如何避免贴片电容(MLCC)焊接开裂
- 格式:pdf
- 大小:42.73 KB
- 文档页数:1
贴片陶瓷电容原装安全操作及保养规程前言贴片陶瓷电容作为电子领域非常重要的器件之一,其应用广泛,拥有较高的市场份额。
然而,不正确操作和保养对陶瓷电容的稳定性和使用寿命会产生负面影响。
本文旨在向工程师和技术人员介绍贴片陶瓷电容原装安全操作及保养规程。
原装安全操作1. 储存环境在使用前,应将陶瓷电容存放在30℃以下的干燥环境下。
长时间暴露在高温高湿等恶劣环境,可能会导致电容失效。
此外,在储存的过程中,不要将陶瓷电容与金属或其它电子元件摆放在一起,因为陶瓷电容表面有金属触点,如果长时间靠近金属可能会引发静电放电。
2. 焊接温度陶瓷电容的焊接温度通常为260℃ ±5℃。
超过这个温度会导致电容的颜色变化,同时也会影响到电容的性能。
在焊接过程中,应将焊料涂敷均匀,尽量避免涂敷过多的焊料,以免对电容的性能产生影响。
3. 技术参数陶瓷电容的技术参数包括容量、电压、充电器型号等信息,应在使用前仔细查阅相关资料,确保所选型号符合应用需求。
4. 保护装置在使用陶瓷电容时,可以针对其容量、电压等参数,配置保护装置,以确保电路的安全运行。
保养规程1. 温度陶瓷电容的最佳工作环境温度是-40℃ ~ 85℃,在使用过程中应始终保持在此温度范围内。
如果在高温环境下工作,应做好散热处理,如增设风扇、降低运行功率等。
2. 湿度陶瓷电容不能长时间暴露在高湿度的环境中,如遇到潮湿的情况需要及时干燥陶瓷电容,以免影响使用寿命。
3. 标志陶瓷电容上通常会标有型号、参数等信息,不要将喷雾器等化学物品喷洒在电容标志上,以免影响标识清晰度。
4. 监测定期对陶瓷电容进行监测,如发现电容出现裂纹、变形或弯曲等情况,应立刻更换。
结语以上就是贴片陶瓷电容原装安全操作及保养规程的介绍。
希望大家在使用陶瓷电容时,能够认真遵循操作和保养规程,确保电容的性能和使用寿命。
贴片电容注意事项当高压贴片电容MLCC受到温度冲击时,容易从焊端开始产生裂纹。
在这点上,小尺寸电容比大尺寸电容相对来说会好一点,其原理就是大尺寸的电容导热没这么快到达整个电容,于是电容本体的不同点的温差大,所以膨胀大小不同,从而产生应力。
这个道理和倒入开水时厚的玻璃杯比薄玻璃杯更容易破裂一样。
另外,在贴片电容MLCC焊接过后的冷却过程中,贴片电容MLCC和PCB的膨胀系数不同,于是产生应力,导致裂纹。
要避免这个问题,回流焊时需要有良好的焊接温度曲线。
如果不用回流焊而用波峰焊,那么这种失效会大大增加。
MLCC更是要避免用烙铁手工焊接的工艺。
然而事情总是没有那么理想。
烙铁手工焊接有时也不可避免。
比如说,对于PCB外发加工的电子厂家,有的产品量特少,贴片外协厂家不愿意接这种单时,只能手工焊接;样品生产时,一般也是手工焊接;特殊情况返工或补焊时,必须手工焊接;修理工修理电容时,也是手工焊接。
无法避免地要手工焊接MLCC时,就要非常重视焊接工艺。
首先必须告知工艺和生产人员高压贴片电容热失效问题,让其思想上高度重视这个问题。
其次,必须由专门的熟练工人焊接。
还要在焊接工艺上严格要求,比如必须用恒温烙铁,烙铁不超过315°C(要防止生产工人图快而提高焊接温度),焊接时间不超过3秒选择合适的焊焊剂和锡膏,要先清洁焊盘,不可以使MLCC受到大的外力,注意焊接质量等等。
的手工焊接是先让焊盘上锡,然后烙铁在焊盘上使锡融化,此时再把电容放上去,烙铁在整个过程中只接触焊盘不接触电容(可移动靠近),之后用类似方法(给焊盘上的镀锡垫层加热而不是直接给电容加热)焊另一头。
机械应力也容易引起MLCC产生裂纹。
由于电容是长方形的(和PCB平行的面),而且短的边是焊端,所以自然是长的那边受到力时容易出问题。
于是,排板时要考虑受力方向。
比如分板时的变形方向于电容的方向的关系。
在生产过程中,凡是PCB可能产生较大形变的地方都尽量不要放电容。
以下为焊接裂纹产生原因及防治措施,一起来看看吧。
1、焊接裂纹的现象在焊缝或近缝区,由于焊接的影响,材料的原子结合遭到破坏,形成新的界面而产生的缝隙称为焊接裂缝,它具有缺口尖锐和长宽比大的特征。
按产生时的温度和时间的不同,裂纹可分为:热裂纹、冷裂纹、应力腐蚀裂纹和层状撕裂。
在焊接生产中,裂纹产生的部位有很多。
有的裂纹出现在焊缝表面,肉眼就能观察到;有的隐藏在焊缝内部,通过探伤检查才能发现;有的产生在焊缝上;有的则产生在热影响区内。
值得注意的是,裂纹有时在焊接过程中产生,有时在焊件焊后放置或运行一段时间之后才出现,后一种称为延迟裂纹,这种裂纹的危害性更为严重。
2、焊接裂纹的危害焊接裂缝是一种危害大的缺陷,除了降低焊接接头的承载能力,还因裂缝末端的尖锐缺口将引起严重的应力集中,促使裂缝扩展,最终会导致焊接结构的破坏,使产品报废,甚至会引起严重的事故。
通常,在焊接接头中,裂缝是一种不允许存在的缺陷。
一旦发现即应彻底清除,进行返修焊接。
3、焊接裂纹的产生原因及防治措施由于不同裂缝的产生原因和形成机理不同,下面就热裂缝、冷裂缝和再热裂缝三类分别予以讨论。
3.1、热裂纹热裂缝一般是指高温下(从凝固温度范围附近至铁碳平衡图上的A3线以上温度)所产生的裂纹,又称高温裂缝或结晶裂缝。
热裂缝通常在焊缝内产生,有时也可能出现在热影响区。
原因:由于焊接熔池在结晶过程中存在着偏析现象,低熔点共晶和杂质在结晶过程中以液态间层存在形成偏析,凝固以后强度也较低,当焊接应力足够大时,就会将液态间层或刚凝固不久的固态金属拉开形成裂缝。
此外,如果母材的晶界上也存在有低熔点共晶和杂质,则在加热温度超过其熔点的热影响区,这些低熔点化合物将熔化而形成液态间层,当焊接拉应力足够大时,也会被拉开而形成热影响区液化裂缝。
总之,热裂缝的产生是冶金因素和力学因素综合作用的结果。
防治措施:防止产生热裂缝的措施,可以从冶金因素和力学因素两个方面入手。
控制母材及焊材有害元素、杂质含量限制母材及焊接材料(包括焊条、焊丝、焊剂和保护气体)中易偏析元素及有害杂质的含量。
SMD電容破裂問題原因
1、电容在贴装过程中,若贴片机吸嘴头压力过大发生弯曲,容易产
生变形导致裂纹产生;
2、如该颗料的位置在边缘部份或靠近边源部份,在分板时会受到
分板的牵引力而导致电容产生裂纹最终而失效.建议在设计时
尽可能将贴片电容与分割线平行排放.当我们处理线路板时,建议采用简单的分割器械处理,如我们在生产过程中,因生产条件的限制或习惯用手工分板时,建议其分割槽的深度控制在线路
板本身厚度的 1/3~1/2之间,当超过1/2时,强烈建议采用分割器械处理,否则,手工分板将会大大增加线路板的挠曲,从而会
对相关器件产生较大的应力,损害其可靠性.
3、焊盘布局上与金属框架焊接端部焊接过量的焊锡在焊接时受到
热膨胀作用力,使其产生推力将电容举起,容易产生裂纹.
4、在焊接过程中的热冲击以及焊接完后的基板变形容易导致裂纹
产生:电容在进行波峰焊过程中,预热温度,时间不足或者焊接
温度过高容易导致裂纹产生,
5、在手工补焊过程中.烙铁头直接与电容器陶瓷体直接接触,容量
导致裂纹产生
焊接完成后的基板变型(如分板,安装等)也容易导致裂纹产生
这个得看一下你的PCB板是怎样的,是不是种长条形的,如果你的贴片电容是与PCB同方向排列,那么此电容断裂的机率是很
大的.
6、MLCC断裂多是layout和加工出了问题
就如这为兄弟所言,
至于NP0材質>X7R/X5R>Y5V没听说这种说法
因为NP0(C0G)、X7R、X5R和Y5V仅仅表示这种电介质电容的温度范围和在这个温度范围内的容值偏差,没有承受机械应力方
面的规定。
各种焊接裂纹成因特点及防止措施这条必须收藏了焊接是一种常见的连接工艺,但焊接过程中容易产生焊接裂纹。
为了提高焊接质量,减少焊接裂纹的产生,需要了解不同焊接裂纹的成因特点,并采取相应的防止措施。
焊接裂纹可分为热裂纹、冷裂纹和固化裂纹等不同类型。
下面将就各种焊接裂纹的成因特点及防止措施进行介绍:1.热裂纹:热裂纹是由于焊接过程中材料受热引起的裂纹。
其特点是呈现出明显的沿晶裂纹特征,并且易于在焊接接头中形成交叉网络裂纹。
常见的热裂纹包括低温热裂纹和高温热裂纹。
低温热裂纹通常发生在焊接高碳钢、不锈钢、铝合金等材料时,主要原因是在焊接过程中产生的低熔点物质(如非金属夹杂物、硫化物)会导致裂纹的形成。
因此,防止低温热裂纹的关键在于降低焊接接头中的夹杂物含量,控制焊接温度和速度,使用合适的焊接电流和电压等。
高温热裂纹主要发生在焊接高强度钢、铝合金等材料时,其主要原因是焊接接头中的合金元素偏析或金属在焊接中的高温下形成致密的化合物,导致焊接接头发生脆性断裂。
预热和后热处理是防止高温热裂纹的常用方法,通过控制焊接温度梯度和应力,避免裂纹的生成。
2.冷裂纹:冷裂纹是焊接接头在冷却过程中产生的裂纹,主要由于焊接接头的收缩应力超过了材料的塑性变形能力而引起。
冷裂纹通常呈现出沿晶和剥离两种形态。
冷裂纹的形成与焊接材料的化学成分、焊接参数(如预热温度、焊接电流和速度等)、接头几何形状和约束条件等因素密切相关。
为防止冷裂纹的产生,可以采取增加预热温度和焊接层间温度、降低残余应力、使用低氢焊条或填充剂等措施。
3.固化裂纹:固化裂纹是焊接过程中焊缝和熔敷金属中的液态组织在冷却过程中发生凝固收缩而产生的裂纹。
固化裂纹主要由于焊接接头中的组织偏析、组织转变和凝固缩短等因素导致。
防止固化裂纹的关键是通过合理的焊接参数、选择合适的填充材料和焊接序列等措施控制焊接缩短率,减少焊接接头中的温度梯度和残余应力。
总之,了解不同焊接裂纹的成因特点并采取相应的防止措施对于提高焊接质量具有重要意义。
焊接裂纹产生原因及防治背景焊接裂纹就其本质来分,可分为热裂纹、再热裂纹、冷裂纹、层状撕裂等。
下面仅就各种裂纹的成因、特点和防治办法进行具体的阐述。
1.热裂纹在焊接时高温下产生的,故称热裂纹,它的特征是沿原奥氏体晶界开裂。
根据所焊金属的材料不同(低合金高强钢、不锈钢、铸铁、铝合金和某些特种金属等),产生热裂纹的形态、温度区间和主要原因也各不相同。
目前,把热裂纹分为结晶裂纹、液化裂纹和多边裂纹等三大类。
1)结晶裂纹主要产生在含杂质较多的碳钢、低合金钢焊缝中(含S,P,C,Si缝偏高)和单相奥氏体钢、镍基合金以及某些铝合金焊缝中。
这种裂纹是在焊缝结晶过程中,在固相线附近,由于凝固金属的收缩,残余液体金属不足,不能及时添充,在应力作用下发生沿晶开裂。
防治措施:在冶金因素方面,适当调整焊缝金属成分,缩短脆性温度区的范围控制焊缝中硫、磷、碳等有害杂质的含量;细化焊缝金属一次晶粒,即适当加入Mo、V、Ti、Nb等元素;在工艺方面,可以通过焊前预热、控制线能量、减小接头拘束度等方面来防治。
2)近缝区液化裂纹是一种沿奥氏体晶界开裂的微裂纹,它的尺寸很小,发生于HAZ近缝区或层间。
它的成因一般是由于焊接时近缝区金属或焊缝层间金属,在高温下使这些区域的奥氏体晶界上的低熔共晶组成物被重新熔化,在拉应力的作用下沿奥氏体晶间开裂而形成液化裂纹。
这一种裂纹的防治措施与结晶裂纹基本上是一致的。
特别是在冶金方面,尽可能降低硫、磷、硅、硼等低熔共晶组成元素的含量是十分有效的;在工艺方面,可以减小线能量,减小熔池熔合线的凹度。
3)多边化裂纹是在形成多边化的过程中,由于高温时的塑性很低造成的。
这种裂纹并不常见,其防治措施可以向焊缝中加入提高多边化激化能的元素如Mo、W、Ti等。
2、再热裂纹通常发生于某些含有沉淀强化元素的钢种和高温合金(包括低合金高强钢、珠光体耐热钢、沉淀强化高温合金,以及某些奥氏体不锈钢),他们焊后并未发现裂纹,而是在热处理过程中产生了裂纹。
贴片电容破裂、失效的主要原因和对策主要包括三点:1、产生破裂、短路等问题的主要原因不是由于贴片电容的本身,更多的在这个电容的整个安装、焊接等工艺方面的因素造成的。
2、破裂、失效是在使用贴片电容中遇到的最常见、最主要的问题。
3、A VX针对这个普遍的状况提出了解决方法和相应的产品,命名为:FlexiTerm,并阐述了该产品的主要好处和特性。
需要强调的是:1、虽然,在文章上看到了这个产品的介绍,但目前,我们还没有在市场上发现这颗料在有大规模的销售。
2、当我们在线路排版时注意到这个问题,并且在整个使用贴片电容的生产过程中加强工艺控制,那相应的破裂、失效的情况会有很好的改善。
一、破裂的原因分析及对策电容的巨大普及性与可选择性技术的比较,首先是他们出色的可靠性记录和低成本。
但是在某一特定环境下由于元器件的陶瓷部分破裂会发生一些问题。
当元器件焊接到电路板后,这些失效通常由机械破坏产生;当电路板误操作或在极其苛刻的环境条件下组装,也会导致失效。
破裂问题正如贴片电容在元器件数量方面占的统治地位,多层陶瓷电容(MLCC)因为其高可靠性及低成本被普遍应用于电路设计。
即使因为陶瓷材料的特性,MLCC 本身很有可能在组装的过程中因为操作不当或是在特殊的环境下出现破裂。
因为这个原因,破裂成为贴装到电路板上的MLCC的最普遍的失效模式。
弯曲附有元件的印刷电路板,最普遍的一个结果就是导致MLCC 元件的破裂。
这种弯曲是在组装生产和恶劣的操作条件下机械导致的外力造成的。
最坏的情形,一个低阻值的电阻破裂失效会导致极高的温度,当其直接连接到电源线并有充足电流通过时电路板的直接区域将会造成毁灭性的破坏。
点击查看详细分析二、贴片电容破裂、短路现象案例分析不良原因分析:此裂纹在电容器的生产制造过程中不会产生,与电容器在使用过程中受到机械应力或热应力的作用有关,所以在未了解贵公司生产工艺情况下,初步分析可能有以下几方面原因:1、电容在贴装过程中,若贴片机吸嘴头压力过大发生弯曲,容易产生变形导致裂纹产生;2、焊盘布局上与金属框架焊接端部焊接过量的焊锡在焊接时受到热膨胀作用力,使其产生推力将电容举起,容易产生裂纹。
焊接裂纹产生原因及防治措施焊接裂纹是指在焊接过程中,焊缝或焊接接头出现的裂纹现象。
焊接裂纹的产生原因有很多,主要包括材料选择不当、焊接工艺参数不合理、应力集中、焊接变形等因素。
为了防止焊接裂纹的产生,需采取相应的防治措施。
一、材料选择不当是造成焊接裂纹的主要原因之一。
不同材料的热膨胀系数、熔点和强度等性质差异较大,若选择不当,会导致焊接时产生较大的残余应力,从而引发焊接裂纹。
因此,在焊接前应对材料进行仔细选择,确保焊接材料的相容性和相似性。
二、焊接工艺参数不合理也是引起焊接裂纹的重要原因。
焊接过程中,焊接电流、电压、速度等参数的选择不当,容易造成焊接热输入过大或过小,从而导致焊接裂纹的产生。
因此,需要根据焊接材料的厚度、形状和焊接位置等因素,合理调整焊接工艺参数,以减少焊接残余应力的产生。
三、应力集中也是焊接裂纹的重要原因之一。
焊接过程中,由于材料的热膨胀和收缩不均匀,会导致焊接接头处应力集中,从而造成焊接裂纹的产生。
为了减少应力集中,可以采取适当的预热和后热处理措施,使焊接接头的温度均匀分布,减少残余应力的产生。
四、焊接变形也是引起焊接裂纹的常见原因。
焊接过程中,由于热膨胀和收缩的影响,焊接接头会发生一定的变形,如果变形过大,就会产生焊接裂纹。
为了控制焊接变形,可以采用适当的夹具和焊接顺序,使焊接接头得到良好的约束,减少变形的发生。
为了预防焊接裂纹的产生,可以采取以下防治措施:1.合理选择焊接材料,确保材料具有相似的熔点和热膨胀系数,减少焊接时的残余应力。
2.合理调整焊接工艺参数,根据焊接材料的特性和焊接位置,确定合适的焊接电流、电压和速度等参数,以减少焊接热输入和残余应力。
3.采取适当的预热和后热处理措施,使焊接接头的温度均匀分布,减少应力集中和残余应力的产生。
4.采用适当的夹具和焊接顺序,控制焊接变形,减少焊接裂纹的发生。
5.进行焊接前的材料表面处理,确保焊接接头的清洁度和表面质量,减少焊接缺陷的产生。