类比思想
- 格式:pptx
- 大小:1.01 MB
- 文档页数:13
类比思想是最基本最重要的数学思想方法内容概述类比思想就是由已知两个(类)事物具有某些相似性质,从而推断它们在其他性质上也可能相似的推理思想(由特殊到特殊)。
类比思想是串联新旧知识的纽带,同时也是培养学生探究能力和创新能力的有力工具.类比往往是猜想的前提,猜想又往往是发现的前兆,类比是数学发现的重要源泉,数学中许多定理、公式和法则都是用类比推理提出的。
在高中数学中,类比是最基本、最重要的数学思想方法之一,它不仅能由已知解决未知,由简单问题解决复杂问题,更能体现数学思想方法之奇妙.恰当的运用类比思想,可以帮助学生举一反三、触类旁通,提高解题能力,也可以引导学生去探索获取新知识,提高学生的创新思维能力.类比思想存在于解决数学问题的过程中,是帮助我们寻找解题思路的一种重要的思想方法.当我们遇到一个“新”的数学问题时,如果有现成的解法,自不必说.否则解决问题的关键就是寻找合适的解题策略,看能否想办法将之转化到曾经做过的、熟悉的、类似的问题上去思考。
通过联系已有知识给我们的启发,将已有知识迁移到新问题中来,把解决已有问题的方法移植过来,为所要解决的问题指引了方向.例题示范例1:等差数列{n a }中,若100a =,则有12n a a a +++1219n a a a -=+++(19,)n n N +<∈成立,类比上述性质,在等比数列{n b }中,若9b =1,则_______.解:在等差数列中,100a =,那么以10a 为中心,前后间隔相等的项和为0,即9118120,0a a a a +=+=,…所以有121219(19,)n n a a a a a a n n N -++++=+++<∈成立.类比过来:同样在等比数列{n b }中,若9b =1,则以9b 为中心,前后间隔相等的项的积为1,即8107111,1b b b b ==,所以有下列结论成立:121217(17,)n n b b b b b b n n N -+=<∈评析:在等差数列和等比数列的性质类比中,常见的运算类比有:和类比为积,差类比为商,算术平均类比几何平均等等。
初中数学中的类比思想初中数学中的类比,处处可见。
何为“类比”,波利亚曾说过:“类比是一个伟大的引路人”。
在中学数学中,由2个数学系统中所含元素的属性在某些方面相同或相似,推出它们的其他属性也可能相同或相似的思维形式被称为类比推理,运用类比推理的模式解决数学问题的方法称为类比法。
类比既是一种逻辑方法,也是一种科学研究的方法,是最重要的数学思想方法之一。
那么,在初中数学教学中,哪些知识点运用了类比的思想呢?下面谈谈我在初中数学教学中的一些体会。
在讲解“一元一次不等式”时,学生由于刚刚接触不等式,对不等式本来就不是很熟悉,对不等式的解法也就感到陌生。
如果照着书上的例1直接进行讲解,学生可能会感到有点模糊,不那么得心应手,不知道为什么要这样来解题,就会照着按部就班的做题,以至于没有掌握解题的方法,思维会有点混乱。
当然,在经过大量的类似练习后,单纯地通过记忆性质本身,大部分学生都能掌握一元一次不等式的解法。
但是我们知道,学生在学习过程中,不但要获取知识,更重要的是要掌握一种学习方法,才会使学生终身受益。
为了让学生一开始就能从根本上弄清楚一元一次不等式的解法,能明白每一步的算理,真正地掌握一种学习的方法,在讲授这节内容时,我类比了解一元一次方程的方法,这样的讲解学生接受起来就容易多了。
例如:解一元一次方程:2x+6=3-x解:移项得:2 x+ x=3-6合并同类项得:3 x=-3系数化为1得:x =-1解一元一次不等式:2x+6﹤3-x解:移项得:2 x+ x﹤3-6合并同类项得:3 x﹤-3两边都除以3得:x ﹤-1学生只要注意最后一步:系数化为1时,不等式的两边如果都乘以或除以同一个负数时,不等号的方向改变即可。
通过这种类比,学生掌握起来就容易得多了。
在讲解“分解因式”这节内容时,教科书提出两个问题:问题1: 993-99能被100整除吗?你是怎样想的?与同伴一起交流。
解:因为993-99=99×992-99×1=99×(992-1)=99×9800=98×99×100这里,我们把一个数式化成了几个数的乘积的形式,所以993-99能被99整除。
时需小议数学中的类比思想王安平关键字:类比的思想数形之间、数数之间的类比所谓类比,是指两种事物之间存在着相互类似的性质或特点。
这个词来源于希腊文“ analogia”原意为比例,后来引申为某种类似的事物。
类比的思想方法在科学发展中占有着十分重要的地位。
例如,著名科学家牛顿的万有引力定律就是把天体运动与自由落体运动做类比而发现的;著名的生物学家达尔文把植物的自花受精与人类的近亲结婚相类比,从而发现了自己子女体弱多病的原因。
类比的思想涉及了对知识的迁移。
所谓迁移就是一种学习对另一种学习的影响。
在教学中我们应当注意对学生迁移意识的培养,也就是说要注重运用类比的思想。
在我们平时的数学教学中,经常发现在数学中有一些相类似的概念,可以利用类比法进行学习;另外,在教学中也可以利用类比的思想进行教学。
的确,类比法是学习数学的一种常用方法。
数学的类比主要体现在以下几个方面:㈠几何图形之间的类比(1)几何形体数量关系的类比在以往的高考题目中,也出现了类似题目。
例如:在某年上海的高考模拟题中的一道题:已知:在平面几何有勾股定理:“假设ABC的两边AB、AC互相垂直,则有关系:AB2 AC2 BC2。
”当我们拓展到空间,类比平面几何的勾股定理并研究三棱锥的侧面面积与底面面积的关系时,我们可得到相应结论:假设三棱锥A BCD的三个侧面ABC、ACD、ADB两两垂直,则S2ABC S2ACD S2ADB S2BCD(2)几何性质之间的类比例如,几何体中的椭圆与双曲线就有很多的相似之处:在平面几何与立体几何中也存在性质之间的类比,例如:------------------------- 布磊Sn/ — ....... .. ...... ..... ......同样是在某年上海的高考模拟题中的一道题:已知:在三角形中存在余弦定理:a 1 2b 2c 3 4 2bccosA ,那么,在三棱柱 ABC A 1B 1C 1中存在关系(假设 表示平面BCC 泪与平面ACC 1A 1所成的二面角):SA B B 1 A5 6BCC 1B 1 S A C C 1 A 2S BCC I B I SA CC I Acos㈡数与形之间的类比众所周知,初等数学可分为代数与几何。
数学教学中类比思想的应用摘要:类比(格亚斯),意思是用推理的方法或与同类事物相比较。
类比是根据两种事物在某些特征上的相似,做出它们在其他特征上也可能相似的结论。
类比是这样的一种推理,它把不同的两个(两类)对象进行比较,根据两个(两类)对象在一系列属性上的相似,而且已知其中一个对象还具有其他的属性,由此推出另一个对象也具有相似的其他属性的结论。
类比思想是一种重要的思想,在数学的教学中有着至关重要的作用。
关键字:数学、类比思想数学教学过程中,加强类比思想在数学学科教学中的应用,有利于数学课堂的教学,有利于学生对新知识的探究与学习,更有利于数学教学的发展。
课程设计时巧用数学类比思想,优化课堂设计教师认真备课是有效有开展教学活动的前提,而课程设计是备课过程的主要环节,也是提升课堂质量的保障。
数学知识之间存在着紧密的联系,新知识往往是若干旧知识点的重新组合或是旧知识的引伸和扩展。
著名的数学家波利亚所说:“类比是一个伟大的引路人”。
数学中的类比基础,就是数学对象间的相似性。
数学中有些概念是难以让学生理解和接受的,倘若在课程设计时,将类比思想融入新课中,在讲授新知识时联系旧知识,将新旧类比分析,将能让学生更加理解知识,同时也能突破难点,降低教学难度。
因此,教师在进行课程设计时,教师应充分将数学类比思想融入课程中,从而加强对学生数学类比思想的渗透,优化课堂课设,让学生可在原来的基础上进行自我提高,让新知识掌握得更牢固找,进一步优化课堂教学。
探究新知时巧用数学类比思想,激发学生兴趣在数学中,有些新概念比较抽象,学生不太容易理解,用类比法引入新概念,可使学生更好地理解新概念的内涵与外延。
数学中的许多概念有类似的地方,在新概念的提出过程中,运用类比的方法,能使学生易于理解和掌握。
教师在讲授新课引出新知识,将新知识与旧知识联系起来,并将新旧进行类比分析,将能让学生更加理解知识,同时也能突破难点,降低教学难度。
例如,教师在讲授小学数学教学中的“乘法”这一课时,教师在引出“乘法”这一新概念时,可以先让学生复习一下“几个数的加法”这一概念。
课例研究新教师教学“类比思想”与“转化思想”是物理学习的很重要的思想,它几乎渗透在物理教学每一个过程之中。
“类比”是由已有知识向新知识过渡的一种很有效的方法,所谓“转化”,它是指将一些隐性的或不易直接测量的物理量、物理概念或物理规律,转化为显性的或可以间接测量的一种间接的思想方法,从而实现化繁为简、化难为易的目的。
类比思想与转化思想主要体现在以下几个方面:1.化抽象为具象物理概念体现的是一种思维形式,人们借助这种思维形式来认识各种客观事物和现象的本质特征,因而物理概念具有一定的抽象性,学生往往由于缺乏相应的感性认识,容易形成学习时的障碍。
因此,重视运用“转化思想”将物理概念所反映的一些现象、一些效应直观地显现出来,引导学生去认识、去感知、去领悟她们的本质特征,达到化抽象为直观的教学效果。
案例:温度与温度计温度是物体的冷热程度,它是一个可以感知但是看不见摸不着的物理量,那么我们怎么把温度直观地显现出来?普通液体温度计就是利用液体热胀冷缩的性质,把温度的变化转化成可以看得见的液体的体积的变化、更直观的是液柱在温度计的毛细管中的长度变化而显现出来。
简言之,就是把温度的变化转化为长度的变化。
电阻是导体对电流的阻碍作用,也是看不见摸不着的,是一个抽象的概念。
要理解这一概念,可以先做一个类比:路面对车的阻碍作用,可以从车流量的大小来判断,路不好走,对车辆的阻碍作用就大,车走的慢,车流量就小,所以车流量小可以说明路面对车的阻碍作用大。
与此类似,导体对电流的阻碍作用,可以从它产生的效应入手,将一个灯泡接入电路,通过灯泡的亮度来判断电流的大小,进一步判断电阻的大小。
实际上,很多仪表都是利用转化的思想把看不到的物理量转换为可视的直观的物理量制成的:电流表把电流的大小转化为指针的摆幅;电压表是把电压的大小转化为指针的摆幅直观可见,可以从表盘上直接读取我们所需要的物理量。
弹簧测力计把力的大小转化为弹簧伸长的长度;杆秤把质量转化为在秤杆上可以看得见的长度;水银压强计把压强转化为水银柱的高度,等等。
类比是一种什么方法类比是一种语言和思维的方法,通过将不同事物之间的相似之处和共同特征进行对比和比较,从而帮助我们理解新的或抽象的概念。
类比是一种通过类似的事物来解释和理解目标事物的方法,它通过比较和对比两个或多个事物的相似之处,从而揭示出它们之间的共同特征和规律。
类比可以帮助我们理解和解决各种问题,扩展我们的思维能力,发现隐藏的联系和相似性。
类比是一种非常常见的思维模式,广泛应用于各个领域。
在科学领域,类比是一种常见的推理方法,科学家常常通过将新问题与已有的问题进行类比,从而找到解决复杂问题的线索。
比如,原子的结构和太阳系的结构之间的相似之处,帮助科学家建立了原子结构的模型。
在教育领域,类比也是一种重要的教学方法。
教师可以通过将抽象的概念与学生熟悉的事物进行类比,帮助学生更好地理解和记忆知识。
类比方法的基本思想是:通过寻找两个或多个事物之间的共同点和相似之处,以发现事物之间的关系和规律。
类比从根本上讲是一种比较的思维方式,通过将两个不同的事物放在一起,寻找它们之间的相似性和联系,从而帮助我们理解和解决问题。
类比不仅可以帮助我们理解事物的本质和特点,还可以帮助我们预测和推测未知事物的性质和行为。
类比具有以下几个特点:1. 拓展思维:类比可以帮助我们扩展思维,通过将不同的概念和领域进行链接,从而产生新的观点和见解。
类比能够激发我们的创造力和想象力,帮助我们从不同的角度思考问题。
2. 理解抽象概念:类比是一种将抽象概念转化为具体事物的方法。
通过将抽象的概念与熟悉的事物进行类比,我们可以更好地理解和记忆这些概念。
比如,通过将电流与水流进行类比,可以更好地理解电路中的电流的概念。
3. 发现隐藏联系:类比可以揭示事物之间的隐藏联系和相似性。
通过将两个有相似特征的事物进行类比,我们可以发现它们之间的共同规律和原理。
比如,通过将地球上的天文现象与宇宙中的天文现象进行类比,我们可以发现它们之间的共同规律。
4. 解决问题:类比是一种解决问题的有效方法。
类比思维经典句子
1. 生活就像一盒巧克力,你永远不知道下一个是什么味道。
2. 打开一扇窗户,不仅让新鲜空气流入,也让阳光洒进来。
3. 种下一颗种子,就会收获一片森林。
4. 计划是行动的蓝图,行动是计划的目标。
5. 河流的水才没有永远不逆流的法则,人类的思想更是如此。
6. 勇气是基于恐惧而行动的能力。
7. 知识就如同宇宙内的星星,你永远无法看到尽头。
8. 人生就像是一场马拉松,重要的是坚持到终点而不是领先起跑。
9. 勤奋就像是一把钥匙,能够打开成功的大门。
10. 信任就像是一根细线,一旦断掉就很难重新修复。
11. 希望是燃着的火焰,它不仅带给人们温暖,也照亮了前行的道路。
12. 毅力是达成目标的必要条件,而不是限制条件。
13. 时间就像一条河流,它流逝的同时也带走了很多东西。
14. 健康就像是一座金矿,只有当你失去它时,才知道它的价值。
15. 成功是一座高山,需要攀登,但敢于挑战的人才能登顶。
16. 幸福就像是一束阳光,它不是等待我们去发现,而是我们生活的一部分。
17. 善良就像是一朵盛开的鲜花,它散发着美好的香气。
18. 改变不会从天而降,它需要努力和行动。
19. 知识就像是一颗种子,只有浇灌才能生根发芽。
中学物理中的类比思想(精选文档)(文档可以直接使用,也可根据实际需要修改使用,可编辑欢迎下载)中学物理中“类比思想”的教学西安交通大学苏州附属中学(特级教师)徐卫兵“类比法”是研究和学习物理的一种极其重要的方法,能启发和开拓我们的思维,给我们提供解决问题的线索,是提出科学假设和探索新理论的重要途径,正如前苏联学者瓦赫罗夫所说:“类比像闪电一样,可以照亮学生所学学科的黑暗角落。
”它对物理学的发展建立了不可磨灭的功劳,对学生学习物理发挥着巨大的作用,对于解决一些教学难点也有很大的作用。
本文将探讨中学物理教学中的“类比思想”。
1.类比思想“类比思想”包括两方面的含义:(1)联想,即由新信息引起的对已有知识的回忆;(2)类比,在新、旧信息间找相似和相异的地方,即异中求同或同中求异.通过类比思想,在类比中联想,从而升华思维,既有模仿又有创新.英国的培根有一句名言:“类比联想支配发明”。
他把类比思维和联想紧密相联,只有有了联想才能有类比思维,不论是寻找创造目标,还是寻找解决问题的办法部离不开联想的作用。
2.类比思想的意义2.1科学史教育物理学中的类比最有影响的事例是伽利略发现落体定律:亚里士多德认为重的物体下落快,伽利略进行了简单的类比推理:将轻重不同的两物体绑在一起,按常识应是快的物体拉着慢的物体一起下落,按亚里士多德的观点,由于复合体比重的物体更重,下落应该比重的物体更快,这一矛盾结果的得出,轻易否定了亚里士多德的命题,后来经过了著名的比萨斜塔实验的验证和更精确的研究,发现了落体定律。
法拉第了解到奥斯特发现电流能产生磁场后,就自然地进行了逆向思考和类比推理:既然磁铁能使附近的铁块感应磁化,静止电荷可以使附近导体感应出电荷,那么电流也应该使附近的线圈中感应出电流。
于是他在日记中写下一个光辉的思想:“转磁为电。
”他通过10年的探索、研究、实验,终于发现磁场中获得电流的方法,使电磁学得到突飞猛进的发展。
2.2培养学生的思维能力物理类比思维是物理思维的一种重要形式。
数学中有一种类比思想,类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想,它能够解决一些表面上看似复杂困难的问题。
就迁移过程来分,有些类比十分明显、直接、比较简单,如由加法交换律a+b=b+a 的学习迁移到乘法交换律a×b=b×a的学习;又如长方形的面积公式为长×宽=a×b,通过类比,三角形的面积公式也可以理解为长(底)×宽(高)÷2=a×b(h)÷2。
有些类比需在建立抽象分析的基础上才能实现,比较复杂。
例如有这么一道数学奥林匹克竞赛题:某科学考察组进行科学考察,要越过一座山。
上午8时上山,每小时行3千米,到达山顶时休息1小时。
下山时,每小时行5千米,下午2时到达山底。
全程共行了19千米。
上山和下山的路程各是多少千米?分析:此题表面上看似一道行程问题,但实质上只不过是一道典型的“鸡兔同笼”问题的变化题型。
其特征是:(1)已知两种事物的单值:上山速度为3千米;下山速度为5千米。
(2)已知这两种不同事物的总个数:除去休息1小时共行5小时;全程19千米。
(3)要求的是这两种不同事物的个数:上山和下山的时间各是多少?可见此题的解答方法与"鸡兔同笼"问题的解答方法完全相同。
假设5小时都是上山时间,则共走路程为3×5=15(千米),比实际走的19千米少了19-15=4(千米),原因是由于把下山时间也当作了上山时间,则下山时间为4÷(5-3)=2(小时)。
从而可以推出下山路程是5×2=10(千米),上山路程是19-10=9(千米)。
当然我们也可以假设5小时都是下山时间来类推求解。
数学中所有公式定理的运用就是类比思想的直接反映。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟得自然和简洁,从而可以激发起学生的创造力。
中学物理中的类比思想在中学物理学习中,经常会用到一种思维方法——类比思想。
什么是类比思想呢?类比思想就是将一个复杂的物理现象或规律与一个容易理解的现象或规律相对比,找到二者之间的相似点,以此来理解或解释原始物理现象或规律。
本文将从中学物理学习的角度,介绍类比思想的应用。
加速度与速度在汽车行驶时,有时会出现行驶加速过程,这个过程中汽车速度的增加量被称为加速度。
加速度是描述物体速度变化的物理量,它的公式为:a = Δv/Δt其中,Δv表示速度的变化量,Δt表示时间的变化量。
在这里,可以将汽车速度的变化过程与在水里游泳的人的速度变化过程进行类比。
假设一个人在水里向前游,他的速度也会随着时间的变化而变化,那么他的加速度也可以表示为:a = Δv/Δt这样,可以轻松理解加速度的物理含义,从而更好地掌握加速度的概念。
牛顿第一定律与平衡状态牛顿第一定律指出:物体在静止状态下将保持静止,或者在匀速直线运动状态下将继续保持这种运动状态,除非受到合外力的作用。
这个定律可以通过平衡状态进行类比,比如一个小球平衡在一个平衡状态上,它将一直保持不动,除非受到一个力推动,这样就会发生平衡状态的改变。
这样的类比可以帮助理解牛顿第一定律及其在实际物理问题中的应用。
能量转换与机械能在物理学中,能量转换是一个非常重要的概念。
其基本原理是将一种形式的能量转变为另一种形式的能量。
在中学物理学习中,最常用的能量转换是机械能的转换。
机械能由动能和势能组成,而这两者之间可以进行相互转换。
想象一个悬挂在弹簧下面的小球,它可以在弹簧的拉力下向上反弹,这个运动包含了动能和势能的相互转换。
通过这样的类比,可以帮助理解机械能转换及其在实际物理问题中的应用。
电流与水流电流是电荷通过导体断面积的物理量。
在电学中,电流与水流可以进行类比,将电流比作水流,电压比作水压,电阻比作水管。
就像水流通过水管一样,电流也通过导体流动。
这个类比可以帮助学生更好地理解电流及其在电路中的运用。