概率密度称为(X,Y)关于X 或Y 的边缘概率密度,记作(),X f x ().Y f y X 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰xX F x F x f u v dv du (让Y趋于正无穷) Y 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰yY F y F y f u v du dv (让X趋于正无穷) X 的概率密度:()(,),()∞-∞=-∞<<∞⎰X f x f x y dy xY 的概率密度:()(,),()∞-∞=-∞<<∞⎰Y f y f x y dx y(二维的边缘概率密度是直接以联合概率密度在负无穷到正无穷对对应元素积分,其间需要对划分区间的作分别积分)(X,Y)的概率密度:(,)(,)[(,)]-∞-∞-∞-∞==⎰⎰⎰⎰x yx yf x y f u v dudv f u v dv du二维正态分布: 二维正态221212(,)(,,,,)σσρX Y N u u 分布函数的性质:1.211()(,)σX N u ,222()(,)σY N u 边缘服从一维正态分布2.0,ρ=⇔xy X Y 独立(相关系数为O,则两个随机变量独立)3.212()()σ++k X k Y N u (线性组合按一维正态处理)4. 1212(),±±k X k Y c X c Y 服从二维正态(如:(,)+-X Y X Y ) 条件分布:设(X,Y)是二维离散型随机变量,对于固定的j ,若{}0=>j P Y y ,则称{=i P X x |{,}},1,2,{}⋅=======i j ij j j jP X x Y y p Y y i P Y y p …为在=j Y y 条件下随机变量X 的条件分布律同样地,若{}0,=>i P X x 则称{=j P Y y |{,}},1,2,{}⋅=======i j ij i i i P X x Y y p X x j P X x p …为=i X x 条件下随机变量Y 的条件分布律 变形,即得求联合分布律的方法.设二维随机变量(X,Y)的概率密度为f(x,y),(X,Y)关于Y 的边缘概率密度为()Y f y .若对于固定的y,()0,>Y f y 则称(,)()Y f x y f y 为在Y=y 的条件下X 的条件概率密度称|(,)(|)()-∞-∞=⎰⎰xxX Y Y f x y f x y dx dx f y 为在Y=y 的条件下,X 的条件分布函数,记为P{X ≤x|Y=y}或|(|)X Y F x y ,即|(,)(|){|}()-∞=≤==⎰x X Y Y f x y F x y P X x Y y dx f y 设F(x,y)及(),()X Y F x F y 分别是二维随机变量(X,Y)的分布函数及边缘分布函数,若对于所有x,y 有P{X ≤x,Y ≤y}=P{X ≤x}P{Y ≤y},即(,)()()=X Y F x y F x F y ,则称随机变量X 和Y 是相互独立的设(X,Y)是连续型随机变量,(,),(),()X Y f x y f x f y 分别为(X,Y)的概率密度和边缘概率密度,则X 和Y 相互独立的条件等价于(,)()()=X Y f x y f x f y 在平面上几乎处处成立(除去面积为0的集合以外,处处成立)第二节随机变量的独立性1. 两个随机变量的独立性 定义:设(,),().()X Y F x y F x F y 分别是二维随机变量(X,Y)的分布函数和两个边缘分布函数,若对任意实数,x y 有(,)().()=X Y F x y F x F y ,则称X 与Y 相互独立.可用于判断独立性(随机变量独立,对任意实数x,y,事件X ,Y ≤≤x y 相互独立) 以上公式等价于:(X ,Y )(X ).()≤≤=≤≤X Y P x y P x P Y y 可类推至多个函数的情况.1)如果X,Y 随机变量独立,().()连续f x g y ,(通过函数作用)则().()f x g y 也独立.(可类推至多个随机变量的情况)例:X,Y 独立,则22,x y 独立.2)如果1212,...,...,YYYm m X X X 相互独立,12m 121()()...()()()....()和,f x f x f x g y g y g y 也相互独立。
概率密度定义概率密度定义概率密度是概率论中的一个重要概念,用于描述随机变量取值的分布情况。
在统计学、物理学、工程学等领域都有广泛应用。
一、基本概念1. 随机变量随机变量是指在随机试验中可能出现的各种结果所对应的数量。
它可以是离散型随机变量或连续型随机变量。
2. 概率密度函数对于连续型随机变量,其取值范围是一个区间,其分布情况可以用概率密度函数来描述。
概率密度函数是一个非负可积函数,其积分值等于1。
3. 概率密度概率密度是指在某个取值点上的导数值,它表示了在该点附近单位长度内出现该随机变量取值的可能性大小。
4. 累积分布函数累积分布函数是指连续型随机变量小于等于某个取值时的概率。
它可以由概率密度函数通过积分得到。
二、公式推导1. 概率密度与累积分布函数的关系设X为一个连续型随机变量,其累积分布函数为F(x),概率密度函数为f(x)。
则有:F(x) = P(X ≤ x) = ∫f(t)dt其中,积分上限是x,下限是负无穷。
2. 概率密度的性质(1)非负性:概率密度函数f(x) ≥ 0。
(2)可积性:概率密度函数在定义域上可积,即∫f(x)dx存在且有限。
(3)归一性:概率密度函数的积分值等于1,即∫f(x)dx = 1。
3. 概率计算公式对于连续型随机变量X,其在区间[a, b]内取值的概率可以表示为:P(a ≤ X ≤ b) = ∫a^bf(x)dx三、应用场景1. 统计学中的应用在统计学中,概率密度函数常用于描述样本数据的分布情况,并通过参数估计推断总体数据的分布情况。
2. 物理学中的应用在物理学中,概率密度函数常用于描述粒子在空间中出现的分布情况,并通过波函数求解得到粒子运动规律。
3. 工程学中的应用在工程学中,概率密度函数常用于描述信号、噪声等随机变量的分布情况,并通过信号处理等技术进行分析和处理。
四、总结概率密度是描述连续型随机变量分布情况的重要工具,其可以通过累积分布函数推导得到。
在统计学、物理学、工程学等领域都有广泛应用,是理解这些领域中随机变量分布情况的基础。
概率密度函数计算概率密度函数是概率论中一个非常重要的概念,它描述了随机变量在各个取值点上的概率密度。
概率密度函数通常用符号f(x)表示,其中x代表随机变量的取值。
在数学上,概率密度函数有一些基本性质,比如在整个定义域上的积分等于1,以及非负性等。
概率密度函数在统计学、工程学、金融学等领域都有着广泛的应用。
在统计学中,概率密度函数可以帮助我们描述随机变量的概率分布,从而进行概率推断和统计分析。
在工程学中,概率密度函数可以帮助我们分析和设计各种系统的性能。
在金融学中,概率密度函数可以帮助我们评估不同投资的风险和回报。
总之,概率密度函数在各个领域都扮演着至关重要的角色。
概率密度函数的形式可以有很多种,比如正态分布、均匀分布、指数分布等。
正态分布是最常见的一种概率密度函数,也被称为高斯分布。
正态分布的概率密度函数是一个钟形曲线,具有对称性和单峰性。
均匀分布的概率密度函数是一个常数函数,表示在一个区间内各个取值点的概率是相等的。
指数分布的概率密度函数是一个指数函数,表示在一个区间内随机事件发生的概率随着时间的增加而不断减小。
概率密度函数的性质可以帮助我们进行各种概率计算。
比如,我们可以利用概率密度函数计算随机变量落在某个区间内的概率,或者计算随机变量的期望和方差等。
概率密度函数还可以帮助我们进行假设检验、置信区间估计等统计推断。
因此,熟练掌握概率密度函数的性质和应用是非常重要的。
总的来说,概率密度函数是概率论中一个基础而重要的概念,它不仅在理论研究中发挥着重要作用,也在实际问题的建模和解决中发挥着关键作用。
通过深入理解概率密度函数的定义、性质和应用,我们可以更好地理解和分析各种随机现象,从而更好地处理各种实际问题。
希望通过本文的介绍,读者能对概率密度函数有一个更清晰的认识,从而在相关领域的学习和研究中取得更好的成果。
概率密度函数和概率分布的概念在统计学和概率论中扮演着重要的角色。
它们帮助我们描述和理解随机变量的分布规律,从而在实际问题中进行推断和决策。
本文将介绍概率密度函数和概率分布的基本概念,并通过实际举例来说明它们的应用。
一、概率密度函数的定义和性质概率密度函数是描述连续型随机变量分布规律的数学函数。
对于一个连续型随机变量X,其概率密度函数f(x)满足以下两个性质:1. 非负性:对于任意实数x,有f(x) ≥ 0。
2. 正则性:∫f(x)dx = 1,即概率密度函数在整个定义域上的积分等于1。
概率密度函数可以用来计算随机变量落在某个区间内的概率。
具体而言,对于区间[a, b],概率可以通过计算该区间下的概率密度函数曲线与x轴之间的面积来得到。
二、概率分布的定义和性质概率分布是描述随机变量取值及其对应概率的函数。
对于一个离散型随机变量X,其概率分布可以通过列举每个取值及其对应的概率来表示。
而对于一个连续型随机变量X,其概率分布则可以通过概率密度函数来定义。
常见的概率分布包括均匀分布、正态分布、指数分布等。
这些分布都有着不同的特点和应用场景。
例如,正态分布是自然界中许多现象的分布模型,如身高、体重等。
指数分布则常用于描述随机事件的发生时间间隔。
三、实际举例为了更好地理解概率密度函数和概率分布的概念,我们来看一个实际的例子——骰子的投掷。
假设我们有一个标准的六面骰子,每个面上的数字从1到6。
我们想知道投掷一次骰子,落在某个区间内的概率是多少。
首先,我们可以将骰子的结果定义为一个离散型随机变量X,其取值范围为{1, 2, 3, 4, 5, 6},每个取值的概率均为1/6。
这就是骰子的概率分布。
然而,如果我们想知道投掷一次骰子,结果落在区间[3, 5]内的概率,就需要用到概率密度函数。
由于骰子的结果是离散的,所以其概率密度函数为0,即f(x) = 0,对于任意x∈[3, 5]。
通过这个例子,我们可以看到概率密度函数和概率分布的关系。