电动汽车底盘结构的设计与分析
- 格式:wps
- 大小:3.22 MB
- 文档页数:30
电动汽车底盘技术的创新1. 前言电动车技术正处在创新与成长阶段,承载汽车运动性能的底盘技术是电动汽车颠覆式技术创新的核心之一。
轮毂电机和线控转向(IWMSW)技术的应用正在推动底盘技术颠覆式创新,从而获得更好的电动汽车底盘动态特性和操控性能,同时结合制动能量回收技术,更进一步实现节能。
这种颠覆式的技术对底盘构架、对底盘控制,包括软件和硬件的影响将是深远的。
本文通过整理国际上创新技术文献资料,论述了电动车底盘现状和其技术可行性。
2. 电动车底盘的技术动向在汽车革命性的电动化道路上,由于电机驱动具有低噪音、优秀的动态响应和良好的控制性等优势,电驱动应用在底盘技术创新、提升整车驾驶性方面将大有作为。
在电驱动的早期结构中(图1),电动机只是取代了传统的内燃机,成为了动力输出单元,没有对底盘结构进行改变。
轮毂电机和线控技术的出现,将推动汽车电动化进入新时代,将彻底颠覆传统车辆底盘构架(表1),这种颠覆性创新不仅仅体现车辆运动性能,同时也大幅度提升车辆的操控性能,更加适合与智慧城市与智能交通的新挑战与新需求。
3. 轮毂电机轮毂电机是分布式驱动系统的一种实现形式,由于轮毂电机总成或者轮毂电机总成大部分结构布置在轮辋内部而得名。
轮毂电机的主要优势在于以下6个方面:(1)轮毂电机通过取消传统的传动部件,如半轴等,减少了驱动传递损失,也可以优化再生制动效率,从而实现整车整个系统的轻量化、高效率;(2)轮毂电机的动力源直接安装在车轮,节省了传统动力总成的布置空间,解放了机舱空间;(3)轮毂电机的四轮动力输出可以完全独立,实现真正的整车分布控制;(4)轮毂电机对整车的轴距、轮距等敏感性远远小于传统动力总成,有利于底盘的模块化设计;(5)轮毂电机释放机舱、集成于底盘的特性可以实现四轮四角的整车构型,有利于扩大乘员舱空间,拓展整车的造型风格;(6)轮毂电机可以实现相对于传统汽车更大的转向角,增加整车不同转向功能,增强驾驶乐趣;3.1 轮毂电机的布置形式一般地,轮毂电机根据有无减速机构可以分为减速电机和直驱电机。
电动汽车底盘结构设计与分析随着环境保护意识的提高和能源危机的加剧,电动汽车作为一种清洁能源交通工具逐渐受到人们的关注和青睐。
在电动汽车的设计中,底盘结构是至关重要的一部分,它不仅关系到整车的行驶稳定性和安全性,还直接影响到电动汽车的操控性和舒适性。
在电动汽车底盘结构的设计与分析中,主要包括以下几个方面的考虑:1. 车身结构:电动汽车的车身结构要符合强度和刚度的要求,能够承受悬挂系统的载荷和行驶过程中对车身的扭转力。
同时,车身结构还应具备较好的防撞能力,保障乘员的安全。
2. 悬挂系统:悬挂系统是电动汽车底盘结构的核心部分,负责支撑和缓解车身与地面之间的冲击力和振动。
为了提高乘坐舒适性和操控性,悬挂系统需要根据不同的路况和行驶需求进行设计和调整。
常用的悬挂系统包括独立悬挂、麦弗逊悬挂和多连杆悬挂等。
3. 动力系统:电动汽车的动力系统主要包括电机、电池和控制系统。
在底盘结构设计中,需要考虑这些部件的布局和安装位置,确保其在车内空间和底盘空间之间的协调。
此外,还需要考虑电池的冷却和排热问题,避免因过热而影响电池寿命和性能。
4. 制动系统:电动汽车的制动系统也是底盘结构设计中的重要组成部分。
制动系统需要根据电动汽车的重量和速度特点进行合理的设计和调试,以提供足够的制动力并保持稳定的制动性能。
此外,电动汽车还可以采用能量回收制动系统,通过将制动能量转化为电能并储存起来,提高能源利用效率。
5. 轮胎和操控系统:轮胎选择和操控系统的设计也是电动汽车底盘结构中需要考虑的重要因素。
合适的轮胎可以提供良好的抓地力和操控性能,减小电动汽车在高速行驶时的滚动阻力。
而操控系统的设计则需要关注转向精度和操控力矩等参数,以提供舒适且灵敏的操控体验。
通过对电动汽车底盘结构的设计与分析,可以优化整车的性能和操控稳定性,提高乘坐舒适性和行驶安全性。
同时,还可以进一步提高电动汽车的能源利用效率,延长电池的使用寿命,推动电动汽车产业的可持续发展。
分布式驱动电动汽车底盘综合控制系统的设计冯冲;丁能根;何勇灵;徐国艳;高峰【摘要】本文中为四轮线控转向、液压制动的分布式驱动电动汽车,设计了基于CAN总线的底盘综合控制系统.该系统包括整车控制器、4个车轮的驱动控制器、转向系统控制器和制动系统控制器.电动汽车的各控制器之间通过CAN总线进行通信,基于CAN2.0B协议制订了CAN网络的应用层协议.考虑电动汽车电磁干扰、温度变化和振动等因素的影响,设计了各控制器的硬件.建立了用于该电动汽车的伪逆控制分配算法.该算法除实现常规的控制量分配外,还可在控制系统出现故障或控制量饱和时实现控制再分配,提高了车辆的操纵稳定性.对所设计的控制系统进行仿真和实车验证,结果表明,该系统可有效地对执行机构的控制量进行常规分配和再分配,使电动汽车能很好地实现驾驶员的驾驶意图并维持车辆稳定.【期刊名称】《汽车工程》【年(卷),期】2015(037)002【总页数】7页(P207-213)【关键词】分布式驱动电动汽车;CAN总线;伪逆控制分配【作者】冯冲;丁能根;何勇灵;徐国艳;高峰【作者单位】北京航空航天大学交通科学与工程学院,北京100191;北京航空航天大学交通科学与工程学院,北京100191;北京航空航天大学交通科学与工程学院,北京100191;北京航空航天大学交通科学与工程学院,北京100191;北京航空航天大学交通科学与工程学院,北京100191【正文语种】中文控制器局域网(CAN)由BOSCH公司开发,具有结构简单、性能可靠、数据通信实时性强等特点,目前已广泛应用于汽车领域,并且形成了国际标准ISO 11898和ISO 11519等[1]。
电动汽车作为一种绿色交通工具,目前已成为国内外研究的热点。
电动汽车的综合性能是决定电动汽车能否广泛应用的关键因素之一,目前可通过多种方式来提高电动汽车的综合性能,例如采用四轮独立驱动[2-3]、四轮转向[4]和线控制动[5]等。
《新能源汽车底盘技术》课程标准目录一、课程性质与任务 ........................................................................................................ - 1 -(一)课程基本信息 ................................................................................................. - 1 -(二)课程性质 ......................................................................................................... - 1 -(三)课程任务 ......................................................................................................... - 2 -二、课程目标与要求 ........................................................................................................ - 2 -(一)课程目标 ......................................................................................................... - 2 -(二)课程要求 ......................................................................................................... - 3 -三、课程结构与内容 ........................................................................................................ - 4 -(一)课程结构 ......................................................................................................... - 4 -(二)课程内容 ......................................................................................................... - 5 -四、课程考核 (8)五、实施要求 (8)(一)授课教师基本要求 (8)(二)教学条件要求 (9)(三)教学方法与策略 (9)(四)教材、数字化资源选用 (9)一、课程性质与任务(一)课程基本信息表1 《新能源汽车底盘技术》课程信息表理论课实践课 一体化课(二)课程性质《新能源汽车底盘技术》课程是新能源汽车运用与维修专业的专业课,是校企合作开发的基于工作过程的课程。
微型电动汽车底盘结构分析及优化研究作者:石正鹏来源:《科学与财富》2016年第25期摘要:底盘作为微型电动汽车的一个关键构成部分,承受着大部分载荷,固定与连接着绝大多数零部件。
在汽车底盘结构设计时,应保证底盘具有足够的刚度与强度,保证底盘结构静动态特性合理。
为达到优化底盘结构目的,本文对微型电动汽车底盘结构进行了相应分析,并根据几种不同工况静态力学分析给出了底盘结构优化对策。
关键词:微型电动汽车;底盘;有限元模型;结构优化前言:底盘结构在整个微型电动汽车构造与行驶中起着至关重要的作用,直接关系着电动汽车行驶安全性、舒适性与可靠性。
由于汽车运行会面临各种各样的工况,而不同工况会在不同程度上给底盘结构带来应力作用,造成底盘结构弯曲,降低汽车安全性能,因而必须要通过底盘结构分析对其进行优化处理。
1.微型电动汽车底盘结构分析1.1底盘结构分析微型电动汽车的底盘结构主要由两部分构成,即主底盘和副底盘,为边梁式结构,长245cm,宽128cm。
主底盘两侧由长、短纵梁和横梁组成,长纵梁和短纵梁分别为2根,横梁有若干,而副底盘则由4根横梁与2根纵梁组成。
主、副底盘均采用标准的矩形管型钢材制成[1]。
这种底盘结构能够实现底盘空间的最大化利用,具有重量轻、结构简单便捷、刚度大、强度高等多种优点,既便于各种零部件安装,又能够使各种部件在底盘空间上得到更好的布局,并为今后底盘结构改装优化提供便利。
微型电动汽车底盘结构参数主要有载重量、最大行驶速度、最大爬坡度、输出功率等。
1.2有限元模型建立对微型电动汽车底盘结构进行分析,了解了电动汽车底盘构造之后还需要构建有限元模型,进行有限元分析。
使用ANSYS软件对底盘结构进行有限元建模。
实际上ANSYS软件可以识别几何模型与有限元模型两种模型,几何模型建模有实体建模和直接对结构进行建模两种方法,但几何建模对于工作量大、结构过于复杂的底盘结构不适用,可能会造成计算不准确、精度不高问题[2]。