“隐圆”最值问题演示教学
- 格式:doc
- 大小:132.00 KB
- 文档页数:4
模型介绍平面内一定的D和⓪O上动点M的连线中,当连线过圆心O时,线段DM有最大值和最小值。
分以下情况讨论:(设OD=d,⓪O的半径为r)点D在⓪O外时,d>r,如图:①当D、M、O三点共线时,线段DM出现最值,DM的最大值为d+r,DM的最小值为d-r;②当点D在⓪O上时,d=r,如图:当D、O、M三点共线时,线段DM有最值;DM最大值为d+r,DM最小值为d-r=0(即点D与点M重合)③当点D在⓪O内时,d<r,如图当点D、O、M三点共线时,DM有最值;DM最大值为d+r,DM最小值为|d-r|=r-d;点圆最值:平面内一定点到圆上一点的距离的最值问题.方法:求出该定点到圆心的距离d,则最大值为d+r,最小值为|d-r|例题精讲【例1】.如图,在长方形纸片ABCD中,AB=4,AD=6.点E是AB的中点,点F是AD边上的一个动点.将△AEF沿EF所在直线翻折,得到△GEF.则GC长的最小值是()A.B.C.2D.2解:以点E为圆心,AE长度为半径作圆,连接CE,当点G在线段CE上时,GC的长取最小值,如图所示根据折叠可知:GE=AE=AB=2.在Rt△BCE中,BE=AB=2,BC=6,∠B=90°,∴CE==2,∴GC的最小值=CE﹣GE=2﹣2.故选:A.变式训练【变式1-1】.如图,在平行四边形ABCD中,AB=6,AD=2,∠A=45°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.解:如图,连接MC;过点M作ME⊥CD,交CD的延长线于点E.∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC=2,CD=AB=6,∵点M为AD的中点,∠A=45°,∴DM=MA=,∠MDE=∠A=45°,∴ME=DE=DM=1,∴CE=CD+DE=6+1=7,由勾股定理得:CM2=ME2+CE2,∴CM==5;由翻折变换的性质得:MA′=MA=,点A′在以M为圆心,为半径的圆上显然,当折线MA′C与线段MC重合时,线段A′C的长度最短,此时A′C=MC﹣MA′=5﹣=4,故答案为4.【变式1-2】.如图,矩形ABCD中,AB=6,BC=9,以D为圆心,3为半径作⊙D,E为⊙D上一动点,连接AE,以AE为直角边作Rt△AEF,使∠EAF=90°,tan∠AEF=,则点F与点C的最小距离为.解:如图取AB的中点G,连接FG.FC.GC.∵∠EAF=90°,tan∠AEF=,∴=,∵AB=6,AG=GB,∴AG=GB=3,∵AD=9,∴==,∴=,∵四边形ABCD是矩形,∴∠BAD=∠B=∠EAF=90°,∴∠FAG=∠EAD,∴△FAG∽△EAD,∴FG:DE=AF:AE=1:3,∵DE=3,∴FG=1,∴点F的运动轨迹是以G为圆心1为半径的圆,∵GC==3,∴FC≥GC﹣FG,∴FC≥3﹣1,∴CF的最小值为3﹣1.故答案为3﹣1.【例2】.如图,△ABC中,AB=AC,BC=24,AD⊥BC于点D,AD=5,P是半径为3的⊙A上一动点,连结PC,若E PC的中点,连结DE,则DE长的最大值为_______解:如图,连接PB,∵AB=AC,AD⊥BC,∴CD=DB=BC=12,∵点E为AC的中点,∴DE是△PBC的中位线,∴DE=PB,∴当PB取最大值时,DE的长最∵P是半径为3的⊙A上一动点,∴当PB过圆心A时,PB最大,∵BD=12,AD=5,∴AB=,∵⊙A的半径为3,∴PB的最大值为13+3=16,∴DE长的最大值为8,故选:A.变式训练【变式2-1】.如图,在正方形ABCD中,AB=2,F是BD边上的一个动点,连接AF,过点B作BE⊥AF于E,在点F变化的过程中,线段DE的最小值是.解:如图,∵BE⊥AF于E,∴E在以AB为直径圆心为O的圆上,∴当O、E、D三点共线的时候线段DE最小,∵AB=2,四边形ABCD为正方形,∴AO=1=OE,AD=2,∴OD==,∴段DE最小值为OD﹣OF=﹣1.故答案为:﹣1.【变式2-2】.如图,AB是⊙O的直径,点C在半圆的中点,且BC=4cm,点D是上的一个动点,连接BD,过C点作CH⊥BD于H,连接AH,在点D的运动过程中,AH 长度的最小值是.解:连接AC,取BC的中点T,连接AT,TH.∵AB是直径,∴∠ACB=90°,∵点C在半圆的中点,∴=,∴AC=CB=4,∵CT=TB=2,∴AT===2,∵CH⊥BD,∴∠CHB=90°,∴点H在以BC为直径的圆上运动,∵CT=TB,∴HT=BC=2,∵AH≥AT﹣HT=2﹣2,∴AH的最小值为2﹣2,故答案为:2﹣2.1.如图,四边形ABCD为矩形,AB=3,BC=4,点P是线段BC上一动点,点M为线段AP上一点,∠ADM=∠BAP,则BM的最小值为()A.B.C.﹣D.﹣2解:如图,取AD的中点O,连接OB,OM.∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC=4,∴∠BAP+∠DAM=90°,∵∠ADM=∠BAP,∴∠ADM+∠DAM=90°,∴∠AMD=90°,∵AO=OD=2,∴OM=AD=2,∴点M在以O为圆心,2为半径的⊙O上,∵OB===,∴BM≥OB﹣OM=﹣2,∴BM的最小值为﹣2.故选:D.2.如图,△ABC为等边三角形,AB=3.若P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为()A.1.5B.C.D.2解:∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,AC=AB=3,∵∠PAB=∠ACP,∴∠PAC+∠ACP=60°,∴∠APC=120°,∴点P的运动轨迹是,设所在圆的圆心为O,当O、P、B共线时,PB长度最小,设OB交AC于D,如图所示:此时PA=PC,OB⊥AC,则AD=CD=AC=,∠PAC=∠ACP=30°,∠ABD=∠ABC=30°,∴PD=,BD=,∴PB=BD﹣PD=﹣=.故选:B.3.如图,在Rt△ABC中,∠ACB=90°,AB=2,点D为线段AB的中点,将线段BC绕点B顺时针旋转90°,得到线段BE,连接DE,则DE最大值是.解:如图,将线段BD绕点B顺时针旋转90°,得到线段BP,连接PE,PD,则DB=PB,∠DBP=90°,∵将线段BC绕点B顺时针旋转90°,得到线段BE,∴BC=BE,∠CBE=90°,∴∠CBD=∠EBP,∴△CBD≌△EBP(SAS),∴PE=DC,∵在Rt△ABC中,∠ACB=90°,AB=2,点D为线段AB的中点,∴DB=CD=AB=1,∴PE=1,PB=1,∴DP=,∵PD+PE≥DE,∴DE≤+1,∴DE最大值为+1,故答案为:+1.4.如图,在边长为2的正方形ABCD中,E,F分别是边DC,CB上的动点,且始终满足DE=CF,AE,DF交于点P,则∠APD的度数为90°;连接CP,线段CP的最小值为﹣1.解:∵四边形ABCD是正方形,∴AD=CD,∠ADE=∠DCF=90°,在△ADE和△DCF中,,∴△ADE≌△DCF(SAS),∴∠DAE=∠CDF,∵∠CDF+∠ADF=∠ADC=90°,∴∠ADF+∠DAE=90°,∴∠APD=90°,取AD的中点O,连接OP,则OP=AD=×2=1(不变),根据两点之间线段最短得C、P、O三点共线时线段CP的值最小,在Rt△COD中,根据勾股定理得,CO===,所以,CP=CO﹣OP=﹣1.故答案为:90°,﹣1.5.如图,在△ABC中,∠BAC=90°,AC=8,BC=10,AD是BC边上的高,E、F分别为边DC,DA上的动点,且DE:DF=4:3,射线AE与BF相交于点M,若连接CM,则线段CM的最小值为.解:如图1,连接EF,并延长EF交边AB于点G,∵在△ABC中,∠BAC=90°,AC=8,BC=10,∴,∴AC:AB=4:3,∴AC:AB=DE:DF=4:3,∴,∵∠BAC=∠FDE=90°,∴△BAC∽△FDE,∴∠GBE=∠DFE,∵AD是BC边上的高,∴AD⊥BC,∴∠DFE+∠DEF=90°,∴∠GBE+∠DEF=90°,∴∠BGE=90°,∴EG是△ABE的高,∵AD是△ABE的BE边上的高,∴BM是△ABE的AE边上的高,∴BM⊥AM,∴∠AMB=90°,∴点M在线段AB为直径的上,如图2,作以线段AB为直径的,取圆心O,连接OC交于点N,则当点O、M、C 三点共线时,线段CM的最小值,如图3,∵AB=6,点O是圆心,∴OA=ON=3,∵∠BAC=90°,AC=8,∴,∴线段CM的最小值即,故答案为:.6.如图,直角梯形ABCD中,AB∥DC,∠B=90°,AB=1,BC=2,CD=3,以B为圆心,半径为1的弧交BC于M,E是线段CD上一动点,EG⊥AD,垂足为G,F是弧AM 上一动点,则EG+EF的最小值为.解:作AH⊥CD于点H是矩形.DH=CD﹣AB=3﹣1=2,AH=BC=2.则AH=DH,△ADH是等腰直角三角形.则∠ADC=45°.延长BC到M使CM=BC=2,作MN⊥AD于点N,交CD于点K.则当E到K时,EG+EF 取得最小值.∵∠ADC=90°,MN⊥AD,∴△DNK是等腰直角三角形,∠NKD=∠CKM=45°,同理△CMK是等腰直角三角形.则CK=CM=2,KM=CM=2,∴DK=CD﹣CK=3﹣2=1,∴NK=DK=.则MN=MK+NK=2+=,则EG+EF的最小值是﹣1=.故答案是:.7.如图,在△ABC中,∠ACB=90°,AB=4,点O是AB的中点,以BC为直角边向外作等腰Rt△BCD,连接OD,当OD取最大值时,则∠ODB的度数是.解:如图,将△ODB绕点B逆时针旋转90°,得到△ECB,连接CO,EO,∵将△ODB绕点B逆时针旋转90°,得到△ECB,∴OB=BE,OD=CE,∠BCE=∠BDO,∠OBE=90°∵CE≤OC+OE∴当点O在CE上时,CE有最大值,即OD取最大值,∵BE=OB,∠ABE=90°∴∠BOE=45°∵点O是AB中点,∠ACB=90°∴CO=BO∴∠ECB=∠CBO,∵∠EOB=∠ECB+∠OBC=45°∴∠ECB=22.5°=∠BDO故答案为:22.5°8.如图,正方形ABCD的边长为2,点E为正方形外一个动点,∠AED=45°,P为AB中点,线段PE的最大值是.解:如图,若点E在正方形右侧,连接AC,BD交于点O,连接PO,EO,∵∠AED=45°,∠ACD=45°,∴A,C,E,D四点共圆,∵正方形ABCD的边长为2,∴OE=OD=BD=,∵P为AB的中点,O是BD的中点,∴OP=AD=,∵PE≤OP+OE=+,∴当点O在线段PE上时,PE=OP+OE=+,即线段PE的最大值为+,如图,点E在正方形ABCD上方,作斜边为AD的等腰直角△AOD,∠AOD=90°,则点E在以O为圆心,OA为半径的圆上,∴当点P,点O,点E共线时,PE的值最大,过点O作ON⊥AB,交BA延长线于点N,∵AD=2,AO=DO,∠AOD=90°∴AO=,∠OAD=45°,∵ON⊥AB,AD⊥AB∴∠NAO=∠NOA=45°∴AN=NO=∴PO===∴PE最大值为+>+,故答案为:+9.如图,在矩形ABCD中,AB=4,BC=6.(1)如图①,点E是AB的中点,点F是BC边上一点,将△BEF沿EF折叠,点B的对应点为点P,求CP的最小值;(2)如图②,若点P是矩形ABCD内部一点,且∠BPC=90°,求PD取得最小值时,BP的长;(3)如图③,若点P是矩形ABCD内部一点,且∠PAD+∠PBC=60°,求AP+BP的最大值.解:(1)如图1,∵点E是AB的中点,∴BE=AB=2,由折叠知,PE=BE=2,∴点P是在以E为圆心,2为半径的半圆上运动,当点E,P,C共线时,CP最小,∵四边形ABCD时矩形,∴∠ABC=90°,∴CE===2,=CP′=CE﹣EP′=2﹣2;∴CP最小(2)如图2,∵∠BPC=90°,∴点P在以BC为直径的半圆O上运动,当点D,P,O共线时,PD最小,在Rt△COD中,CD=4,OC=BC=3,∴OD=5,∴P′D=OD﹣OP′=5﹣3=2,作P′Q⊥BC于Q,∵∠OQP′=∠BCD=90°,∠COD为公共角,∴△OQP′∽△OCD,∴,∴,∴OQ=,QP′=,在Rt△BQP′中,QP′=,BQ=OB+OQ=3+=,∴BP′==,∴当PD取得最小值时,BP的长为:;(3)如图3,∵四边形ABCD是矩形,∴∠CAB=∠BAD=90°,∴∠CAB+∠BAD=180°,∵∠PAD+∠PBC=60°,∴(∠CAB+∠BAD)﹣(∠PAD+∠PBC)=120°,∴∠PAB+∠PBA=120°,在△ABP中,∠APB=180°﹣120°=60°,延长BP至E,使PE=PA,∴∠E=∠PAE,∵∠E+∠PAE=∠APB=60°,∴∠E=30°,在AB的右侧作等边三角形ABO,以O为圆心,AB为半径作圆O,则点E优弧AEC上运动,当BE为直径时,即点P在点O处时,AP+BP最大,最大为直径BE′=2AB=8.10.如图,已知四边形ABCD为正方形,△AEF为等腰直角三角形,∠AEF=90°,连接FC,G为FC的中点,连接GD,ED.(1)如图①,当点E在AB边上时,请直接写出DE,DG的数量关系;(2)如图②,将图①中的△AEF绕点A逆时针旋转,其他条件不变.①探究(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;②若AD=4,AE=1,求DG的最大值和最小值.解:(1)DE=DG,理由如下:如图①,连接EG,延长EG交BC的延长线于M,连接DM.∵四边形ABCD是正方形,∴AD=CD,∠B=∠ADC=∠DAE=∠DCB=∠DCM=90°,∵∠AEF=∠B=90°,∴EF∥CM,∴∠CMG=∠FEG,∵∠CGM=∠EGF,GC=GF,∴△CMG≌△FEG(AAS),∴EF=CM,GM=GE,∵AE=EF,∴AE=CM,∴△DCM≌△DAE(SAS),∴DE=DM,∠ADE=∠CDM,∴∠EDM=∠ADC=90°,∴DG⊥EM,DG=GE=GM,∴△EGD是等腰直角三角形,∴DE=DG.(2)①结论成立,理由如下:如图②,连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R.∵EG=GM,FG=GC,∠EGF=∠CGM,∴△CGM≌△FGE(SAS),∴CM=EF,∠CMG=∠GEF,∴CM∥ER,∴∠DCM=∠ERC,∵∠AER+∠ADR=180°,∴∠EAD+∠ERD=180°,∵∠ERD+∠ERC=180°,∴∠DCM=∠EAD,∵AE=EF,∴AE=CM,∴△DAE≌△DCM(SAS),∴DE=DM,∠ADE=∠CDM,∴∠EDM=∠ADC=90°,∵EG=GM,∴DG=EG=GM,∴△EDG是等腰直角三角形,∴DE=DG;②∵AE=1,△AEF绕点A旋转,∴点E在以点A为圆心,1为半径的圆A上运动,如图③,当点A、E、D三点共线,且点E在点A的左侧时,DE最大,此时DE=AD+AE=4+1=5,由①可知,DE=DG,∴DG=DE=,即DG的最大值为;如图④,当点A、E、D三点共线,且点E在点A的右侧时,DE最小,此时DE=AD﹣AE=4﹣1=3,由①可知,DE=DG,∴DG=DE=,即DG的最小值为;综上所述,DG的最大值为,最小值为.11.(1)如图1,A、B是⨀O上的两个点,点P在⨀O上,且△APB是直角三角形,⨀O 的半径为1①请在图1中画出点P的位置;②当AB=1时,∠APB=30°;(2)如图2,⨀O的半径为5,A、B为⨀O外固定两点(O、A、B三点不在同一直线上),且OA=9,P为⊙O上的一个动点(点P不在直线AB上),以PA和AB为作平行四边形PABC,求BC的最小值并确定此时点P的位置;(3)如图3,A、B是⊙O上的两个点,过A点作射线AM⊥AB,AM交⨀O于点C,若AB=3,AC=4,点D是平面内的一个动点,且CD=2,E为BD的中点,在D的运动过程中,求线段AE长度的最大值与最小值.解:(1)①如图1,△APB、△AP′B是直角三角形;②在Rt△APB中,AB=AP,∴∠APB=30°,故答案为:30;(2)四边形PABC是平行四边形,∴BC=AP,∴BC的最小值即AP的最小值,∵当P为OA与⊙O的交点时,AP最小,∴AP的最小值为9﹣5=4,即BC的最小值为4;(3)连接BC,∵AM⊥AB,∴∠CAB=90°,∴BC是⊙O的直径,∵点D是平面内的一个动点,且CD=2,∴点D的运动路径为以C为圆心,以2为半径的圆,在直角△ABC中,BC===5,∵O是直角△ABC斜边BC上的中点,∴AO=BC=,∵E是BD的中点,O是BC的中点∴OE=CD=1,∴AE的最小值是AO﹣OE=,最大值是AO+OE=.12.【问题提出】(1)如图①,四边形ABCD为正方形,以BC边为直径在BC上方作半圆O,P是上一点,若AB=6,则DP的最小值为3﹣3;【问题探究】(2)如图②,在Rt△ABC中,∠ACB=90°,BC=4,AC=3,CD是中线,将△ACD 沿CD折叠,得到△ECD,点A的对应点为E,连接AE,求AE的长;【问题解决】(3)如图③是一块矩形ABCD的场地,AB=300m,AD=600m,D为场地的出人口,点E在AD边上,且AE=400m.按照规划,要在矩形内修建一个小型观光台P,且满足∠APE=90°,在BC上修建休息亭M,并要在观光台P、休息台M以及出入口D之间规划道路PM,DM,为了节约成本,要使得线段PM,DM之和最短,试求PM+DM的最小值,并说明理由.(道路的宽度忽略不计)解:(1)如图1,连接OD,交⊙O于点P,则DP最小,∵四边形ABCD是正方形,∴∠BCD=90°,CD=BC=AB=3,在Rt△COD中,OC==3,CD=6,∴OD==3,∴DP=OD﹣OP=3﹣3,故答案为:3﹣3;(2)设CD,AE交于点F,∵∠ACB=90°,AC=3,BC=4,∴AB=5,由折叠得:AE=2AF,CD⊥AE,∵∠ACB=90°,CD是中线,∴AD=CD,∴∠ACD=∠CAD,∵∠AFC=∠ACB=90°,∴△ACF∽△BAC,∴,∴=,∴AF=,∴AE=2AF=;(3)如图2,∵∠APE=90°,∴点P在以AE为直径的⊙O上运动,作点D关于BC的对称点G,连接OG,交BC于M,交⊙O于P,则PM+DM最小,最小值为PG的长,∵四边形ABCD是矩形,∴CG=CD=AB=300,∠ADC=90°,在Rt△ODG中,DG=CD+CG=600,OD=AD﹣OA=600﹣200=400,∴OG===200,∴PG=OG﹣OP=200﹣200,∴PM+DM的最小值为:200﹣200.。
“隐形圆”与圆有关问题第一讲“形”现“圆”形问题如图所示,在等腰直角三角形ABC中,AB=BC=2,点P为等腰直角三角形ABC所在平面内一点,且满足PA⊥PB,则PC的取值范围是__________.APB C圆是高中数学中一种简单但又非常重要的曲线,近几年高考题和高考模拟题中,经常会出现一类有关圆的题目,这类题目在条件中没有直接给出有关圆方面的信息,而是以隐性的形式出现,但我们通过分析和转化,最终都可以利用圆的知识求解.这类题目构思巧妙,综合性强,,充分考查了学生的数形结合、转化和化归等数学思想方法,处理这类题目关键在于能否把"隐形圆"找出来.圆作为几何图形,找“隐形圆”的一个角度可以从“形”的角度来发现.策略一由圆的定义(到定点的距离等于定长的点的轨迹)确定隐形圆例1(1)如果圆(x-2a)2+(y-a-3)2=4上总存在两个点到原点的距离为1,则实数a的取值范围是________.(2)(2016年南京二模)已知圆O :x 2+y 2=1,圆M :(x -a )2+(y -a +4)2=1.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得∠APB =60°,则a 的取值范围为_________.(3)(2017年苏北四市一模)已知A B 、是圆221:1C x y +=上的动点,AB P 是圆222:(3(4)1C x y -+-=)上的动点,则PA PB +u u u r u u u r的取值范围是_________.(4)若对任意α∈R ,直线l :x cos α+y sin α=2sin(α+6π)+4与圆C :(x -m )2+(y -)2=1均无公共点,则实数m 的取值范围是_________.(5)(2016年南通三模)在平面直角坐标系xOy 中,圆()221:12C x y -+=,圆()()2222:C x m y m m -++=,若圆2C 上存在点P 满足:过点P 向圆1C 作两条切线PA 、PB ,切点为A 、B ,ABP ∆的面积为1,则正数m 的取值范围是_________.策略二 由动点P 对两定点A 、B 张角是090(1PA PB k k ⋅=-,或PA PB ⋅=uu r uu r0)确定隐形圆例2 (1)已知圆C :22(3)(4)1x y -+-=和两点(,0)A m -,(,0)B m (0)m >, 若圆上存在点P ,使得∠APB =90°,则m 的取值范围是_________.(2)(海安2016届高三上期末)在平面直角坐标系xOy 中,已知点P (−1,0), Q (2,1),直线l :0ax by c ++=其中实数a ,b ,c 成等差数列,若点 P 在直线 l 上的射影为 H ,则线段 QH 的取值范围是_________.(3)设m ∈R ,直线1l :0x my +=与直线2l :240mx y m ---=交于点00(,)P x y ,则220002x y x ++的取值范围是_________.策略三 由圆周角的性质确定隐形圆例3 (1)已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,2a =,(a +b )(sin A -sin B )=(c -b )sin C 则ABC ∆面积的最大值为_________.(2)(2017年常州一模)在△ABC 中,∠C =45o ,O 是△ABC 的外心,若OC mOA nOB =+u u u r u u u r u u u r(m ,n ∈R ),则m +n 的取值范围是_________.策略四 由四点共圆的定理来确定隐形圆(如一个四边形的对角互补,则该四边形四点共圆)例4 设向量a ,b ,c 满足|a |=|b |=1,a ·b =-12,若a -c 与b -c 的夹角为60°,则|c |的最大值等于 .【同步练习】1.点A ,B 分别在x 轴与y 轴的正半轴上移动,且AB =2,若点A 从(3,0)移动到(2,0),则AB 中点D 经过的路程为 .2.已知O 为坐标原点,向量20(,)OB =uu u r,22(,)OC =uuu r,)CA αα=uu r,则OA uu r 与OB uu u r夹角的范围为 .3.已知直线20:l x y m -+=上存在点M 满足与两点(2,0)A -,(2,0)B 连线的斜率之积为1-,则实数m 的取值范围是 .4.已知圆C :x 2+y 2=1,点P (x 0,y 0)在直线x -y -2=0上,O 为坐标原点,若圆C 上存在一点Q ,使得∠OPQ =30°,则x 0的取值范围是________.5.如图,已知点A (-1,0)与点B (1,0),C 是圆x 2+y 2=1上的动点(与点A ,B 不重合),连接BC 并延长至D ,使得|CD |=|BC |,则线段PD 的取值范围 .题第二讲 “数”现“圆”形解析几何中,找“隐形圆”的另一个角度可以从“数”的角度(求出其方程)来发现.策略五 直接由圆(半圆)的方程确定隐形圆例1 (1)(2016年泰州一模)已知实数a ,b ,c 满足222a b c +=,0c ≠,则2b a c-的取值范围为__________.(2)若方程3x +b 有解,则b 的取值范围是 .(3)已知实数x 、y 满足x y -=,则x +y 的最大值是__________.策略六 直接由圆(半圆)的参数方程确定隐形圆例2(1) 已知,t R θ∈,则22(cos 2)(sin 2)t t θθ--+-+的取值范围是__________.(2)函数f (x02x π≤≤) 的值域是________.策略七 由两定点A 、B ,动点P 满足PA PB λ⋅=uu r uu r(λ是常数),求出动点P 的轨迹方程确定隐形圆例3 已知圆22341:()()C x y -+-=和两点00(,),(,)A m B m -0()m >.若圆C 上存在点P ,使得1PA PB ⋅=u u r u u r,则m 的取值范围是__________.策略八 由两定点A 、B ,动点P 满足22PA PB +是定值确定隐形圆例4(1)在平面直角坐标系xOy 中,已知圆C :(x -a )2+(y -a +2)2=1,点A (0,2),若圆C 上存在点M ,满足MA 2+MO 2=10,则实数a 的取值范围是__________.(2) (2017届盐城三模)已知A B C D ,,,四点共面,2BC =,2220AB AC +=,3CD CA =u u u r u u u r ,则||BD u u u r的最大值为 .策略九 由两定点A 、B ,动点P 满足01PAPBλλλ=>≠(,)确定隐形圆(阿波罗尼斯圆)例5(1)(2016年南通一模)在平面直角坐标xOy 中,已知点(1,0),(4,0)A B ,若直线0x y m -+=上存在点P 使得12PA PB =,则实数m 的取值范围是________.(2)(2016届常州一模)在平面直角坐标系xOy 中,已知圆O :x 2+y 2=1,O 1:(x -4)2+y 2=4,动点P 在直线0x b +-=上,过点P 作圆O ,O 1的两条切线,切点分别为A ,B ,若满足2PB PA =的点P 有且仅有两个,则b 的取值范围_________.(3)已知曲线C 的方程221x y +=,()2,0A -,存在一定点()(),02B b b ≠-和常数λ,对曲线C 上的任意一点(),M x y ,都有MA MB λ=成立,则点(),P b λ到直线()220m n x ny n m ++++=的最大距离为_________.例6(2017年南通二模)一缉私艇巡航至距领海边界线l (一条南北方向的直线)3.8海里的A 处,发现在其北偏东30°方向相距4海里的B 处有一走私船正欲逃跑,缉私艇立即追击.已知缉私艇的最大航速是走私船最大航速的3倍.假设缉私艇和走私船均按直线方向以最大航速航行.(1)若走私船沿正东方向逃离,试确定缉私艇的追击方向,使得用最短时间在领海内拦截成功;(参考数据:sin17°5.7446) (2)问:无论走私船沿何方向逃跑,缉私艇是否总能在领海内成功拦截?并说明理由.(例6)【同步练习】1.已知圆C :(x -3)2+(y -4)2=1,点A (0,-1),B (0,1).P 是圆C 上的动点,当|P A |2+|PB |2取最大值时,点P 的坐标是 .2.(2016年盐城三模)已知线段AB 的长为2,动点C 满足CA CB λ⋅=u u u r u u u r(λ为常数),且点C 总不在以点B 为圆心,12为半径的圆内,则负数λ的最大值是__________.3.(2016年苏北四市一模)已知)1,0(A,)0,1(B,)0,(tC,点D是直线AC上的动点,若2≤恒成立,则最小正整数t的值为.AD BD4.在平面直角坐标系xOy中,M为直线x=3上一动点,以M为圆心的圆记为圆M,若圆M截x轴所得的弦长恒为4.过点O作圆M的一条切线,切点为P,则点P到直线2x+y-10=0距离的最大值为.5.已知x y ∈R 、且满足22246x xy y ++=,则224z x y =+的取值范围是 .第三讲 “隐圆”综合隐藏圆问题可以和很多知识点结合,在三角形、向量、圆锥曲线等背景的一些问题中看上去和圆无关,但却隐藏着圆. 一、三角形中的隐形圆例1(1)(2017年南京、盐城一模)在ABC ∆中,A ,B ,C 所对的边分别为,,a b c ,若22228a b c ++=,则ABC ∆面积的最大值为__________.(2)(2008年高考江苏卷)若=2AB AC ,,则ABC S ∆的最大值是__________.例2 (1)在ABC ∆中,BC =2,AC =1,以AB 为边作等腰直角三角形ABD (B 为直角顶点,C 、D 两点在直线AB 的两侧).当∠C 变化时,线段CD 长的最大值为 .(2)在ABC ∆中,点D 在边BC 上,且DC =2BD ,AB ∶AD ∶AC =3∶k ∶1,则实数k 的取值范围为 .二、向量中的隐形圆例3 (1)已知向量a 、b 、c 满足=a ,3==⋅b a b ,若()()0--=c a c b ,则-b c 的最大值是__________.(2)在平面内,定点A ,B ,C ,D 满足DA u u u r=DB u u u r=DC u u u r,DA u u u r ⋅DB u u u r =DB u u u r ⋅DC u u u r =DC u u u r ⋅DA u u u r = -2,动点P ,M 满足AP u u u r=1,PM u u u u r =MC u u u u r ,则2BM u u u u r 的最大值是__________.例4 已知OA u u u r ,OB u u u r 为非零的不共线的向量,设111r OC OA OB r r=+++u u u r u u u r u u ur .定义点集{|}||||KA KC KB KCM K KA KB ⋅⋅==u u u r u u u r u u u r u u u r u u u r u u u r .当1K 、2K M ∈时,若对任意的2r ≥,不等式12||||K K c AB u u u u u r u u u r≤恒成立,则实数c 的最小值为__________.例5 (2014年常州高三期末卷)在平面直角坐标系xOy 中,已知圆2216:O x y +=,点P 12(,),M 、N 为圆O 上两个不同的点,且0PM PN ⋅=uuu r uuu r,若PQ PM PN =+uu u r uuu r uuu r,则PQ uu u r 的最小值为__________.三、圆锥曲线中的隐形圆例6 在平面直角坐标系xOy 中,已知圆1O ,圆2O 均与x 轴相切且圆心1O ,2O 与原点O 共线,1O ,2O 两点的横坐标之积为6,设圆1O 与圆2O 相交于P ,Q 两点,直线l :280x y --=,则点P 与直线l 上任意一点M 之间的距离的最小值为__________.例7 设椭圆E :x 28+y 24=1,是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A ,B ,且OA u u u r ⊥OB u u u r?【同步练习】1. 若a ,b ,c 均为单位向量,且a·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为_________.2.已知曲线C :x =-4-y 2,直线l :x =6,若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得AP u u u r+AQ u u u r =0,则m 的取值范围为 .3.已知圆()22:11C x y -+=,点(3,0)D ,过动点P 作圆C 的切线PQ ,切点为Q ,若PD =,则△PCD 面积的最大值为__________.4.设点,A B 是圆224x y +=上的两点,点(1,0)C ,如果90ACB ∠=o ,则线段AB 长度的取值范围为__________.精品文档收集于网络,如有侵权请联系管理员删除5.已知ABC ∆是边长为3的等边三角形,点P 是以A 为圆心的单位圆上一动点,点Q 满足2133AQ AP AC =+u u u r u u u r u u u r ,则BQ u u u r 的最小值是__________.。
发现发现““隐形隐形””圆 巧求最小值在近几年的中考数学试题中,常有一些涉及到求线段最小值的问题.这些题目入手较难,得分率很低,分析其原因不难发现,学生对题目中运动变化的本质没有搞清楚.在这些蕴含运动变化的问题中,并没有显性的圆,但是仔细分析题目的条件,如果能发现某个点的运动路径是一个圆(或是一段弧),可谓是“山重水复疑无路,柳暗花明又一村”,将会对问题的解决起着重要的作用.下面举例说明.一、翻折中的“隐形”圆例1 如图1,在Rt ABC ∆中,90,6,8C AC BC ∠=°==,点F在边AC 上,并且2CF =,点E 为边BC 上的动点,将CEF ∆沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是 .解 如图2,当点E 在BC 上运动时, PF 的长固定不变,即2PF CF ==.所以点P 在 以点F 为圆心,以2为半径的圆上运动.过点F 作FH AB ⊥交⊙F 于点P ,垂足为H ,此时PH 最短.由AFH ABC ∆∆:,得FH FA BC AB=.又由已知易得4,10AF AB ==.所以4810FH =,即165FH =.所以P 到AB 距离的最小值166255PH FH FP =−=−=.点评 本题关键的地方在于抓住无论点E 的位置在哪,翻折,FCE PF ∆的长度始终等 于FC 的长度,即2PF =.也就是说动点P 到定点F 的距离是定值2,所以点F 的运动路径是以点F 为圆心,2为半径的圆(或部分).如此,这个问题就最终转化为在圆上找一个到定直线距离最短的点.我们可以利用图3的模型1来作出直观解释.模型1 如图3,直线m 与⊙O 相离,过D 点O 作直线m 的垂线,垂足为点H ,交⊙O 与点P 、点Q ,则⊙O 上点P 到直线m 的距离最短,点Q 到直线m 的距离最长理由简述 在⊙O 上任意找一点P ′,过P ′作P H ′′⊥直线m ,垂足为点H ′.由三角形三边关系及直角三角形斜边大于直角边可得:OP P H OH OH ′′′′+>>,而OH OP PH =+,OP OP ′=,所以P H PH ′′>,所以点P 到直线m 的距离最短.类似的方法可以说明点P 到直线m 的距离最长.例2如图4,在边长为2的菱形ABCD 中,60,A M ∠=°对是AD 边的中点,N 是AB 边上一动点.将AMN ∆沿MN 所在的直线翻折得到A MN ′∆,连结A C ′,则A C ′长度的最小值是 .解 当点N 在AB 边上运动时,MA ′的长度固定不变,即1MA MA ′==,所以点A ′在以点M 为圆心,1为半径的圆上运动,如图5,连接CM ,与⊙M 交于点A ′,此时CA ′最短.过点C 作CG AD ⊥交AD 的延长线于点G .因为2,60CD CDG A =∠=∠=°,所以1,DG CG ==,在Rt CMG ∆中,由勾股定理,得CM == 点评 同例1,无论N 点在何处,沿MN 翻折后,线段MA ′的长度(1MA MA ′==)保持不变,而且点M 是定点,所以点A ′的运动轨迹是以M 为圆心,1为半径的圆(部分).要求A C ′的最小值,回归到模型1中,连结圆外定点C 与圆心M 与圆M 交于点A ′,此时A C ′的长度即为最小值.我们可以借助图6利用模型2来作出直观解释.模型2 如图6,点P 为⊙O 外一定点,连结PO 交⊙O 于点A ,延长线与⊙O 交于另一点B ,则PA 的长度为⊙O 外一点P 到⊙O 的最短距离,PB 的长度为⊙O 外一点P 到⊙O 的最长距离.理由简述 在⊙O 上再任意找一点A ′ ,连接PA ′,由三角形三边关系,可得OA PA OP ′′+>.又,OP OA AP OA OA ′=+=,所以PA PA ′>.类似的方法可以说明PB 的长度为⊙O 外一点P 到⊙O 的最长距离.例3 如图7,菱形ABCD 的边8,60AB B =∠=°,P 是AB 上一点,3,BP Q =是CD 边上一动点,将梯形APQD 沿直线PQ 折叠, A 的对应点为A ′.当 CA ′的长度最小时,CQ 的长为 .解 如图8,过C 作CE AB ⊥,连结AC .因为ABCD 是菱形,60B ∠=°,所以ABC ∆为等边三角形,所以84,3,12AE EB BP EP =====.要使CA ′的长度最小,则梯形APQD 沿直线PQ 折叠后A 的对应点A ′应落在CP 上,且对称轴PQ 应满足//PQ DE .由作图知,DEPQ 为平行四边形,所以1,817DQ EP CQ CD DQ ===−=−=.点评 点Q 在线段CD 上无论运动到何处,梯形APQD 沿直线PQ 折叠后PA ′的长度始终保持不变,因此A ′点的运动路径就是以点P 为圆心,PA 长为半径的圆.借助模型2,可知,当点A ′落在线段CP 与⊙P 的交点时,CA ′的长度最小.由PQ 平分,//APC CD AB ∠,可得CQ CP =.作CE AB ⊥,构造Rt CEP ∆,从而可以求出CP 的长.二、直角中的“隐形”圆例4 如图9,在正方形ABCD 中,动点,E F 分别从,D C 两点同时出发,以相同的速度在直线,DC CB 上移动.连结AE 和DF 交于点P ,由于点,E F 的移动,使得点P 也随之运动,请你画出点P 运动路径的草图.若2AD =,试求出线段CP 的最小值.解 由题意,可得DE CF =.又因为,90AD CD ADC DCB =∠=∠=°,所以ADE DCF ∆≅∆,所以DAE CDF ∠=∠.因为90ADP CDF ∠+∠=°,所以90DAE ADP ∠+∠=°.由于点P 在运动中保持90APD ∠=°.听以点P 的路径是一段以AD 为直径的弧.设AD 的中点为O ,连结OC 交弧于点P ,此时CP 的长度最小.在Rt ODC ∆中,OC ===,所以1CP OC OP =−=−. 点评 此题的本质是抓住动点,E F 在运动过程中,始终保持AE DF ⊥,即90APD ∠=°,这样点P 的运动路径就确定了,即点P 在以AD 为直径的圆弧上,再根据模型2求解即可.例5如图10, Rt ABC ∆中,,6,4,AB BC AB BC P ⊥==是ABC ∆内部的一个动点,且满足PAB PBC ∠=∠,则线段CP 长的最小值为 .解 因为90ABC ∠=°,所以90ABP PBC ∠+∠=°.又因为PAB PBC ∠=∠,所以90BAP ABP ∠+∠=°,即90APB ∠=°,所以点P 在以AB 为直径的⊙O 上.连结OC 交⊙O 于点P ,此时PC 最小,在Rt BCO ∆中,90,4,3OBC BC OB ∠=°==,可得5OC =,所以532PC OC OP =−=−=,即PC 最小值为2.点评 首先,根据题目的条件不难得出90APB ∠=°,从而可以证明点P 在以AB 直径的⊙O 上.利用模型2,连结OC ,与⊙O 交于点P ,此时PC 最小,利用勾股定理求出OC即可解决问题.以上例题说明,在求一类线段最值问题中,如果遇到动点的运动路径是圆时,只需利用上面提到的模型1或模型2就可以解决.然而难点在于如何知道动点的运动路径是圆,如何将这个隐身“圆”找出来?从以上例子中可以得出以下两种方法:①观察到定点的距离,即圆是到定点距离等于定长的点的集合;②“定弦对定张角”,如例5中线段AB是定值,当动点P在运动过程中,APB∠的大小不变等于90°(当然不一定为直角),点P的运动路径也是圆(或弧).因此,教师在教学时,要让学生理解概念的本质,还要培养学生对常见模型的敏感性,从而在有限的考试时间内,能快速获得破解难题的策略.。
最值模型之隐圆模型模型一隐圆之定点定长型1、借助“隐圆”解决几何最值问题的理论依据有两个:①定圆的所有弦中,直径最长;②圆外一点与圆心的连线上,该点和此直线与圆的近交点距离最短、远交点距离最长.2、圆外的定点A与圆上动点B的距离AB的最值问题:当A、B、O三点共线时,AB有最大值或最小值。
如图2,AB最大值=OA+半径;如图3,AB最小值=OA-半径;定长模型(共顶点的三条等线段)若P为动点,但AB=AC=AP原理:圆A中,AB=AC=AP则B、C、P三点共圆,A圆心,AB半径备注:常转全等或相似证明出定长例题解析1如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN 沿MN所在直线翻折得到△A`MN,连接A`C,则A`C长度的最小值是.2如图,在矩形ABCD中,AB=2,AD=7,动点P在矩形的边上沿B→C→D→A运动.当点P不与点A、B重合时,将△ABP沿AP对折,得到△AB P,连接CB ,则在点P的运动过程中,线段CB 的最小值为.变式训练1如图,在矩形ABCD中,AB=2,AD=3,点E,F分别为AD、DC边上的点,且EF=2,G 为EF的中点,P为BC边上一动点,则PA+PG的最小值为?2如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是.3如图,点A,B的坐标分别为A(6,0),B(0,6),C为坐标平面内一点,BC=22,M为线段AC的中点,连接OM,当OM取最大值时,点M的坐标为.△ABE沿BE翻折得到△FBE,连接GF.当GF最小时,AE的长是.EF,将四边形ABFE沿EF翻折,点A、B的对应点分别为A'、B',连接A'D,则A'D的最小值为.模型二隐圆之定长定角型(1)直角圆周角模型固定线段AB所对动角∠C恒为90°原理:圆O中,圆周角为90°所对弦是直径则A、B、C三点共圆,AB为直径备注:常通过互余转换等证明出动角恒为直角解题技巧:若定角为90°,取定长AB的中点O为圆心,AB的一半为半径画辅助圆。
“隐圆”最值问题
B
M
C
D
A
E
F
D
C
B
A
B
D
C
F
A
“隐圆”最值问题
分析题目条件发现题目中的隐藏圆,并利用一般的几何最值求解方法来解决问题。
【例1】在平面直角坐标系中,直线y = - x + 6分别与x 轴、y 轴交于点A 、B 两点,点C 在
y 轴的左边,且∠ACB = 90°,则点C 的横坐标x C 的取值范围是__________.
【练】(2013-2014·六中周练·16)如图,已知Rt △ABC 中,∠ACB = 90°,AC = 3,BC = 4,点D 是AB 的中点,E 、F 分别是直线AC 、BC
上的动点,∠EDF = 90°,则EF 长度的最小值是__________.
【例2】如图,在Rt △ABC 中,∠ACB = 90°,D 是AC 的中点, M 是BD 的中点,将线段AD 绕A 点任意旋转(旋转过程中始
终保持点M 是BD 的中点),若AC = 4,BC = 3,那么在旋转 过程中,线段CM 长度的取值范围是_______________.
【练】已知△ABC 和△ADE 都是等腰直角三角形,∠ACB =∠ADE = 90°,AC = 22,AD = 1,F 是BE 的中点,若将△ADE 绕点A
旋转一周,则线段AF 长度的取值范围是 .
【例3】如图,已知边长为2的等边△ABC ,两顶点A 、B 分别在平面直角 坐标系的x 轴、y 轴的正半轴上滑动,点C 在第一象限,连接OC ,则OC 长的最大值是( )
A .2
B .1
C .3
D .3
【练1】如图,在矩形ABCD 中,AB = 2,BC 3,两顶点A 、B 分别在平面 直角坐标系的x 轴、y 轴的正半轴上滑动,点C 在第一象限,连接OC ,则OC
长的最大值为_________.
【练2】(2013·武汉中考·16)如图,E、F是正方形ABCD的边AD上两个动点,
满足AE = DF,连接CF交BD于点G,连接BE交AG于点H,若正方形的边
长为2,则线段DH长度的最小值是__________.
【例4】如图,∠XOY = 45°,一把直角三角尺ABC的两个顶点A、B分别在
OX、OY上移动,其中AB = 10,那么点O到AB的距离的最大值为__________.
【练】(2013-2014·二中、七一九上期中·16)已知线段AB = 4,在线段AB上取一点P,在AB的同侧作等边△APC和等边△BPD,则线段CD的最小值为_________.
【例5】已知A(2,0),B(4,0)是x轴上的两点,点C是y轴上的动点,当∠ACB最大时,则点C的坐标为__________.
【练】当你站在博物馆的展厅中时,你知道站在何处观赏最理想吗?
如图,设墙壁上的展品最高点P距底面2.5米,最低点Q距底面
2米,观察者的眼睛E距底面1.6米,当视角∠PEQ最大时,站
在此处观赏最理想,则此时E到墙壁的距离为()
A.1米 B.0.6米 C.0.5米 D.0.4米
N
M
B
Q
C
P
A
【课外提升】
1.(2010·河南)如图,Rt △ABC 中,∠C = 90°,∠ABC = 30°,AB = 6, 点D 在AB 边上,点E 是BC 边上一点(不与点B 、C 重合),且DA = DE ,则AD 的取值范围是( )
A .2 < AD < 3
B .2 ≤ AD < 3
C .2 ≤ A
D ≤ 3 D .1 ≤ AD < 2
2.(2012·济南)如图,矩形ABCD 中,AB = 2,AD = 1,当A 、B 分别在x 轴正半轴和y 轴正半轴上移动时,矩形ABCD OD 的最大值为( )
A
.
C
.5
2
3.(2013-2014·黄陂区九上期中·10)在△ABC 中,∠ACB = 90°,∠ABC
= 30°,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0° < θ < 180° ),得
到△MNC ,P 、Q 分别是AC 、MN 的中点,AC = 2t ,连接PQ ,则旋转时 PQ 长度的最大值是( )
A .
B .
2 C
D .3t
4.已知点A 、B 的坐标分别是(0,1)、(0,3),点C 是x 轴正半轴上一动点,当∠ACB 最大时,点C 的坐标为__________.。