第2章计算机图形图像技术详解
- 格式:ppt
- 大小:1.56 MB
- 文档页数:46
计算机软件中的图形处理技术解析第一章:图形处理技术的概述计算机软件中的图形处理技术是指利用计算机来生成、处理和显示图形的技术。
随着计算机硬件的不断进步和图形媒体的广泛应用,图形处理技术在各个领域得到了广泛的应用,如游戏开发、动画制作、虚拟现实、工业设计等。
本章将对图形处理技术进行概述,介绍其基本概念和发展历程。
第二章:图形数据的表示和存储图形数据的表示和存储是图形处理技术中的基本问题之一。
它涉及到如何将图形转化为计算机可以理解和处理的数据形式,并在存储介质上进行存储。
本章将介绍常用的图形数据表示方法,如位图、矢量图和三维模型等,并探讨它们的优缺点及适用场景。
第三章:图形处理算法图形处理算法是图形处理技术中的核心内容,它包括各种针对图形数据的处理和操作方法。
本章将介绍常用的图形处理算法,如几何变换、图像滤波、颜色映射等,并详细阐述它们的原理和应用场景。
同时,我们还将介绍一些高级图形处理算法,如光照模型、体积渲染等,并展望图形处理算法的发展方向。
第四章:图形引擎与渲染技术图形引擎是指封装和实现各种图形处理算法的软件模块,它可以提供方便、高效的图形处理工具和接口。
本章将介绍常用的图形引擎和渲染技术,如OpenGL、DirectX等,并探讨它们的特点和应用领域。
同时,我们还将介绍一些新兴的图形引擎和渲染技术,如实时光线追踪、GPU计算等,并展望图形引擎与渲染技术的未来发展。
第五章:图形用户界面设计图形用户界面是人机交互的重要方式之一,它直接影响用户与软件的交互体验。
本章将介绍图形用户界面设计的基本原则和方法,如布局设计、交互设计、视觉设计等,并探讨它们在软件开发中的应用。
同时,我们还将介绍一些新兴的界面设计技术,如虚拟现实界面、增强现实界面等,并展望图形用户界面设计的发展趋势。
第六章:虚拟现实与增强现实技术虚拟现实与增强现实技术是近年来受到广泛关注的图形处理技术,它能够提供沉浸式的交互体验和丰富的信息展示方式。
第2章计算机图形系统组成随着计算机图形技术的发展,大量的计算机图形系统应用到了非常多的领域。
本章将探讨计算机图形系统的功能和结构;对部分硬件设备,特别是图形显示设备进行简要介绍;最后,为方便后面章节的讲述。
2.1.计算机图形系统概述2.1.1.计算机图形系统的功能计算机图形系统是由计算机图形硬件和计算机图形软件组成,它的基本任务是研究如何用计算机生成、处理和显示图形。
一个交互式计算机图形系统应具有计算、存储、交互、输入和输出等5中功能。
如图2-1所示。
1)计算功能(Computing)。
应包括形体设计和分析方法的程序库,描述形体的图形数据库。
数据库中应有坐标的平移、旋转、投影、透视等几何变换程序库、曲线、曲面生成和图形相互关系的检测库等。
2)存储功能(Storage)。
在计算机内存储器和外存储器中,应能存放各种形体的几何数据及形体之间相互关系,可实现对有关数据的实时检图2-1 计算机图形系统的基本功能图索以及保存对图形的删除、增加、修改等信息。
3)输入功能(Input)。
由图形输入设备将所设计的图形形体的几何参数(例如大小、位置等)和各种绘图命令输入到图形系统中。
4)输出功能(Output)。
图形系统应有文字、图形、图像信息输出功能。
在显示屏幕上显示设计过程当前的状态以及经过图形编辑后的结果。
同时还能通过绘图仪、打印机等设备实现硬拷贝输出,以便长期保存。
5)交互功能(Interactive)。
可通过显示器或其他人-机交互设备直接进行人-机通信,对计算结果和图形,利用定位、拾取等手段进行修改,同时对设计者或操作员执行的错误给予必要的提示和帮助。
以上5种功能是一个图形系统所具备的最基本功能,至于每一功能中具有哪些能力,则因不同的系统而异。
2.1.2.计算机图形系统的结构根据基本功能的要求,一个交互式计算机图形系统的结构如图2-2 所示。
可以看到,它由计算机图形硬件和计算机图形软件两部分组成。
图2-2 计算机图形系统的结构1.图形软件图形软件分为图形应用数据结构、图形应用软件和图形支撑软件三部分。
名词解释:计算机图形学(CG)是利用计算机研究图形的表示、生成、处理、显示的学科。
或者说计算机图形学研究关于计算机图形对象的建模、处理与绘制等方面的理论和技术。
图形:计算机图形学的研究对象广义上讲,图形是指能在人的视觉系统中产生视觉印象的客观对象,它包括人眼观察到的自然景物、拍摄到的图片、绘图工具得到的工程图、用数学方法描述的图形等等。
即对图像、图片、绘图、照片、插图等的统称。
矢量图:由短的直线段(矢量)组成的图形(又叫线图、图形、Graphics )点阵图:由一系列点(象素)组成的图形(又叫点图、图像、Image)Virtual Reality 或称虚拟环境(Virtual Environment)是用计算机技术来生成一个逼真的三维视觉、听觉、触觉或嗅觉等感觉世界,让用户可以从自己的视点出发,利用自然的技能和某些设备对这一生成的虚拟世界客体进行浏览和交互考察。
齐次坐标:用n+1维向量表示一个n维向量.如n维向量(P1,P2, …,Pn)表示为(hP1,hP2, hPn,h),其中h称为哑坐标。
几何变换是指对图形的几何信息经过平移、比例、旋转等变换后产生新的图形,是图形在方向、尺寸和形状方面的变换。
错切变换也称剪切、错位、错移变换,用于产生弹性物体的变形处理。
复合变换又称级联变换,指对图形做一次以上的几何变换。
用户域:指程序员用来定义草图的整个自然空间(WD),也称为用户空间、用户坐标系。
是连续的、无限的。
窗口区:指用户指定用户域中输出到屏幕上的任一区域(Window)。
在计算机图形学中,是将在用户坐标系中需要进行观察和处理的一个坐标区域。
窗口区W小于或等于用户域WD,任何小于WD的窗口区W都叫做WD的一个子域。
目的是为了使规格化设备坐标系(NDC)上所显示的世界坐标中物体有一个合适的范围与大小。
将窗口内的图形在视区中显示出来,必须经过将窗口到视区的变换(Window-V iewport Transformation)处理,这种变换就是观察变换(V iewing Transformation)。
多媒体技术应用教程之图形图像处理技术图形图像处理技术是多媒体技术中非常重要的一部分,它可以对图形和图像进行编辑、增强、修复等处理,使其更加符合需求。
本教程将为大家介绍图形图像处理技术的基本概念和常见应用。
一、图形图像处理技术的基本概念图形图像处理是通过计算机对图形和图像进行处理和编辑的技术。
它可以通过改变图像的色彩、亮度、对比度等参数来调整图像的质量和效果。
另外,图形图像处理还可以进行图像复原、图像增强、图像分割、图像合成等操作,以满足各种需求。
二、图形图像处理技术的常见应用1. 图像修复:通过图形图像处理技术,可以修复老照片中的划痕、污渍等瑕疵,使其恢复原貌。
同时,还可以修复被删减或损坏的图像区域,使其完整。
2. 图像增强:通过调整图像的亮度、对比度、色彩等参数,可以使图像的细节更加清晰,色彩更加鲜明。
这对于照片的后期处理、广告设计等领域非常重要。
3. 图像分割:图像分割可以将图像划分为不同的区域,以便对不同的区域进行不同的处理。
例如,可以将一张照片中的前景物体与背景进行分离,以便对它们进行不同的编辑。
4. 图像合成:图像合成可以将不同的图像元素组合在一起,形成新的图像。
例如,可以将一个人的头像放在一个景色图像的背景中,生成一张具有艺术感的图片。
5. 图像识别和分类:通过图形图像处理技术,可以对图像进行特征提取和模式识别,从而实现图像的自动识别和分类。
例如,可以通过图像识别技术来识别人脸、车牌等。
三、图形图像处理技术的工具和软件图形图像处理技术通常使用图形图像处理软件来实现。
目前市面上有很多成熟的图形图像处理软件,例如Adobe Photoshop、GIMP、Pixlr等。
这些软件提供了丰富的工具和功能,可以满足各种图形图像处理的需求。
四、图形图像处理技术的学习资源如果想要学习图形图像处理技术,可以参考一些优秀的学习资源。
例如,可以阅读相关的教材和图像处理技术的研究论文,参加相关的培训课程和学习班,还可以通过在线教育平台学习相关的视频课程。
计算机图形图像基础计算机图形图像是计算机科学中一个重要的分支,一般来说,它是指使用计算机技术来绘制、模拟和分析真实世界中的三维物体、纹理和动画等。
计算机图形图像涉及技术广泛,它可以帮助工程师、科学家和艺术家以新的方式理解和表达世界。
这篇文章将重点介绍计算机图形图像的基础知识,以及它的内容和应用。
一、计算机图形图像的基本概念首先,将介绍计算机图形图像的一些基本概念,以便更好的理解它的特性和用途。
计算机图形图像包括两个主要的部分:计算机图形学和计算机图像学。
计算机图形学研究用于描述渲染三维物体的技术,包括变换(如平移、旋转和缩放)、映射(如线性和非线性)、光照和贴图等。
计算机图像学专注于计算机可以利用图像处理技术对图片进行处理和分析,包括图像采集、图像压缩、图像增强、图像识别、图像分割和图像分析等。
二、计算机图形图像的内容计算机图形图像的内容主要包括三维建模、渲染和动画、图像处理等。
三维建模是计算机图形图像的核心部分,它包含了模型建构(polygonal modeling),曲面建模(surface modeling),立体变换(stereoscopy)和三维扫描(3D scanning)等。
模型建构是利用计算机语言来描述三维物体的一种方法,曲面建模是利用计算机技术来创建复杂的曲面,立体变换则是利用计算机程序来实现立体图像的转换,三维扫描则是利用计算机技术来采集三维实物的一种技术。
渲染和动画主要用于利用计算机技术来模拟真实世界的复杂纹理和运动,以及模拟出自然环境中的照明、动画效果等。
在这里,可以用到模型建构,曲面建模,立体变换,三维扫描等技术来实现复杂的渲染和动画效果。
图像处理是计算机图形图像中的另一重要部分,其作用是利用计算机技术来优化和改善图像的质量。
常见的图像处理方法有图像采集、图像压缩、图像增强、图像识别、图像分割和图像分析等。
三、计算机图形图像的应用计算机图形图像的应用非常广泛,可以用于工程设计,科学研究,艺术创作,娱乐游戏,医学成像,机器视觉等。
图形图像处理基础入门指南第一章:图形图像处理概述图形图像处理是一门应用广泛的技术,其目的是改善、增强或提取图像的特定特征。
本章将介绍图形图像处理的基本概念,包括图像的表示方式、像素及其属性等。
1. 图像的表示方式图像可表示为数字矩阵或二进制流的形式。
数字矩阵表示是将图像划分为像素,每个像素表示图像上一个点的颜色或亮度信息。
二进制流表示则是将图像编码为一串连续的比特流。
2. 像素及其属性像素是图像处理中最基本的单元,是对图像进行编码的最小单位。
每个像素可以包含多个属性,如亮度、颜色、透明度等。
这些属性会影响到后续的图像处理操作。
第二章:图形图像处理算法及工具本章将介绍图形图像处理常用的算法和工具,包括滤波、变换、分割等。
1. 滤波滤波是一种常用的图像处理方法,通过去除或增强图像的某些频率成分来实现图像的改善。
常见的滤波算法有均值滤波、中值滤波、高斯滤波等。
2. 变换变换是将图像从一个域映射到另一个域的过程。
常见的图像变换包括傅里叶变换、小波变换等,可以用于图像压缩、频域分析等应用。
3. 分割图像分割是将图像分成若干个子区域,使得每个区域具有一定的特征或属性。
常用的分割算法有阈值分割、边缘检测、聚类分割等。
第三章:图形图像处理应用领域本章将介绍图形图像处理在各个领域的应用,包括医学影像处理、卫星图像处理、数字艺术等。
1. 医学影像处理医学影像处理是图形图像处理的重要应用领域之一。
通过对医学影像的处理,可以辅助医生进行疾病的诊断和治疗。
常见的医学影像处理任务有图像增强、边缘检测、肿瘤分割等。
2. 卫星图像处理卫星图像处理是利用遥感技术对航天器观测到的地球表面图像进行处理和分析。
通过卫星图像处理,可以监测自然资源、环境变化,应用于气象预测、城市规划等领域。
3. 数字艺术图形图像处理技术在数字艺术中有着广泛的应用,如图像合成、特效处理、图像修复等。
这些技术不仅可以用于电影、电视剧的特效制作,也可以用于游戏、动画等数字娱乐产业。
第2章数字图像的基础知识和基本概念一、数字图像数字图像是以二进制数字组形式表示的二维图像。
利用计算机图形图像技术以数字的方式来记录、处理和保存图像信息。
在完成图像信息数字化以后,整个数字图像的输入、处理与输出的过程都可以在计算机中完成,它们具有电子数据文件的所有特性。
通常把计算机图形主要分为两大类:位图(bitmap)图像和矢量(vector)图形(如图2-1所示)。
图2-1 计算机图形的主要分类1.关于位图图像(1)概念位图图像(在技术上称作栅格图像)使用图片元素的矩形网格(像素)表现图像。
每个像素都分配有特定的位置和颜色值。
在处理位图图像时,人们所编辑的是像素。
位图图像是连续色调图像(如照片或数字绘画)最常用的电子媒介,因为它们可以更有效地表现阴影和颜色的细微层次。
(2)分辨率位图图像与分辨率有关,也就是说它们包含固定数量的像素。
因此,如果在屏幕上以高缩放比率对它们进行缩放或以低于创建时的分辨率来打印它们,则将丢失其中的细节,并会呈现出锯齿,如图2-2所示。
图2-2 不同放大级别的位图图像示例(3)特点①位图图像有时需要占用大量的存储空间。
对于高分辨率的彩色图像,由于像素之间独立,所以占用的硬盘空间、内存和显存比矢量图都大。
②位图放大到一定倍数后会产生锯齿。
位图的清晰度与像素点的多少有关。
③位图图像在表现色彩、色调方面的效果比矢量图更加优越,尤其在表现图像的阴影和色彩的细微变化方面效果更佳。
④位图的格式有bmp、jpg、gif、psd、tif、png等。
⑤处理软件:Photoshop、ACDSee、画图等。
2.关于矢量图形(1)概念矢量图形(又称矢量形状或矢量对象)是由称作矢量的数学对象定义的直线和曲线构成的。
矢量根据图像的几何特征对图像进行描述。
(2)分辨率矢量图形是与分辨率无关的,即当调整矢量图形的大小、将矢量图形打印到PostScript 打印机、在PDF文件中保存矢量图形或将矢量图形导入到基于矢量的图形应用程序中时,矢量图形都将保持清晰的边缘(如图2-3所示)。