经济数学课件3.4 微分及其计算
- 格式:ppt
- 大小:326.50 KB
- 文档页数:11
经济数学微积分学习讲义合川电大兰冬生知识点一:5个基本函数1,常数函数,c y = (c 是常数)例如:3=y ,1-=y ,这些函数可以看成是x 隐含,例如3=y 可看成30+=x y 。
2,幂函数,αx y =(α是一个数) 形如2x y =,3x y =,5x y =是幂函数,注意:仅仅是这种形式是幂函数,其他的任何一点形式变化都不是,2x y =是幂函数,22x y =就不是幂函数,只能是下面x ,上面(指数)是一个数!以下基本函数均如此3,指数函数,x a y =,(a 是一个数) 例如:x y 2=,x y 23⋅=不是指数函数。
4,对数函数x y a log =,这里要求x 必须大于零,我们的考试常常拿来考“求定义域”这里我们只认识两个特殊的对数函数,一个是x y ln =,他是x y e log =的简写,e 是一个数,718.2=e ,和我们知道的14.3=π一样,另一个是x y lg =,他是x y 10log =的简写。
5,三角函数x y sin =,x y cos =,特别注意的是x y sin 2=,x y 2sin =,都不是三角函数。
● 这5个基本函数是我们要学习的函数的主要构成细胞。
● 例如:12sin 232+++=x x e y x ,二次函数,由幂函数,常数函数构成632-+=x x y 。
知识点二:极限1,什么是数列?数列就是按照“一定规律排列的一组数”,我们常见的是无限数列。
数学符号记为:}{n a例如:数列:1,2,4,8,16,32,……,发展规律依n 2 变化,,4,3,2,1,0=n …… 1,21,41,81,……,发展规律依n 21变化,,4,3,2,1,0=n …… 2,极限学习极限,一个非常重要的认识就是“分母越大,分数越小” 数列的极限,就是指数列的一个趋近值,(即是指一串数的趋近值)例如:1,21,31,41,……,分母由1,2,3,4,……变化,当分母无限大时,1000001,1000000001,……,最后,这个无限数列趋近于0,这里,我们简单描述这个变化,∞→n01→n分母越大,分数越小 →是趋近,∞是无穷大的意思,无穷大是指非常非常大,无法计量。