初中函数图像及性质
- 格式:doc
- 大小:376.50 KB
- 文档页数:7
初三二次函数的图像与性质二次函数是初中数学中的一个重要概念。
在数学学习的过程中,我们常常会接触到二次函数,并且需要了解它的图像特点以及性质。
本文将详细介绍初三二次函数的图像和性质,并且给出相关的例题和解析。
一、二次函数的定义及一般式二次函数是指函数$y=ax^2+bx+c$,其中$a,b,c$为常数且$a\neq 0$。
它的图像是抛物线,并且开口的方向由$a$的正负决定。
当$a>0$时,抛物线开口向上;而当$a<0$时,抛物线开口向下。
二次函数的一般式为$y=ax^2+bx+c$,其中$a,b,c$为常数。
其中,$a$代表抛物线的开口方向与开口的大小,$b$影响抛物线的位置,$c$影响抛物线和$y$轴的交点。
【例题1】某二次函数的方程是$y=2x^2-3x+1$,求该二次函数的图像和性质。
解:根据给定的二次函数方程,我们可以得到$a=2$,$b=-3$,$c=1$。
由于$a>0$,所以抛物线开口向上。
考虑二次函数的图像特点,我们可以使用一些方法来绘制它的图像。
首先,我们可以找出抛物线的对称轴,对称轴的方程为$x=-\frac{b}{2a}$。
代入$a=2$,$b=-3$,我们得到$x=-\frac{-3}{2\times2}=\frac{3}{4}$。
因此,对称轴的方程为$x=\frac{3}{4}$。
接下来,我们需要计算抛物线的顶点坐标。
顶点坐标可以通过将对称轴的$x$坐标代入原函数方程计算得到。
将$x=\frac{3}{4}$代入$y=2x^2-3x+1$,我们得到$y=2(\frac{3}{4})^2-3(\frac{3}{4})+1=\frac{9}{8}-\frac{9}{4}+1=\frac{1}{8}$。
因此,顶点坐标为$(\frac{3}{4}, \frac{1}{8})$。
不难看出,根据顶点的坐标和对称轴的方程,我们可以绘制出该二次函数的图像。
它是一个开口向上的抛物线,对称轴为$x=\frac{3}{4}$,顶点坐标为$(\frac{3}{4}, \frac{1}{8})$。
一次函数(一)函数1、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
(二)一次函数1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。
当0b =时,一次函数y kx =,又叫做正比例函数。
⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数.⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.2、正比例函数及性质一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.注:正比例函数一般形式y=kx (k 不为零)①k 不为零②x 指数为1③b 取零当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时, 直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小.(1)解析式:y=kx(k 是常数,k≠0)(2)必过点:(0,0)、(1,k)(3)走向:k>0时,图像经过一、三象限;k<0时, 图像经过二、四象限(4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小(5)倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴3、一次函数及性质一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式y=kx+b (k 不为零)①k 不为零②x 指数为1③b 取任意实数一次函数y=kx+b 的图象是经过(0,b)和(-kb,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k、b 是常数,k ≠0)(2)必过点:(0,b)和(-kb,0)(3)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限⇔⎩⎨⎧><0b k 直线经过第一、二、四象限⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限(4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.(6)图像的平移:当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.4、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点.b>0b<0b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y随x的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y随x的增大而减小5、正比例函数与一次函数之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)6、正比例函数和一次函数及性质正比例函数一次函数概念一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,是y=kx ,所以说正比例函数是一种特殊的一次函数.自变量范围X 为全体实数图象一条直线必过点(0,0)、(1,k)(0,b)和(-kb,0)走向k>0时,直线经过一、三象限;k<0时,直线经过二、四象限k>0,b>0,直线经过第一、二、三象限k>0,b<0直线经过第一、三、四象限k<0,b>0直线经过第一、二、四象限k<0,b<0直线经过第二、三、四象限增减性k>0,y 随x 的增大而增大;(从左向右上升)k<0,y 随x 的增大而减小。
初中高中数学七大函数的性质图像1.一次函数(包括正比例函数)最简单最常见的函数,在平面直角坐标系上的图象为直线。
定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R值域:R奇偶性:无周期性:无平面直角坐标系解析式(下简称解析式):①ax+by+c=0[一般式]②y=kx+b[斜截式](k为直线斜率,b为直线纵截距,正比例函数b=0)③y-y1=k(x-x1)[点斜式](k为直线斜率,(x1,y1)为该直线所过的一个点)④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]((x1,y1)与(x2,y2)为直线上的两点)⑤x/a-y/b=0[截距式](a、b分别为直线在x、y轴上的截距)解析式表达局限性:①所需条件较多(3个);②、③不能表达没有斜率的直线(平行于x轴的直线);④参数较多,计算过于烦琐;⑤不能表达平行于坐标轴的直线和过圆点的直线。
倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜角。
设一直线的倾斜角为a,则该直线的斜率k=tg(a)。
2.二次函数:题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。
定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:偶函数周期性:无解析式:①y=ax^2+bx+c[一般式]⑴a≠0⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;⑶极值点:(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac,Δ>0,图象与x轴交于两点:([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ<0,图象与x轴无交点;②y=a(x-h)^2+t[配方式]此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);3.反比例函数在平面直角坐标系上的图象为双曲线。
函数图形基本初等函数幂函数(1)幂函数(2)幂函数(3)指数函数(1)指数函数(2)指数函数(3)对数函数(1)对数函数(2)三角函数(1)三角函数(2)三角函数(3)三角函数(4)三角函数(5)反三角函数(1)反三角函数(2)反三角函数(3)反三角函数(4)反三角函数(5)反三角函数(6)反三角函数(7)反三角函数(8)双曲函数(1)双曲函数(2)双曲函数(3)双曲函数(4)双曲函数(5)双曲函数(6)双曲函数(7)反双曲函数(1)反双曲函数(2)反双曲函数(3)反双曲函数(4)反双曲函数(5)反双曲函数(6)y=sin(1/x) (1)y=sin(1/x) (2)y=sin(1/x) (3)y=sin(1/x) (4)y = [1/x](1)y = [1/x](2)y=21/xy=21/x (2)y=xsin(1/x)y=arctan(1/x)y=e1/xy=sinx (x->∞)绝对值函数y = |x| 符号函数y = sgnx 取整函数y= [x]极限的几何解释(1) 极限的几何解释(2)极限的几何解释(3)极限的性质(1) (局部保号性)极限的性质(2) (局部保号性) 极限的性质(3) (不等式性质) 极限的性质(4) (局部有界性) 极限的性质(5) (局部有界性)两个重要极限y=sinx/x (1)y=sinx/x (2)limsinx/x的一般形式y=(1+1/x)^x (1)y=(1+1/x)^x (2)lim(1+1/x)^x 的一般形式(1)lim(1+1/x)^x 的一般形式(2)lim(1+1/x)^x 的一般形式(3)e的值(1)等价无穷小(x->0)sinx等价于xarcsinx等价于x tanx等价于x arctanx等价于x1-cosx等价于x^2/2sinx等价于x数列的极限的几何解释海涅定理渐近线水平渐近线铅直渐近线y=(x+1)/(x-1)y=sinx/x (x->∞) 夹逼定理(1)夹逼定理(2)数列的夹逼性(1) 数列的夹逼性(2) pi 是派的意思(如果你没有切换到公式版本)^是次方的意思,$是公式的标记符,切换到公式版(安装mathplayer)就看不到$了文案编辑词条B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。
初中数学教案三次函数的图像与性质三次函数是中学数学中的一个重要知识点,它具有独特的图像和性质。
本教案将以图像为线索,详细介绍三次函数的特点和性质,帮助学生深入理解和掌握这一概念。
一、三次函数的基本形式三次函数的一般形式为:$y = ax^3+bx^2+cx+d$,其中$a,b,c,d$为实数且$a\neq0$。
二、三次函数的图像为了研究三次函数的图像,我们将从以下几个方面进行讲解。
1. 零点与轨迹在$x$轴上,三次函数的零点对应的是方程$ax^3+bx^2+cx+d=0$的解。
解方程的方法是通过因式分解、配方法、求根公式等来求得。
2. 极值点与拐点三次函数的极值点和拐点可以通过求导数的方法得到。
求解导函数$y' = 3ax^2+2bx+c$,令其等于零,即可求得极值点和拐点的横坐标。
然后再代入原函数中,求得对应的纵坐标。
3. 对称性三次函数具有奇函数的对称性,即$f(-x) = -f(x)$。
这意味着如果某一点$(x_0, y_0)$在图像上,那么点$(-x_0, -y_0)$也在图像上。
三、三次函数的性质除了图像特点之外,我们还需要讲解三次函数的其他性质,包括:1. 定义域和值域三次函数的定义域为全体实数。
值域则需要通过观察图像或者进行计算得到。
2. 单调性三次函数的单调性与系数$a$的正负有关。
当$a>0$时,函数单调递增;当$a<0$时,函数单调递减。
3. 凹凸性通过分析二阶导函数$y''=6ax + 2b$的正负,可以判断三次函数的凹凸性。
当$y''>0$时,函数凹;当$y''<0$时,函数凸。
4. 渐近线对于三次函数而言,它可能有水平渐近线、垂直渐近线以及斜渐近线等。
通过求解极限或观察图像,可以确定渐近线的方程。
四、教学实例与练习为了帮助学生更好地掌握三次函数的图像和性质,我们可以设计一些教学实例和练习题,如:1. 画出函数$y=2x^3-3x^2-12x+5$的图像,并求出其所有零点和拐点的坐标。
初中数学函数大全(分类函数I、定义与定义式:自变量x变量y关系:y=kx+b(kb数k≠0)则称yx函数特别b=0yx比例函数II、函数性质:y变化值与应x变化值比例比值k即△y/△x=kIII、函数图象及性质:1. 作与图形:通3步骤(1)列表(般找4-6点);(2)描点;(3)连线作函数图象(用平滑直线连接)2. 性质:函数图象任意点P(xy)都满足等式:y=kx+b3. kb与函数图象所象限k>0直线必通、三象限y随x增增;k<0直线必通二、四象限y随x增减b>0直线必通、二象限;b<0直线必通三、四象限特别b=0直线通原点O(00)表示比例函数图象k>0直线通、三象限;k<0直线通二、四象限IV、确定函数表达式:已知点A(x1y1);B(x2y2)请确定点A、B函数表达式(1)设函数表达式(叫解析式)y=kx+b(2)函数任意点P(xy)都满足等式y=kx+b所列2程:y1=kx1+b①y2=kx2+b②(3)解二元程kb值(4)函数表达式V、y=kx+b,两坐标系必定经(0,b)(-b/k,0)两点VI、函数应用1.间t定距离s速度v函数s=vt2.水池抽水速度f定水池水量g抽水间t函数设水池原水量Sg=S-ft反比例函数形y=k/x(k数且k≠0) 函数叫做反比例函数自变量x取值范围等于0切实数反比例函数图像双曲线图面给k别负(2-2)函数图像二函数般自变量x变量y间存关系:y=ax^2+bx+c (a≠0)(abc数a≠0且a决定函数口向a>0口向向a<0口向向IaI决定口,IaI越口越,Ia I越口越)则称yx二函数二函数表达式右边通二三项式x自变量yx函数二函数三种表达式般式:y=ax^2+bx+c(abc数a≠0)顶点式:y=a(x-h)^2+k [抛物线顶点P(hk)] 于二函数y=ax^2+bx+c 其顶点坐标(-b/2a,(4ac-b^2)/(4a))交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴交点A(x₁0) B(x₂0)抛物线]其x12= (-b±√(b^2-4ac))/(2a)注:3种形式互相转化关系:______h=-b/(2a) k=(4ac-b^2)/(4a) x₁,x₂=(-b±√b^2-4ac)/2a二函数图像平面直角坐标系作二函数y=x^2图像二函数看二函数图像条抛物线二函数标准画步骤(平面直角坐标系)(1)列表(2)描点(3)连线抛物线性质1.抛物线轴称图形称轴直线x = -b/2a称轴与抛物线唯交点抛物线顶点P特别b=0抛物线称轴y轴(即直线x=0)2.抛物线顶点P坐标P ( -b/2a (4ac-b^2)/4a )-b/2a=0Py轴;Δ= b^2-4ac=0Px轴3.二项系数a决定抛物线口向a>0抛物线向口;a<0抛物线向口|a|越则抛物线口越4.项系数b二项系数a共同决定称轴位置a与b同号(即ab>0)称轴y轴左;a与b异号(即ab<0)称轴y轴右5.数项c决定抛物线与y轴交点抛物线与y轴交于(0c)6.抛物线与x轴交点数Δ= b^2-4ac>0抛物线与x轴2交点Δ= b^2-4ac=0抛物线与x轴1交点_______Δ= b^2-4ac<0抛物线与x轴没交点X取值虚数(x= -b±√b^2-4ac 值相反数乘虚数i整式除2a)a>0函数x= -b/2a处取值f(-b/2a)=4ac-b^2/4a;{x|x<-b/2a}减函数{x|x>-b/2a}增函数;抛物线口向;函数值域{x|x≥4ac-b^2/4a}相反变b=0抛物线称轴y轴函数偶函数解析式变形y=ax^2+c(a≠0)二函数与元二程特别二函数(称函数)y=ax^2+bx+cy=0二函数关于x元二程(称程)即ax^2+bx+c=0函数图像与x轴交点即程实数根函数与x轴交点横坐标即程根1.二函数y=ax^2y=a(x-h)^2y=a(x-h)^2 +ky=ax^2+bx+c(各式a≠0)图象形状相同位置同顶点坐标及称轴表:解析式y=ax^2y=a(x-h)^2y=a(x-h)^2+ky=ax^2+bx+c顶点坐标(00)(h0)(hk)(-b/2a(4ac-b^2)/4a)称轴x=0x=hx=hx=-b/2ah>0y=a(x-h)^2图象由抛物线y=ax^2向右平行移h单位h<0则向左平行移|h|单位.h>0,k>0抛物线y=ax^2向右平行移h单位再向移k单位y=a(x-h)^2 +k图象;h>0,k<0抛物线y=ax^2向右平行移h单位再向移|k|单位y=a(x-h)^2+k图象; h<0,k>0抛物线向左平行移|h|单位再向移k单位y=a(x-h)^2+k图象;h<0,k<0抛物线向左平行移|h|单位再向移|k|单位y=a(x-h)^2+k图象;研究抛物线y=ax^2+bx+c(a≠0)图象通配般式化y=a(x-h)^2+k形式确定其顶点坐标、称轴抛物线体位置清楚.给画图象提供便.2.抛物线y=ax^2+bx+c(a≠0)图象:a>0口向a<0口向称轴直线x=-b/2a顶点坐标(-b/2a[4ac-b^2]/4a).3.抛物线y=ax^2+bx+c(a≠0)若a>0x ≤-b/2ay随x增减;x ≥-b/2ay随x增增.若a<0x ≤-b/2ay随x增增;x ≥-b/2ay随x增减.4.抛物线y=ax^2+bx+c图象与坐标轴交点:(1)图象与y轴定相交交点坐标(0c);(2)△=b^2-4ac>0图象与x轴交于两点A(x₁0)B(x₂0)其x1,x2元二程ax^2+bx+ c=0(a≠0)两根.两点间距离AB=|x₂-x₁| 另外抛物线任何称点距离由|2×(-b/2a) -A |(A其点)△=0.图象与x轴交点;△<0.图象与x轴没交点.a>0图象落x轴x任何实数都y>0;a<0图象落x轴x 任何实数都y<0.5.抛物线y=ax^2+bx+c值:a>0(a<0)则x= -b/2ay()值=(4ac-b^2)/4a.顶点横坐标取值自变量值顶点纵坐标值取值.6.用待定系数求二函数解析式(1)题给条件已知图象经三已知点或已知x、y三应值设解析式般形式:y=ax^2+bx+c(a≠0).(2)题给条件已知图象顶点坐标或称轴设解析式顶点式:y=a(x-h)^2+k(a≠0).(3)题给条件已知图象与x轴两交点坐标设解析式两根式:y=a(x-x₁)(x-x₂)(a≠0).7.二函数知识容易与其知识综合应用形较复杂综合题目二函数知识主综合性题目考热点考题往往题形式现.。
一.正比例函数的性质1.定义域:R(实数集)2.值域:R(实数集)3.奇偶性:奇函数4.单调性:当k>0时,图像位于第一、三象限,y随x的增大而增大(单调递增);当k<0时,图像位于第二、四象限,y随x的增大而减小(单调递减)5.周期性:不是周期函数。
6.对称轴:直线,无对称轴。
、二.一次函数图像和性质一般地,形如y=kx+b(k、b是常数,且k≠0•)的函数,•叫做一次函数(•linear function).一次函数的定义域是一切实数.当b=0时,y=kx+b即y=kx(k是常数,且k≠0•).所以说正比例函数是一种特殊的一次函数.当k=0时,y等于一个常数,这个常数用c来表示,一般地,我们把函数y=c(c是常数)叫做常值函数(constant function)它的定义域由所讨论的问题确定.一般来说, 一次函数y=kx+b(其中k、b是常数,且k≠0)的图像是一条直线. 一次函数y=kx+b的图像也称为直线y=kx+b. 一次函数解析式y=kx+b称为直线的表达式.一条直线与y轴的交点的纵坐标叫做这条直线在y轴上的截距,简称直线的截距.一般地,直线y=kx+b(k0)与y轴的交点坐标是(0,b).直线y=kx+b(k0)的截距是b.一次函数的图像:k>0 b>0 函数经过一、三、二象限k>0 b<0 函数经过一、二、三象限k<0 b>0 函数经过一、二、四象限k<0 b<0 函数经过二 、三、四象限 上面性质反之也成立 1.b 的作用在坐标平面上画直线y=kx+b (k≠0),截距b 相同的直线经过同一点(0,b). 2.k 的作用k 值不同,则直线相对于x 轴正方向的倾斜程度不同. (1)k>0时,K 值越大,倾斜角越大 (2)k<0时,K 值越大,倾斜角越大说明 (1) 倾斜角是指直线与x 轴正方向的夹角;(2)常数k 称为直线的斜率.关于斜率的确切定义和几何意义,将在高中数学中讨论. 3.直线平移一般地,一次函数y=kx+b(b0)的图像可由正比例函数y=kx 的图像平移得到.当b>0时,向上平移b 个单位;当b<0时,向下平移|b|个单位. 4.直线平行如果k1=k2 ,b1b2,那么直线y=k1x+b1与直线y=k2x+b2平行. 如果直线y=k1x+b1与直线y=k2x+b2平行,那么k1=k2 ,b1b2 . 1.一次函数与一元一次方程的关系一次函数 y=kx+b 的图像与x 轴交点的横坐标就是一元一次方程kx+b=0的解;反之,一元一次方程kx+b=0的解就是一次函数 y=kx+b 的图像与x 轴交点的横坐标.两者有着密切联系,体现数形结合的数学思想.2.一次函数与一元一次不等式的关系由一次函数 y=kx+b 的函数值y 大于0(或小于0),就得到关于x 的一元一次不等式kx+b>0(或kx+b<0).在一次函数 y=kx+b 的图像上且位于x 轴上方(或下方)的所有点,它们的横坐标的取值范围就是不等式kx+b>0(或kx+b<0)的解.三.二次函数图像及其性质1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的一元二次函数.2.二次函数2ax y =的性质(1)抛物线2ax y =)(0≠a 的顶点是原点,对称轴是y 轴.(2)函数2ax y =的图像与a 的符号关系:①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5.抛物线c bx ax y ++=2的三要素:开口方向、对称轴、顶点. ①a 决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 越小,抛物线的开口越大,a 越大,抛物线的开口越小。
一次函数的图象和性质一、知识要点:1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b为常数)的形式,则称y是x的函数。
注意:(1)k≠0,否则自变量x的最高次项的系数不为1;(2)当b=0时,y=kx,y叫x的正比例函数。
2、图象:一次函数的图象是一条直线(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(- ,0)。
(2)正比例函数y=kx(k≠0)的图象是经过(0,0)和(1,k)的一条直线;一次函数y=kx+b(k≠0)的图象是经过(- ,0)和(0,b)的一条直线。
(3)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。
3、一次函数图象的性质:(1)图象在平面直角坐标系中的位置:(2)增减性:k>0时,y随x增大而增大;k<0时,y随x增大而减小。
4、求一次函数解析式的方法求函数解析式的方法主要有三种:一是由已知函数推导,如例题1;二是由实际问题列出两个未知数的方程,再转化为函数解析式,如例题4的第一问。
三是用待定系数法求函数解析式,如例2的第二小题、例7。
其步骤是:①根据题给条件写出含有待定系数的解析式;②将x、y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程,得到待定系数的具体数值;④将求出的待定系数代入要求的函数解析式中。
二、例题举例:例1、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x的函数关系。
分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x 的关系。
解:∵y=2y1y1=3x+2,∴y=2(3x+2)=6x+4,即变量y与x的关系为:y=6x+4。
例2、解答下列题目(1)(甘肃省中考题)已知直线与y轴交于点A,那么点A的坐标是()。
(A)(0,–3)(B)(C)(D)(0,3)(2)(杭州市中考题)已知正比例函数,当x=–3时,y=6.那么该正比例函数应为()。
函数的定义
一、自变量与应变量
在数学中,通常我们用y
x来表示的式子描述函数解析式。
那么y随着x 变化而变化,则我们把x叫做自变量,y叫做应变量,即y是x函数。
一次函数的图像及性质
一、一次例函数定义
形如()0
y这样的函数叫一次函数。
kx
b
+
=k
≠
二、正比例函数
当一次函数()()叫正比例函数。
b
k
y
y
=k
kx
b
kx
时,
+
0≠
中0
=
≠
=
三、正比函数性质
1、正比例函数图像为恒过坐标原点()0,0和点()b,0的直线。
且与y轴的截距是b,与y轴的交点坐标为()b,0。
2、当0
y=
>
k时,正比例kx
随x
y
的增大而增大。
3、当0
y=
<
k时,正比例kx
y
随x
的增大而减小。
四、一次函数图像及性质
1、的图像时,一次函数,当b kx y b k +=>>00
过一、二、三象限。
2、的图像时,一次函数,当b kx y b k +=<>00 过一、三、四象限。
3、的图像时,一次函数,当b kx y b k +=><00 过一、二、四象限。
4、的图像时,一次函数,当b kx y b k +=<<00
过二、三、四象限。
五、一次函数图像与坐标轴围成的三角形面积公式
设一次函数()0≠+=k b kx y 与坐标轴所围成的三角形为
∆
六、用函数的观点看不等式
设两个一次函数111b x k y +=和222b x k y +=的交点 为点()00,y x ,如图可知 (1)当o x x >时,21y y >;
k
b b k b y x A B 22121S 2
AOB =
⋅-=⋅=∆1
2
2b x k +
(2)当o x x =时,21y y =; (3)当o x x <时,21y y <。
反比例函数图像及性质
一、反比例函数定义
形如()0≠=k x
k y 这样的函数叫反比例函数。
k 叫比例系数()为常数k 。
二、反比例函数的图像
反比例函数图像为双曲线。
三、反比例函数的性质 2、当0>k 时,反比例函数x
k
y =
的图像分布在一、三象限。
3、当0<k 时,反比例函数x
k
y =
的图像分布在二、四象限。
四、反比例函数图像上的点。
点()00,y x p 在反比例函数()0≠=k x
k
y 的图像上k y x =⋅⇔00
五、反比例函数图像上图形面积与比例系数k 的关系
21k S x k y OAB =
=∆中如上图所示、在k
S x
k
y OABC ==四边形中如上图所示、在2
二次函数图像及性质
一、二次函数定义
形如()02≠++=a c bx ax y 这样的函数 叫做二次函数。
二、二次函数的图像
二次函数的图像是抛物线。
如右图所示
三、二次函数的性质
1、二次函数()02≠++=a c bx ax y 的图像恒过点()c ,0,且与y 轴的截距为
c ;
2、当0>a 时,二次函数()02≠++=a c bx ax y 的图像抛物线开口向上,
且有最小值;
3、当0<a
)02
≠a 的图像抛物线开口向上,
且有最大值;
k
S x
k
y ABC ==∆中如上图所示、在3OCD
OAB S S x
k
y ∆∆==中如上图所示、在4
4、二次函数()02≠++=a c bx ax y 的对称轴为直线a
b
x 2-
=最值为a
b a
c y 442-=
四、二次函数的形式
1、三点式:已知二次函数图像上三点,求函数解析式如下
已知点()11,y x A 、()22,y x B 、()33,y x C 在一个二次函数图像上,则求该二次函数解析式。
解:设这个二次函数解析式为c bx ax y ++=2
把题中三点分别代入解析式得
然后把c b a 、、的值分别带入假设的解析式中,此题得解。
2、两点式:已知二次函数图像与x
求函数解析式如下
已知二次函数图像与x 轴的交点分别为点()0,1x A 与点()0,2x B ,求函数解析式如下
解:设这个二次函数解析式为()()21x x x x a y --=,然后利用多项式乘
⎪⎩⎪⎨⎧=++=++=++3323
222
2112
1y
c bx ax y c bx ax y c bx ax ⎪⎩
⎪⎨⎧==
=c b a 解得()
22,y x B •)
33,y x (A )2)
33,y x )
法展开后合并同类项,降幂排列的()21212x ax x x x a ax y ++-=,通常考出两点式的题型,a 的值会很容易求出。
3、顶点式:已知二次函数的对称轴与最值求二次函数解析式如下
已知二次函数的对称轴为直线h x =, 最值(最大值或者最小值)为k 。
则它
的解析式为()k h x a y +-=2,这种题
型中a 的也很容易求出。
4、顶点式的变形考法,也就是通常常考内容,利润问题和最值问题。
解决这类问题时,一般分为3个步骤:
(1) 列出二次函数解析式
(2) 把这个二次函数解析式配方成顶点式的形式 (3) 根据顶点式直接可以写出当h x =时,
○
1当0>a 时,k y =min ;○2当0<a 时,k y =max ; 求两个函数图像的交点
求两个函数图像交点的题型,通常都是把这两个函数解析式联立成方程组,然后解次方程组,求得的方程组的对应x 的值与相应y 的值,正好就构成两个函数图像的其中一个交点的坐标。
归纳为:方程组的解就是图像的交点,图像的交点就是方程组的
()
k h ,•
解。