磁场对通电导体的作用力
- 格式:docx
- 大小:291.61 KB
- 文档页数:18
1.1 磁场对通电导线的作用力一、安培力的方向1.安培力:通电导线在 中受的力.2.左手定则:伸开左手,使拇指与其余四个手指 ,并且都与 在同一个平面内;让磁感线从 垂直进入,并使四指指向 的方向,这时 所指的方向就是通电导线在磁场中所受安培力的方向.3.安培力方向与磁场方向、电流方向的关系: , ,即F 垂直于B 与I 所决定的平面.二、安培力的大小1.垂直于磁场B 的方向放置的长为l 的通电导线,当通过的电流为I 时,所受安培力为F = . 2.当磁感应强度B 的方向与电流方向成θ角时,公式F = . 三、磁电式电流表1.原理:安培力与电流的关系.通电线圈在磁场中受到 而偏转,线圈偏转的角度越大,被测电流就越 .根据 的偏转方向,可以知道被测电流的方向. 2.构造:磁体、线圈、螺旋弹簧、指针、极靴.3.特点:极靴与铁质圆柱间的磁场沿 方向,线圈无论转到什么位置,它的平面都跟磁感线 ,且线圈左右两边所在处的磁感应强度大小 .4.优点:灵敏度高,可以测出很弱的电流.缺点:线圈的导线很细,允许通过的电流很弱.【参考答案】磁场 垂直 掌心 电流 拇指 F ⊥B F ⊥I IlB IlB sin θ 指针 半径 平行 相等考点一:两根通电导线之间的作用力方向【例1】在正三角形ABC 的三个顶点A 、B 、C 处,各固定有一根垂直于三角形的长直导线,每根导线通有大小相同的恒定电流,电流方向如图所示,已知导线A 受到的安培力大小为F ,则导线C 受到的安培力( )基础知识梳理典型例题分析A .大小为F ,方向平行AB 向左下 B .大小为F ,方向平行AB 向右上C ,方向垂直AB 向右下D ,方向垂直AB 向左上 【答案】C【解析】设两长直导线间的相互作用力大小为F 1,反向电流相互排斥,同向电流相互吸引,对长直导线A 研究,根据力的合成可得12cos60F F ︒=解得1F F =对长直导线C 研究,根据力的合成可得,C 受到的安培力为C 12cos30F F =︒=方向垂直AB 向右下。
《磁场对通电导线的作用力》精品教案6一、教学内容本节课选自物理教材第九章《电磁学》第三节《磁场对通电导线的作用力》。
详细内容包括:磁场对通电导线作用力的定义、安培力定律、左手定则的应用,以及磁场对通电导线作用力的计算。
二、教学目标1. 理解磁场对通电导线作用力的概念,掌握安培力定律。
2. 学会使用左手定则判断磁场对通电导线作用力的方向。
3. 能够运用磁场对通电导线作用力的计算公式解决实际问题。
三、教学难点与重点难点:磁场对通电导线作用力的计算。
重点:安培力定律、左手定则的应用。
四、教具与学具准备1. 教具:磁场演示器、电流表、导线、电源、磁铁。
2. 学具:计算器、练习本、铅笔。
五、教学过程1. 实践情景引入:通过演示磁场演示器,让学生观察电流通过导线时受到的磁场力作用。
2. 知识讲解:(1) 安培力定律:讲解安培力定律的原理,引导学生理解磁场对通电导线作用力的计算方法。
(2) 左手定则:讲解左手定则的使用方法,让学生学会判断磁场对通电导线作用力的方向。
3. 例题讲解:讲解一道磁场对通电导线作用力的计算题,步骤如下:(1) 分析题目,列出已知量和未知量。
(2) 运用安培力定律和左手定则,列出计算公式。
(3) 代入已知量,求解未知量。
4. 随堂练习:让学生独立完成一道磁场对通电导线作用力的计算题,巩固所学知识。
六、板书设计1. 磁场对通电导线的作用力(1) 安培力定律(2) 左手定则(3) 计算公式2. 例题解析3. 课堂小结七、作业设计1. 作业题目:计算一道磁场对通电导线作用力的题目。
题目:一根长为1米的直导线,通以5安培的电流,放入磁感应强度为0.5特斯拉的磁场中,求导线受到的磁场力。
答案:F = BIL = 0.5 × 5 × 1 = 2.5牛顿2. 作业要求:完成题目计算,并解释计算过程中所用到的公式和原理。
八、课后反思及拓展延伸1. 反思:本节课学生对磁场对通电导线作用力的理解程度,以及解题方法的掌握情况。
《磁场对通电导线的作用力》教案6教案6:《磁场对通电导线的作用力》教学内容:本节课的教学内容来自于高中物理教材第四章第三节“磁场对通电导线的作用力”。
本节主要讲述磁场对通电导线的作用力,包括安培力的产生条件、大小计算以及方向判断。
具体内容包括:1. 安培力的产生条件:通电导线与磁场方向不平行时,导线会受到磁场的作用力。
2. 安培力的大小计算:安培力的大小与电流强度、磁场强度、导线长度以及导线与磁场方向的夹角有关,公式为 F = BILsinθ。
3. 安培力的方向判断:安培力的方向由右手定则判断,即右手的四指握住导线,大拇指指向电流方向,其他四指所指的方向为磁场方向,安培力的方向为大拇指所指的方向。
教学目标:1. 学生能理解磁场对通电导线的作用力,知道安培力的产生条件、大小计算和方向判断。
2. 学生能运用安培力公式解决实际问题,提高学生的应用能力。
3. 学生通过实验观察安培力的现象,培养学生的观察能力和实验操作能力。
教学难点与重点:1. 安培力的产生条件。
2. 安培力的大小计算和方向判断。
教具与学具准备:1. 教具:黑板、粉笔、实验器材(通电导线、磁铁、电流表、电压表、滑动变阻器等)。
2. 学具:笔记本、笔、实验报告表格等。
教学过程:一、导入:通过一个简单的实验,让学生观察磁铁对通电导线的作用力,引发学生对磁场对通电导线作用力的兴趣。
二、新课讲解:1. 讲解安培力的产生条件,通过示例和图示让学生清晰理解。
2. 讲解安培力的大小计算公式,并通过例题演示如何运用公式解决实际问题。
3. 讲解安培力的方向判断,通过右手定则让学生快速准确判断安培力的方向。
三、随堂练习:给出一些实际问题,让学生运用安培力公式进行计算,巩固所学知识。
四、实验操作:让学生分组进行实验,观察安培力的现象,培养学生的观察能力和实验操作能力。
板书设计:1. 安培力的产生条件:通电导线与磁场方向不平行。
2. 安培力的大小计算:F = BILsinθ。
初三物理磁场对通电导线的作用力知识点|磁场对导线的作用力通电导线在磁场中手安培力的分析与计算,首先掌握左手定则,会判断安培力的方向,其次熟练掌握受力分析方法,应用有关知识解决安培力参与的平衡、加速等问题。
特别注意安培力、电流(导线)、磁场方向三者的空间方位关系。
考点1.安培力的大小:在匀强磁场中,在通电直导线与磁场方向垂直的情况下,电流所受的安培力F安等于磁感应强度B、电流I和导线长度L三者的乘积. F安=BIL 通电导线方向与磁场方向成θ角时,F 安=BILsinθ1.当I⊥B时(θ=90°),Fmax=BIL;2.当I∥B时(θ= 0°),Fmin= 0 ;安培力大小的特点:①不仅与B、I、L有关,还与放置方式θ有关。
②L是有效长度,不一定是导线的实际长度。
*弯曲导线的有效长度L等于两端点所连直线的长度,所以任意形状的闭合线圈的有效长度L=0考点2.安培力的方向1.左手定则:伸开左手,使大拇指跟其余四个手指垂直,并且都跟手掌在一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电流的方向,那么,大拇指所指的方向就是通电导线在磁场中所受安培力的方向.2.安培力方向的特点:总是垂直于B和I所决定的平面,即F安⊥B且F安⊥I(但B、L不一定垂直)。
(1)已知B和I的方向,可用左手定则唯一确定F安的方向;(2)已知B和F安的方向,当导线的位置确定时,可唯一确定I的方向;(3)已知I和F安的方向,不能唯一确定B的方向;考点3.磁电式电流表的工作原理由于这种磁场的方向总是沿着径向均匀地分布的,在距轴线等距离处的磁感应强度的大小总是相等的,这样不管线圈转到什么位置,线圈平面总是跟它所在位置的磁感线平行,I 与指针偏角θ成正比,I越大指针偏角越大,因而电流表可以量出电流I的大小,且刻度是均匀的,当线圈中的电流方向改变时,安培力的方向随着改变,指针偏转方向也随着改变,又可知道被测电流的方向。
第4节磁场对通电导线的作用力要点一磁场对电流作用探秘1.磁场对电流作用的研究方法不管是电流还是磁体,对通电导线的作用都是通过磁场来实现的,因此必需要清楚导线所在位置的磁场分布情况,然后结合左手定那么准确判断导线的受力情况和将要发生的运动,在实际操作过程中.往往采用以下几种方法:(1)电流元法把整段导线分为多段直电流元,先用左手定那么判断每段电流元受力的方向,然后判断整段导线所受合力的方向,从而确定导线的运动方向.(2)等效法环形电流可等效成小磁针,通电螺线管可以等效成条形磁铁或多个环形电流,反过来等效也成立.2.判断安培力的方向应注意的问题在解决有关磁场对电流的作用问题时,能否正确判断安培力的方向是解决问题的关键,在断定安培力的方向时要注意以下两点:(1)安培力的方向总是既与磁场方向垂直,又与电流方向垂直,也就是说安培力的方向总是垂直于磁场和电流所决定的平面.(2)在详细判断安培力的方向时,由于受到静电力方向判断方法的影响,有时错误地认为安培力的方向沿着磁场方向.为防止这种错误,同学们应该把静电力和安培力进展比较,搞清力的方向与场的方向关系及区别.详细问题如下表:静电力安培力研究对象点电荷电流元受力特点正电荷受力方向与电场方向一样,负电荷相反安培力方向与磁场方向和电流方向都垂直判断方法结合电场线方向和电荷正、负判断用左手定那么判断一、安培力方向的判断【例1】如图3-4-6所示,用两根一样的细绳程度悬挂一段均匀载流直导线MN,电流I方向从M到N,绳子的拉力均为F.为使F=0,可能到达要求的方法是()图3-4-6A.加程度向右的磁场B.加程度向左的磁场C.加垂直纸面向里的磁场D.加垂直纸面向外的磁场二、安培力的大小【例2】一根长为0.2 m、电流为2 A的通电导线,放在磁感应强度为0.5 T的匀强磁场中,受到磁场力的大小可能是()A.0.4 N B.0.2 N C.0.1 N D.01.在图中,标出了磁场的方向、通电直导线中电流I的方向,以及通电直导线所受安培力F的方向,其中正确的选项是()2.关于磁场对通电直导线的作用力(安培力),以下说法中正确的选项是()A.通电直导线在磁场中一定受到安培力的作用B.通电直导线在磁场中所受安培力的方向一定跟磁场的方向垂直C.通电直导线在磁场中所受安培力的方向一定跟电流的方向垂直D.通电直导线在磁场中所受安培力的方向垂直于由B和I所确定的平面3.图3-4-7通电直导线A与圆形通电导线环B固定放置在同一程度面上,通有如图3-4-7所示的电流时,通电直导线A受到程度向________的安培力作用.当A、B中电流大小保持不变,但同时改变方向时,通电直导线A所受到的安培力方向程度向______.如图1所示,图1在同一程度面的两导轨互相平行,并在竖直向上的磁场中,一根质量为3.6 kg、有效长度为2 m的金属棒放在导轨上,当金属棒中的电流为5 A时,金属棒做匀速运动;当金属棒中的电流增大到8 A时,金属棒能获得2 m/s2的加速度.那么磁场的磁感应强度为多少?拓展探究如图2所示,图2原来静止的圆形线圈通以逆时针方向的电流I.在其直径AB上靠近B点放置一根垂直于线圈平面的固定不动的长直导线,并通以电流I′,方向如下列图.在磁场力作用下,圆形线圈将怎样运动?如图3所示,图3一边长为h的正方形线圈A,其中电流I大小和方向(逆时针)均保持不变,用两条长度恒为h的绝缘细绳静止悬挂于程度长直导线CD的正下方.当导线CD中无电流时,两细绳中张力均为F T;当通过CD的电流为i时,两细绳中张力均降到αF T(0<α<1);而当CD上的电流为i′时,两细绳中张力恰好为零.通电长直导线的磁场中某点的磁感应强度B与该点到导线的间隔r成反比.由此可知,CD中的电流方向、CD中两次通入的电流大小之比ii′分别为()A.电流方向向左B.电流方向向右C.电流大小之比ii′=1+αD.电流大小之比ii′=1-α拓展探究如图4所示,图4在倾角为α的光滑斜面上,垂直纸面放置一根长为L,质量为m的直导体棒.当导体棒中的电流I垂直纸面向里时,欲使导体棒静止在斜面上,可将导体棒置于匀强磁场中,当外加匀强磁场的磁感应强度B的方向在纸面内由竖直向上逆时针至程度向左的过程中,关于B的大小的变化,正确的说法是()A.逐渐增大B.逐渐减小C.先减小后增大D.先增大后减小通电导线在磁场中的平衡问题的解决方法:①分析通电导线的受力.②分析受到的磁场力的方向和大小.③根据受力平衡列方程式.④根据平衡条件找出各个力之间的关系,求出相关的物理量.一、选择题1.如图5所示,图5在匀强磁场B中,一根粗细均匀的通电导线置于程度桌面上,此时导线对桌面有压力作用,要使导线对桌面的压力为零,以下措施中可行的是()A.增大电流强度B.减小磁感应强度C.使电流反向D.使磁场反向2.如图6所示,图6A为一程度放置的橡胶盘,带有大量均匀分布的负电荷,在圆盘正上方程度放置一通电直导线,电流方向如图中所示,当圆盘沿图中所示方向高速绕中心轴OO′转动时,通电直导线所受磁场力的方向是()A.竖直向上B.竖直向下C.程度向里D.程度向外3.如下所示的四个图中,磁感线方向或平行纸面或垂直纸面,平行于纸面的导体ab中通有a→b的电流,当将ab导体以a端为轴,从图示位置逆时针转动90°角(始终在纸面内)的过程中,通电导体所受安培力方向不发生变化的是()4.如图7所示,图7两个完全一样的线圈套在一程度光滑绝缘圆柱上,但能自由挪动,假设两线圈内通以大小不等的同向电流,那么它们的运动情况是()A.都绕圆柱转动B.以不等的加速度相向运动C.以相等的加速度相向运动D.以相等的加速度相背运动5.图8把一根柔软的螺旋形弹簧竖直悬挂起来,使它下端刚好跟杯中的水银面接触,并使它组成如图8所示的电路.当开关S接通后将看到的现象是()A.弹簧向上收缩B.弹簧被拉长C.弹簧上下跳动D.弹簧仍静止不动6.如图9中①②③所示,在匀强磁场中,有三个通电线圈处于如以下列图中所示的位置,那么()图9A.三个线圈都可以绕OO′轴转动B.只有②中的线圈可以绕OO′轴转动C.只有①②中的线圈可以绕OO′轴转动D.只有②③中的线圈可以绕OO′轴转动二、计算阐述题8.图11在倾角为α的光滑斜面上,置一通有电流I,长为L,质量为m的导体棒,如图。
磁场对通电导线的作用力教案
磁场对通电导线产生的作用力是一种基础物理现象,它可以用安培定理来描述。
安培定理是指,通电导线所产生的磁场会对周围的磁场产生影响,从而产生一种力的作用。
在这个作用力中,通电导线会受到磁场的推或拉的作用。
磁场对通电导线的作用力是由洛伦兹力产生的。
洛伦兹力是指一种在电荷运动时产生的作用力,它是由电荷的电荷量、速度以及磁场的大小和方向决定的。
对于通电导线来说,由于电流的存在,导线中的电子会产生运动,从而产生磁场。
当磁场与外部磁场相互作用时,就会产生洛伦兹力。
当通电导线放置在外部磁场中时,由于导线中的电子受到磁场的作用,会在导线内部产生一种电动势。
这种电动势会产生一种电流,从而在导线周围产生一个磁场。
这个磁场与外部磁场相互作用,就会产生作用力。
磁场对通电导线的作用力的大小取决于多种因素,包括导线的电荷量、导线的长度、外部磁场的大小和方向等等。
如果外部磁场是均匀的,那么导线将会受到一个恒定的力。
如果磁场不均匀,那么导线将会受到一个变化的力。
总之,磁场对通电导线的作用力是一种基础物理现象,它可以通过安培定理和洛伦兹力来描述。
了解这个作用力的原理和计算方法,有助于我们更好地理解电磁现象的本质,也有助于我们应用到各种实际情况中。
磁场对通电导线的作用力知识元安培力知识讲解1.安培力是磁场对电流的作用力,是一种性质力,其作用点可等效在导体的几何中心.2.安培力的大小(1)计算公式:F=BIL sinθ(2)对公式的理公式F=BIL sinθ可理解为F=B(sinθ)IL,此时B sinθ为B沿垂直I方向上的分量,也可理解为F=BI(L sinθ),此时L sinθ为L沿垂直B的方向上的投影长度,也叫“有效长度”,公式中的θ是B和I方向间的夹角.注意:①导线是弯曲的,此时公式F=BIL sinθ中的L并不是导线的总长度,而应是弯曲导线的“有效长度”.它等于连接导线两端点直线的长度(如图所示),相应的电流方向沿两端点连线由始端流向末端.②安培力公式一般用于匀强磁场.在非匀强磁场中很短的导体也可使用,此时B的大小和方向与导体所在处的B的大小和方向相同.若在非匀强磁场中,导体较长,可将导体分成若干小段,求出各段受到的磁场力,然后求合力.3.左手定则①用于判断通电直导线在磁场中的的受力方向②用于判断带电粒子在磁场中的的受力方向方法:伸开左手,使拇指跟其余四指垂直,并且都跟手掌在同一个平面内,让磁感线穿入手心,并使四指指向电流的方向,大拇指所指的方向就是通电导线所受安培力的方向(书上定义),我在这里想说一点,是不是左手定则只可以判断受力方向,我的答案是非也,在判断力的方向时,是知二求一(知道电流方向与磁场方向求力的方向),所以也可以知道力与电流求磁场,或是知道力与磁场求电流。
4.安培力的方向在解决有关磁场对电流的作用的问题时,能否正确判断安培力的方向是解决问题的关键,在判定安培力的方向时要注意以下两点:(1)安培力的方向总是既与磁场方向垂直,又与电流方向垂直,也就是说安培力的方向总是垂直于磁场和电流所决定的平面.因此,在判断时首先确定磁场和电流所确定的平面,从而判断出安培力的方向在哪一条直线上,然后再根据左手定则判断出安培力的具体方向.(2)当电流方向跟磁场方向不垂直时,安培力的方向仍垂直电流和磁场所决定的平面,所以仍可用左手定则来判断安培力的方向,只是磁感线不再垂直穿过手心.的方向被唯一确定;但若已知B(或I)、F 注意:若已知B、I方向,则由左手定则得F安的方向,由于B只要穿过手心即可,则I(或B)的方向不唯一、安简单概括磁场对电流的作用应用步骤:1.选择研究对象以及研究过程;2.在某瞬时对物体进行受力分析并应用牛顿第二定律;3.带入安培力公式和电学公式进行公式整理;4.求解,必要时对结果进行验证或讨论。
磁场对通电导体的作用力磁场对通电导体的作用力【学习目标】1.掌握左手定则,理解电流的方向以及磁场对电流的作用力方向三者之间的关系。
2.掌握安培力的计算,能够理解一些安培力作用的现象和应用,能够熟练地计算通电直导体在匀强磁场中受到的安培力。
3.知道磁电式电表的基本构造以及运用它测量电流大小和方向的基本原理。
【要点梳理】要点一、对安培力的理解要点诠释:1.安培力是磁场对电流的作用力,是一种性质力,其作用点可等效在导体的几何中心.2.安培力的方向在解决有关磁场对电流的作用的问题时,能否正确判断安培力的方向是解决问题的关键,在判定安培力的方向时要注意以下三点:(1)安培力的方向总是既与磁场方向垂直,又与电流方向垂直,也就是说安培力的方向总是垂直于磁场和电流所决定的平面.因此,在判断时首先确定磁场和电流所确定的平面,从而判断出安培力的方向在哪一条直线上,然后再根据左手定则判断出安培力的具体方向.(2)当电流方向跟磁场方向不垂直时,安培力的方向仍垂直电流和磁场所决定的平面,所以仍可用左手定则来判断安培力的方向,只是磁感线不再垂直穿过手心.(3)注意区别安培力的方向和电场力的方向与场的方向的关系.安培力的方向与磁场的方向垂直,而电场力的方向与电场的方向平行.现把安培力和电场力做如下比较:内容力项目电场力安培力研究对象点电荷电流元受力特点正电荷受力方向,与电场方向相同,沿电场线切线方向,与负电荷受力方向相反安培力方向与磁场方向和电流方向都垂直判断方法结合电场方向和电荷正、负判断用左手定则判断注意:若已知B、I方向,则由左手定则得F安的方向被唯一确定;但若已知B(或I)、F的方向,由于B安只要穿过手心即可,则I(或B)的方向不唯一.3.安培力的大小(1)计算公式:F BILsin=θ(2)对公式的理解:公式F BILsin=θg,=θ可理解为F(Bsin)IL 此时Bsinθ为B沿垂直I方向上的分量,也可理解为=θ,此时Lsinθ为L沿垂直B的方向上的投影长度,F BI(Lsin)也叫“有效长度”,公式中的θ是B和I方向问的夹角.注意:①若导线是弯曲的,此时公式F BILsin=θ中的L并不是导线的总长度,而应是弯曲导线的“有效长度”.它等于连接导线两端点直线的长度(如图所示),相应的电流方向沿两端点连线由始端流向末端.②安培力公式一般用于匀强磁场.在非匀强磁场中很短的导体也可使用,此时B的大小和方向与导体所在处的B的大小和方向相同.若在非匀强磁场中,导体较长,可将导体分成若干小段,求出各段受到的磁场力,然后求合力.要点二、安培力作用下通电导体运动方向的判定方法要点诠释:不管是电流还是磁体,对通电导线的作用都是通过磁场来实现的,因此必须要清楚导线所在位置的磁场分布情况,然后结合左手定则准确判断导线的受力情况或将要发生的运动,在实际操作过程中,往往采用以下几种方法:电流元法把整段导线分为多段直电流元,先用左手定则判断每段电流元受力的方向,然后判断整段导线所受合力的方向,从而确定导线运动方向等效法环形电流可等效成小磁铁,通电螺线管可以等效成条形磁铁或多个环形电流,反过来等效也成立特殊位置法通过转动通电导线到某个便于分析的特殊位置,然后判断其所受安培力的方向,从而确定其运动方向结论法两平行直线电流在相互作用过程中,无转动趋势,同向电流互相吸引,反向电流互相排斥;两不平行的直线电流相互作用时,有转到平行且电流方向相同的趋势转换研究对象法定性分析磁体在电流磁场作用下如何运动的问题,可先分析电流在磁体磁场中所受的安培力,然后由牛顿第三定律,确定磁体所受电流磁场的反作用力,从而确定磁体所受合力及运动方向注意:(1)判断通电线圈等在磁场中的转动情况,要寻找具有对称关系的电流元.(2)利用特殊位置要注意利用通电导体所在位置的磁场特殊点的方向.要点三、电流表的工作原理、灵敏度及特点要点诠释:1.电流表的工作原理:(1)均匀辐向磁场蹄形磁铁和铁芯间的磁场是均匀地辐向分布的(如图所示),不管通电线圈转到什么角度,它的平面都跟磁感线平行.线圈所处的磁感应强度的大小都相同.(2)工作原理如图所示,设线圈所处位置的磁感应强度大小为B ,线圈长为L ,宽为d ,匝数为n ,当线圈中通有电流I 时,安培力对转轴产生力矩:122d M F F d ⎛⎫=⨯⨯=⋅ ⎪⎝⎭,安培力的大小为:F nBIL =.故安培力的力矩大小为1MnBILd nBIS==(S 为线圈的面积). 当线圈发生转动时,不论通电线圈转到什么位置,它的平面都跟磁感线平行,安培力的力矩不变.当线圈转过θ角时,这时指针偏角也为θ角,螺旋弹簧产生阻碍线圈转动的扭转力矩为M 2,对线圈,根据力矩平衡有12M M =.设弹簧材料的扭转力矩与偏转角成正比,且为2M k =θ。
由nBIS k =θ得nBS I kθ=。
其中k 、n 、B 、S 是一定的,因此有I ∝θ.由此可知:①线圈上指针的偏转角度θ与通入的电流I 成正比,所以电流表刻度盘上的刻度是均匀的,从线圈偏转的角度就能判断通过电流的大小.②线圈中的电流方向改变时,安培力的方向随之改变,指针的偏转方向也随之改变.所以,根据指针的偏转方向,可以知道被测电流的方向.2.电流表的灵敏度电流表的灵敏度可表示为:nBS C I kθ== 由此式可知,除了尽可能减小摩擦阻力之外,还可以通过增大n 、B 、S 和减小k 来提高电流表的灵敏度.3.电流表的特点(1)表盘的刻度均匀,I ∝θ。
(2)灵敏度高,量程较小,过载能力差.(3)满偏电流I g 、内阻R g 反映了电流表的最主要特性.注意:使用电流表确定电流方向以前,必须先用已知方向的电流测定电流流入方向与指针偏转方向的关系.要点四、 物体在安培力作用下的平衡或运动问题的分析方法要点诠释:安培力作用下物体的平衡和运动是常见的一类题型,体现了学科内知识的综合应用及知识的迁移能力,在解决这类问题时应把握以下几点:1.将立体图转化为平面(截面)图,将抽象的空间受力分析转移到纸面上进行,一般是画出与导体棒垂直的平面,将题中的角度、电流的方向、磁场的方向标注在图上,然后进行分析.2.注意正确的受力分析顺序,先重力,然后安培力,最后弹力和摩擦力。
因为弹力和摩擦力是被动力,力的有无和方向与其他力有关.3.注意安培力方向的判定:左手定则,垂直磁场同时又垂直于电流,即一定垂直于二者决定的平面.简单地说,通电导体在磁场、重力场中的平衡与加速运动问题的处理方法和力学问题一样,无非是多了一个安培力.解决这类问题的关键是:(1)分析安培力的方向时千万不可跟着感觉走,牢记安培力的方向既跟磁感应强度方向垂直又跟电流方向垂直.(2)画出导体受力的平面图.【典型例题】类型一、安培力方向的判断例1、如图所示,一金属直杆MN两端接有导线,悬挂于线圈上方,MN与线圈轴线均处于竖直平面内,为使MN垂直纸面向外运动,可以()A.将a、c端接在电源正极,b、d端接在电源负极 B.将b、d端接在电源正极,a、c端接在电源负极 C.将a、d端接在电源正极,b、c端接在电源负极 D.将a、c端接在同一交流电源的一端,b、d端接在交流电源的另一端举一反三【变式】在匀强磁场B的区域中有一光滑斜面体,在斜面体上放置一根长为L,质量为m的导线,当通以如图所示方向的电流后,导线恰能保持静止,则磁感应强度B满足()A .sin ,=mgB IL α方向垂直斜面向上B .sin =mgB IL α,方向垂直斜面向下C .tan =mgB IL α,方向垂直向下D .=mg B IL,方向水平向左 类型二、安培力大小的计算例2、如图所示,导线abc 为垂直折线,其中电流为I ,ab=bc=L ,导线所在的平面与匀强磁场垂直,匀强磁场的磁感应强度为B ,求导线abc 所受安培力的大小和方向.【变式】在物理学中,通过引入检验电流来了解磁场力的特性,对检验电流要求是( )A .将检验电流放入磁场,测量其所受的磁场力F 、导线长度L 、通电电流强度I ,应用公式B =F /IL ,即可测得磁感强度BB .检验电流电流强度不宜太大C .利用检验电流,运用公式B=F/IL,只能应用于匀强磁场D.只要满足长度L很短、电流强度I很小,将其垂直放入磁场的条件,公式B=F/IL对任何磁场都适用类型三、判断安培力作用下物体的运动方向例3、(2015 平度市期末)如图甲所示,蹄形磁体用悬线悬于O点,在磁铁的正下方有一水平放置的长直导线,当导线中通以由左向右的电流时,蹄形磁铁的运动情况是().A.静止不动B.向纸外平动C.N极向纸外,S级向纸内转动D.N极向纸内,S级向纸外转动举一反三【变式】如图所示,条形磁铁放在水平桌面上,在其中央上方固定一根导线,导线与磁铁垂直,给导线通以垂直纸面向外的电流,则()A.磁铁对桌面的压力减小,不受桌面的摩擦力B.磁铁对桌面的压力减小,受到桌面的摩擦力C.磁铁对桌面的压力增大,不受桌面的摩擦力D.磁铁对桌面的压力增大,受到桌面的摩擦力类型四、磁电式电流表例4、如图所示甲是磁电式电流表的结构图,图乙是磁极间的磁场分布图,以下选项中正确的是()①指针稳定后,线圈受到螺旋弹簧的力矩方向与线圈受到的磁力矩方向是相反的②通电线圈中的电流越大,电流表指针偏转角度也越大③在线圈转动的范围内,各处的磁场都是匀强磁场④在线圈转动的范围内,线圈所受磁力矩与电流有关,而与所处位置无关A.①② B.③④ C.①②④ D.①②③④举一反三【变式】要想提高磁电式电流表的灵敏度,可采用的办法有()A.增加线圈匝数B.增加永久磁铁的磁感应强度C.换用弹性较强的游丝,增大反抗力矩D.增加线圈面积E.减小转轴处摩擦类型五、安培力与电路知识、物体平衡的综合应用例5、(2015 东城区三模)如图所示,足够长的光滑金属导轨与水平面的夹角为θ,两导轨间距为L,在导轨上端接入电源和滑动变阻器,电源电动势为E,内阻为r。
一质量为m的导体棒ab与两导轨垂直并接触良好,整个装置处于磁感应强度为B,垂直于斜面向上的匀强磁场中,导轨与导体棒的电阻不计。
(1)若要使导体棒ab静止于导轨上,求滑动变阻器的阻值应取何值;(2)若将滑动变阻器的阻值取为零,由静止释放导体棒ab,求释放瞬间导体棒ab的加速度.举一反三【变式1】如图所示的天平可用来测量磁场的磁感应强度.天平的右臂下面挂一个矩形线圈,宽为L,共N匝,线圈的下部悬在匀强磁场中,磁场方向垂直于纸面.当线圈中通有电流,(方向如图)时,在天平两边加上质量分别为m1、m2的砝码时,天平平衡;当电流反向(大小不变)时,右边再加上质量为m的砝码后,天平又重新平衡.由此可知( )A .磁感应强度方向垂直纸面向里,大小为12(m m )g NIL -/B .磁感应强度方向垂直纸面向里,大小为mg 2NIL /C .磁感应强度方向垂直纸面向外,大小为12(m m )g NIL -/ D .磁感应强度方向垂直纸面向外。