通信电子电路中的LC并联谐振回路
- 格式:doc
- 大小:169.00 KB
- 文档页数:6
rlc并联谐振电路阻抗的特点【主题介绍】在电路中,RLC并联谐振电路是一种具有特殊频率响应的电路。
它由电感(L)、电阻(R)和电容(C)三个元件组成,能够在特定频率下表现出较低的阻抗。
本文将深入探讨RLC并联谐振电路的阻抗特点,并分享对该电路的观点和理解。
【1. RLC并联谐振电路简介】RLC并联谐振电路由电阻元件、电感元件和电容元件并联连接而成。
在电路中,电感元件储存电能,电容元件储存电荷,而电阻元件对电流产生阻碍。
当电路中的频率等于谐振频率时,电感和电容的阻抗相互抵消,使得电路整体的阻抗具有最小值,这就是并联谐振电路的特点所在。
【2. RL并联谐振电路的阻抗特点】在RLC并联谐振电路中,阻抗以复数形式呈现,由实部和虚部组成。
实部代表电路的有源部分,而虚部则代表电路的无源部分。
2.1 低阻抗:RLC并联谐振电路在谐振频率附近表现出较低的阻抗。
当电路的频率等于谐振频率时,电感和电容的阻抗相互抵消,整个电路的阻抗呈现最小值。
这种低阻抗特点使得电路在谐振频率附近对电流更加敏感,电信号可以更轻松地通过电路,实现有效的能量传输。
2.2 频率选择性:RLC并联谐振电路在谐振频率附近表现出较高的频率选择性。
谐振频率附近,电感和电容的阻抗值会急剧变化,对其他频率的电信号产生较高的阻碍。
这种频率选择性让电路能够选择通过特定频率的信号,抑制其他频率的干扰信号,从而实现滤波的功能。
2.3 相位角特性:RLC并联谐振电路的阻抗特点还表现在相位角上。
在谐振频率附近,电路中的电感和电容的阻抗几乎相等,且互相抵消,导致电路的相位角接近零。
而在谐振频率两侧,相位角逐渐增大,表现出较大的相位差。
这种相位角特性可以用来调节信号的相位,对于某些特定应用具有重要意义。
【3. RLC并联谐振电路的观点和理解】RLC并联谐振电路是一种常用的电路结构,具有诸多特点和应用。
以下是对该电路的观点和理解:3.1 实用性:RLC并联谐振电路的低阻抗特点使其在实际应用中具有广泛用途。
通信电子线路重点总结第一章1、一个完整的通信系统应包括信息源、发送设备、信道、接收设备和收信装置五部分。
2、只有当天线的尺寸大到可以与信号波长相比拟时,天线才具有较高的辐射效率。
这也是为什么把低频的调制信号调制到较高的载频上的原因之一。
3、调制使幅度变化的称调幅,是频率变化的称调频,使相位变化的称调相。
4、解调就是在接收信号的一方,从收到的已调信号中把调制信号恢复出来。
调幅波的解调称检波,调频波的解调叫鉴频。
第二章1、小信号调谐放大器是一种最常见的选频放大器,即有选择地对某一频率的信号进行放大的放大器。
它是构成无线电通信设备的主要电路,其作用是放大信道中的高频小信号。
所谓调谐,主要是指放大器的集电极负载为调谐回路。
2、调谐放大器主要由放大器和调谐回路两部分组成。
因此,调谐放大器不仅有放大作用,还有选频作用。
其选频性能通常用通频带和选择性两个指标衡量。
3、并联谐振回路01LC0L10CLCCLCL(C称为谐振回路的特性阻抗)并联谐振回路的品质因数是由回路谐振电阻与特性阻抗的比值定义的,即QR0LCR00LR00CR0回路的越大,Q值越大,阻抗特性曲线越尖锐;反之,00R0越小,Q值越小,阻抗特性曲线越平坦。
在谐振点处,电压幅值最大,当0时,回路呈现感性,电压超前电流一个相角,电压幅值减小。
当相角,电压幅值也减小。
4、谐振回路的谐振曲线分析UUm11(Q2f2)f0时,回路呈现容性,电压滞后电流一个U对于同样频偏f,Q越大,Um值越小,谐振曲线越尖锐一个无线电信号占有一定的频带宽度,无线电信号通过谐振回路不失真的条件是谐振回路的幅频特性是一常数,相频特性正比于角频率。
在无线电技术中,常把Um从1下降到U1ff2(以dB表示,从0下降到-3dB)处的两个频率1和22f0.7的范围叫做通频带,以符号B或Bf2f1f0Q表示。
即回路的通频带为选择性是谐振回路的另一个重要指标,它表示回路对通频带以外干扰信号的抑制能力。
rlc并联谐振电路谐振条件
(实用版)
目录
1.RLC 并联谐振电路的概念
2.RLC 并联谐振电路的谐振条件
3.RLC 并联谐振电路的应用
4.结论
正文
一、RLC 并联谐振电路的概念
RLC 并联谐振电路是由电阻(R)、电感(L)和电容(C)三个元件并联组成的电路。
在这个电路中,当电压与电流的相位角相同时,电路状态达到谐振,这种谐振称为并联谐振或电流谐振。
并联谐振电路广泛应用于各种电子电路和通信系统中。
二、RLC 并联谐振电路的谐振条件
在 RLC 并联电路中,谐振条件是电阻、电感和电容达到一定的比例关系,使得电路中的电流与电压相位角相同。
具体来说,当并联电路中的感纳(B= L/C)等于电阻(R)时,电路达到谐振状态。
此时,电路中的电流与电压的相位角相同,即I/V=1,电路呈现共振现象。
三、RLC 并联谐振电路的应用
RLC 并联谐振电路在实际应用中具有很多重要作用,下面举几个例子:
1.测量电缆的交流耐压试验:通过电感的并联方式,提高试验的电流,从而实现试验的目的。
2.通信系统:在通信系统中,RLC 并联谐振电路可以用于信号调制、信号滤波等。
3.电子电路:在电子电路中,RLC 并联谐振电路常用于放大器、振荡器等。
四、结论
总之,RLC 并联谐振电路是一种具有广泛应用的电路,其谐振条件是电阻、电感和电容达到一定的比例关系。
第1页共1页。
实验报告R、L、C串联谐振电路的研究并联谐振电路实验报告实验报告祝金华PB15050984 实验题目:R、L、C串联谐振电路的研究实验目的: 1. 学习用实验方法绘制R、L、C串联电路的幅频特性曲线。
2. 加深理解电路发生谐振的条件、特点,掌握电路品质因数(电路Q值)的物理意义及其测定方法。
实验原理 1. 在图1所示的R、L、C串联电路中,当正弦交流信号源Ui的频率f改变时,电路中的感抗、容抗随之而变,电路中的电流也随f而变。
取电阻R上的电压UO作为响应,当输入电压Ui的幅值维持不变时,在不同频率的信号激励下,测出UO之值,然后以f为横坐标,以UO为纵坐标,绘出光滑的曲线,此即为幅频特性曲线,亦称谐振曲线,如图2所示。
L图 1 图22. 在f=fo=12πLC处,即幅频特性曲线尖峰所在的频率点称为谐振频率。
此时XL=Xc,电路呈纯阻性,电路阻抗的模为最小。
在输入电压Ui为定值时,电路中的电流达到最大值,且与输入电压Ui 同相位。
从理论上讲,此时Ui=UR=UO,UL=Uc=QUi,式中的Q 称为电路的品质因数。
3. 电路品质因数Q值的两种测量方法一是根据公式Q=UC测定,Uc为谐振时电容器C上的电压(电感上的电压无法测量,故Uo不考虑Q=UL测定)。
另一方法是通过测量谐振曲线的通频带宽度△f=f2-f1,再根据QUo=fO求出Q值。
式中fo为谐振频率,f2和f1是失谐时,亦即输出电压的幅度下降到f2-f1最大值的1/2 (=0.707)倍时的上、下频率点。
Q值越大,曲线越尖锐,通频带越窄,电路的选择性越好。
在恒压源供电时,电路的品质因数、选择性与通频带只决定于电路本身的参数,而与信号源无关。
预习思考题1. 根据实验线路板给出的元件参数值,估算电路的谐振频率。
L=30mH fo=2. 改变电路的哪些参数可以使电路发生谐振,电路中R的数值是否影响谐振频率值?改变频率f,电感L,电容C可以使电路发生谐振,电路中R 的数值不会影响谐振频率值。
rlc并联谐振电路rlc并联谐振电路是一种重要的电路结构,它由电阻(R)、电感(L)和电容(C)三个元件组成,并且这三个元件是并联连接的。
在这篇文章中,我们将详细介绍rlc并联谐振电路的基本原理、特性以及应用。
我们来了解一下rlc并联谐振电路的基本原理。
在电路中,电感元件会产生感抗,电容元件会产生容抗,而电阻元件会产生电阻。
当这三个元件并联连接时,它们共同决定了电路的特性。
当电路中加入交流电源时,rlc并联谐振电路的电阻、电感和电容将产生对电流的不同阻碍。
当频率为特定值时,电路的阻抗将达到最小值,这就是谐振频率。
在谐振频率下,电路中的电感和电容元件将形成一个共振回路,电流将达到最大值。
接下来,我们来讨论一下rlc并联谐振电路的特性。
首先是谐振频率。
谐振频率可以通过以下公式计算得出:f = 1 / (2π√(LC))其中,f为谐振频率,L为电感的值,C为电容的值,π为圆周率。
其次是谐振的带宽。
带宽是指在谐振频率附近,电路的阻抗仍然很小的一段频率范围。
带宽可以通过以下公式计算得出:BW = f2 - f1其中,BW为带宽,f1和f2分别为电路阻抗为谐振阻抗的两个频率。
rlc并联谐振电路还具有选择性增强的特性。
在谐振频率附近,电路对特定频率的信号具有较大增益,而对其他频率的信号则具有较小增益。
这种特性使得rlc并联谐振电路在通信领域中有着重要的应用,例如用于选择性放大特定频率的信号。
除了在通信领域中的应用外,rlc并联谐振电路还广泛应用于许多其他领域。
例如,在音频设备中,它可以用于音频滤波器的设计。
在电力系统中,它可以用于电力因数校正和电力滤波器的设计。
在电子设备中,它可以用于频率选择性放大器的设计。
rlc并联谐振电路是一种重要的电路结构,具有谐振频率、带宽和选择性增强等特性。
它在通信、音频、电力和电子等领域中有着广泛的应用。
通过深入理解rlc并联谐振电路的原理和特性,我们可以更好地应用它,并且为各种应用提供更好的解决方案。
串联谐振和并联谐振LC电路操作具有L,C元素的电路由于其频率特性(如频率Vs电流,电压和阻抗)而具有特殊的特性。
这些特性在特定频率下可能具有明显的最小值或最大值。
这些电路的应用主要涉及发射机,无线电接收机和电视接收机。
考虑一个LC电路,其中电容器和电感器都在电源上串联连接。
该电路的连接具有在称为谐振频率的精确频率下谐振的独特特性。
本文讨论什么是LC电路,简单串联和并联LC电路的谐振操作。
什么是LC电路?LC电路也称为储能电路,调谐电路或共振电路,是一个电路与由字母“C”和表示的电容器内置的电感器由连接在一起的字母“L”表示。
这些电路用于产生特定频率的信号或从特定频率的复合信号中接收信号。
LC电路是各种电子设备中的基本电子组件,尤其是在调谐器,滤波器,混频器和振荡器等电路中使用的无线电设备中。
LC电路的主要功能通常是在最小阻振荡。
系列LC电路谐振在串联LC电路配置中,电容器“C”和电感器“L”都串联连接,如下电路所示。
电容器和电感器两端的电压之和就是开路端子两端的总电压之和。
LC电路+ Ve端子中的电流等于通过电感器(L)和电容器(C)的电流当“XL ”感应电抗幅度增加时,频率也会增加。
同样,当“X C ”电容电抗值减小时,频率也减小。
在一个特定的频率上,两个电抗X L和X C大小相同,但符号相反。
因此,该频率称为谐振频率,由LC电路表示。
因此,在共振X L = -X CωL= 1 /ωCω=ω0= 1 /√LC这称为电路的谐振角频率。
将角频率变为频率,使用以下公式f0 =ω0/2π√LC在串联谐振LC电路配置中,两个谐振X C和X L相互抵消。
在实际而不是理想的组件中,电流的流动通常与线圈绕组的电阻相反。
因此,提供给电路的电流在谐振时最大。
接收电路的定义是In Lt f and f0最大时,电路的阻抗最小。
对于f <f0,X L <<(-X C)。
因此,电路是电容性的对于f <f0,X L >>(-X C)。
lc谐振原理
lc谐振原理是指当电感和电容器并联时,在特定频率下形成谐振回路。
在这个频率下,电感和电容器的阻抗互相抵消,使电路中的电流和电压达到最大值。
在谐振频率下,回路中的能量来回反复地在电感和电容器之间转换。
谐振频率可以通过谐振频率公式计算得出。
对于一个由电感L
和电容C构成的谐振回路,其谐振频率f可以计算为
f=1/(2π√(LC))。
其中,π为圆周率,√为开方运算。
在lc谐振回路中,电感器具有自感性,即电流通过电感器时
会产生磁场,而电容器具有电势能,并能将电能储存起来。
当电容器充电时,电流逐渐增大,而当电容器放电时,电流逐渐减小。
这种充放电过程会导致电感器和电容器之间的能量转换,使得谐振回路的电流和电压达到最大值。
谐振回路在电子电路中有着广泛的应用,例如在调谐电路中用于选择特定频率的信号,或者在振荡电路中用于产生稳定的频率信号。
此外,在通信系统中,谐振回路也可以用来构建滤波器或者增强信号的功率。
总结来说,lc谐振原理是指电感和电容器并联形成的回路,在特定频率下电流和电压达到最大值,实现能量的转换和传输。
通过谐振频率公式可以计算出回路的谐振频率。
lc谐振原理在电子电路中有着重要的应用。
第一部分:一、填空题1、无线电通信中,信号是以电磁波形式发射出去的。
它的调制方式有调幅、调频、调相。
2、针对不同的调制方式有三种解调方式,分别是检波、鉴频、和鉴相。
3、调幅波的表达式为:v AM(t)= 20(1 +0.2cos100πt)cos107πt(V);调幅波的振幅最大值为24V,调幅度Ma为20%,带宽f BW为100Hz,载波fc为5×106Hz。
4、在无线电技术中,一个信号的表示方法有三种,分别是数学表达式、波形、频谱。
5、调频电路有直接调频、间接调频两种方式。
6、检波有同步、和非同步检波两种形式。
7、反馈式正弦波振荡器按照选频网络的不同,可分为LC、RC、石英晶振等三种。
8、变频器可由混频器、和带通滤波器两部分组成。
9、列出三个常见的频谱搬移电路:调幅、检波、变频。
10、用模拟乘法器非线性器件实现幅度调制最为理想。
二、选择题(将一个正确选项前的字母填在括号内)1、下列哪种信号携带有调制信号的信息(C )A、载波信号B、本振信号C、已调波信号2、小信号谐振放大器的主要技术指标不包含(B )A、谐振电压增益B、失真系数C、通频带D、选择性3、丙类谐振功放其谐振回路调谐于( A )分量A、基波B、二次谐波C、其它高次谐波D、直流分量4、并联型石英晶振中,石英谐振器相当于(C )元件A、电容B、电阻C、电感D、短路线5、反馈式正弦波振荡器的起振条件为( B )A、|AF|=1,φA+φF= 2nπB、|AF| >1,φA+φF = 2nπC、|AF|>1,φA+φF≠2nπD、|AF| =1,φA+φF≠2nπ6、要实现集电极调制特性应使功放工作在(B )状态A、欠压状态B、过压状态C、临界状态D、任意状态7、利用非线性器件相乘作用来实现频率变换其有用项为( B )A、一次方项B、二次方项C、高次方项D、全部项9、如右图所示的电路是(D )A、普通调幅电路B、双边带调幅电路C、混频器D、同步检波器10、在大信号包络检波器中,由于检波电容放电时间过长而引起的失真是(B)A、频率失真B、惰性失真C、负峰切割失真D、截止失真三、判断题,对的打“√”,错的打“×”1、谐振放大器是采用谐振回路作负载的放大器。
lc串并联谐振回路广义失谐的含义一、回路简介在电路中,串联谐振和并联谐振都是常见的谐振现象。
谐振回路是指由电感、电容和电阻组成的电路,当谐振频率等于回路自然频率时,电路会呈现特殊的谐振现象。
它在许多电子设备和通信系统中起着重要作用。
二、lc串联谐振回路2.1 谐振回路基本原理lc串联谐振回路是由一个电感L和一个电容C串联而成的电路。
当谐振频率等于回路的自然频率时,电感和电容的阻抗互相抵消,电路呈现纯阻抗特性,电路中的电流达到最大值。
这种状态称为谐振状态。
在谐振状态下,电路能够存储最大的能量。
2.2 lc串联谐振回路的特点•谐振频率:由回路中的电感和电容决定,与电阻无关。
•谐振幅值:在谐振频率时,电路中的电流和电压达到最大值。
•阻抗:在谐振频率时,电路的阻抗最小。
当电感和电容的阻抗相等时,回路呈现纯阻抗特性。
三、lc并联谐振回路3.1 谐振回路基本原理lc并联谐振回路是由一个电感L和一个电容C并联而成的电路。
当谐振频率等于回路的自然频率时,电感和电容的阻抗互相抵消,电路呈现纯导纳特性,电路中的电流达到最大值。
这种状态称为谐振状态。
在谐振状态下,电路能够传输最大的功率。
3.2 lc并联谐振回路的特点•谐振频率:由回路中的电感和电容决定,与电阻无关。
•谐振幅值:在谐振频率时,电路中的电流达到最大值。
•导纳:在谐振频率时,电路的导纳最大。
当电感和电容的导纳相等时,回路呈现纯导纳特性。
四、广义失谐4.1 失谐的概念失谐是指谐振频率与回路的自然频率不完全相等的状态。
当失谐度较小时,回路仍然呈现谐振行为,只是谐振幅值变小。
失谐度过大时,回路失去了谐振的特性,阻抗或导纳不再呈现极值。
4.2 lc串联谐振回路的广义失谐lc串联谐振回路的广义失谐在于谐振频率与自然频率的差异。
当谐振频率小于自然频率时,为负失谐;当谐振频率大于自然频率时,为正失谐。
失谐度越大,电路呈现谐振行为的能力越弱,其频率响应曲线会向低频或高频方向偏移。
lc串并联回路谐振原理
串并联回路是一种由电感器(L)和电容器(C)组成的电路,它具有谐振现象。
谐振是指当电感和电容的数值使得电路的频率与谐振频率相等时,电路会出现共振现象,电流和电压会达到最大值。
在串联LC电路中,电感和电容连接在一起,而并联LC电路中,电感和电容
分别连接在电路的两端。
无论是串联还是并联,LC电路都可以发生共振。
对于串联LC电路来说,共振频率可以通过以下公式计算:
f = 1 / (2π√(LC))
式中,f表示频率,L表示电感的值,C表示电容的值,π是圆周率。
在串联LC电路的共振频率下,电感和电容之间的阻抗将达到最小值,电路的
谐振现象会导致电压峰值和电流峰值的出现。
对于并联LC电路来说,共振频率同样可以通过相同的公式计算。
在共振频率下,电感和电容之间的阻抗将达到最大值,电路的谐振现象同样会导致电压峰值和电流峰值的出现。
串并联回路谐振原理在电子技术中有广泛的应用。
例如,在无线电通信系统中,谐振电路可以用来选择所需的频带,并排除其他频率的干扰。
此外,谐振电路还可以用于电子滤波器、振荡器、天线调谐器等应用中。
总结而言,LC串并联回路谐振原理是指通过电感器和电容器组成的串联或并
联电路在特定的频率下可以达到最佳的谐振效果,使电流和电压达到最大值。
谐振电路在电子技术中有许多实际应用。
lcc串并联谐振电路LCC串并联谐振电路是一种常见的电路结构,广泛应用于电子电路中。
它由一个电感(L)、一个电容(C)和一个电阻(R)组成,通过调节电感和电容的数值,可以实现对电路的谐振频率、频带宽度等特性的调节。
下面将对LCC串并联谐振电路的原理、特性以及应用进行详细介绍。
1. LCC串并联谐振电路原理LCC串并联谐振电路可以分为串联和并联两种电路结构。
(1)串联谐振电路原理:串联谐振电路的电感、电容和电阻依次连接在一条电路中。
谐振频率通过电感和电容确定,谐振频率的计算公式为:f = 1 / (2π√(LC))式中,f为谐振频率,L为电感的电感量,C为电容的电容量。
(2)并联谐振电路原理:并联谐振电路的电感和电容是并联连接的,电阻则与并联连接的分支相连。
谐振频率与串联谐振电路相同,也可以通过电感和电容的数值确定。
2. LCC串并联谐振电路特性LCC串并联谐振电路具有以下几个特性:(1)频率选择性:在谐振频率附近,电路对谐振频率的信号具有很高的增益,而对其他频率的信号具有很低的增益。
(2)幅频特性:在谐振频率附近,串联谐振电路的输入电压和输出电压的幅度近似相等,而并联谐振电路的输入电流和输出电流的幅度近似相等。
(3)能量存储和传递:在谐振频率下,电路中的能量可以从电感和电容中存储,然后在电感和电容之间传递。
这可以实现在电路中对能量的存储和传输,用于实现信号的放大和滤波。
3. LCC串并联谐振电路应用LCC串并联谐振电路在电子电路中有许多应用,下面介绍其中几个常见的应用:(1)信号滤波:LCC串并联谐振电路可以通过选择不同的谐振频率,实现对信号频率的选择性滤波。
例如,在无线通信系统中,可以使用LCC谐振电路进行信号频率的选择和滤波,以滤除不需要的干扰信号。
(2)功率调节:LCC串并联谐振电路可以通过改变电感和电容的数值,实现对谐振频率的调节,从而实现功率的调节。
在电力系统中,可以使用LCC谐振电路来调节电力的传输和分配。
通信电子电路中的LC并联谐振回路
通信电子电路中的LC并联谐振回路
来源:现代电子技术作者:崔晓,张松炜郑州师范学院
摘要:LC并联谐振回路是通信电子电路中常用的单元电路。
通过电路分析得出它的幅频特性与相频特性,认为它在通信电子电路中的应用主要有三种类型,即放大器的选频匹配网络、反馈式正弦波振荡器的选频反馈网络、调制与解调电路中的幅频变换及频相转换器件。
关键词:LC并联谐振回路;幅频特性;相频特性;正弦波振荡器
LC并联谐振回路是由电感线圈L、电容器C与外加信号源相互并联组成的振荡电路。
在不同工作频率的信号激励下,LC并联谐振回路表现出不同的阻抗幅频特性和相频特性。
在通信电子电路中,它是一种应用非常灵活的单元电路,在放大器、混频器、正弦波振荡器以及调制与解调等功能电路中,LC并联谐振回路充当着不同的角色。
1 LC并联谐振回路阻抗的幅频特性和相频特性
图1所示为典型的LC并联谐振回路。
其中,r代表线圈L的等效损耗电阻。
由图可以推算,并联谐振回路的等效阻抗为:
在实际电路中,通常r很小,满足mL》r。
此时式(1)等价为:
1.1 谐振
根据回路谐振时,其等效阻抗为纯电阻,可以得到谐振时ω0L=1/(ω0C),
由此求得谐振频率ω0=。
此时,并联谐振回路的电压与电流同相,电阻RP是纯电阻,并达到最大值。
1.2 失谐
通常,谐振回路主要工作在其谐振频率ω0的附近,因此,研究其失谐特性也主要研究其在ω0附近的频率特性。
在高频电路中,当ω十分接近ω0时,设△ω=ω-ω0,式(2)可变换为:
图2(a)和(b)分别为由|Z|和φ所作出的并联谐振回路的幅频特性曲线和相频特性曲线。
1.3 LC并联谐振回路阻抗特性总结
由上述分析可知,LC并联谐振回路的主要特点是:
(1)当ω=ω0。
时,回路发生谐振,此时回路阻抗为最大值,是纯电阻,相移为0;当ω<ω0时,回路失谐,此时回路呈感性,相移为正,且最大值趋于90°;当ω>ω0时,回路失谐,此时回路呈容性,相移为负,且最大值趋于-90°。
(2)它的相频特性曲线位于第二、四象限,在中心频率附近相频特性曲线具有负斜率。
2 LC并联谐振回路在通信电子电路中的应用
LC并联谐振回路在通信电子电路中的应用由它的特点决定。
具体说来,主要包括三大类,其一是工作于谐振状态,作为选频网络应用,此时呈现为大的电阻,在电流的激励下输出较大的电压;其二是工作于失谐状态,此时呈现为感性或容性,与电路中其他电感和电容一起,满足三点式振荡电路的振荡条件,形成正弦波振荡器;其三是工作于失谐状态,即工作于幅频特性曲线或相频特性曲线的一侧,实现幅频变换、频幅变换以及频相变换、相频变换,构成角度调制
与解调电路。
2.1 用作选频匹配网络的LC并联谐振回路
选频即从输入信号中选择出有用频率分量而抑制掉无用频率分量或噪声。
在通信电子电路中,LC并联谐振回路作为选频网络而使用是最普遍的,它广泛地应用于高频小信号放大器、丙类高频功率放大器、混频器等电路中。
这些电路的共同特点是:LC谐振回路不仅是一种选频网络,通过变压器连接方式,还起到阻抗变换的作用,减小放大管或负载对谐振回路的影响,可获得较好的选择性。
由于LC并联谐振回路作为选频网络使用时功能相似,本文着重介绍高频小信号谐振放大器。
高频小信号选频放大器用来从众多的微弱信号中选出有用频率信号加以放大,并对其他无用频率信号予以抑制,它广泛应用于通信设备的接收机中。
单调谐放大器电路及交流通路,如图3所示。
在图3中,LC并联谐振回路作为晶体管集电极负载,它调谐于放大器的中心频率。
在联接方式上,LC回路通过自耦变压器与本级集电极电路进行联接,与下一级的联接则采用变压器耦合。
其作用是:通过自耦变压器耦合形式可将集电极所要求的负载变换成较大的负载,从而减小对LC并联谐振回路中品质因数的影响;与下一级的变压器耦合联接则可以减小下一级晶体管输入导纳YL对LC谐振回路的影响,同时,适当选择初级线圈的抽头位置以及初次级线圈的匝数比,可使负载导纳与晶体管的输出导纳相匹配,以获得较大的功率增益。
2.2 正弦波振荡器中使用的LC并联谐振回路
正弦波振荡器在通信电路中有着广泛的应用,如无线电通信、广播、电视设备中用来产生所需要的载波和本机振荡信号。
反馈振荡器是一种常用的正弦波振荡器,LC并联谐振回路在正弦波振荡器中有两类应用:一是作为变压器耦合LC 振荡器或者三点式振荡器的选频反馈网络;二是在石英晶体泛音振荡器中作为电容和晶体等共同构成三点式振荡器。
2.2.1 作为正弦波振荡器选频反馈网络的LC并联谐振回路
如图4所示,图4(a)为共基极变压器反馈式LC振荡器,图4(b)是三点式振荡器电路的基本形式。
在这类反馈振荡器电路中,把反馈电压作为输入电压,。