数据结构复习要点 (1)
- 格式:doc
- 大小:188.00 KB
- 文档页数:4
数据结构复习要点(整理版)数据结构复习要点(整理版)数据结构是计算机科学中非常重要的一门课程,它涉及到各种数据的存储和组织方式,对于编程和算法的理解都至关重要。
本文将整理常见的数据结构复习要点,帮助读者回顾和加深对数据结构的理解。
一、线性结构线性结构是最简单的数据结构之一,它包括线性表、栈、队列等。
线性表是具有相同数据类型的一组元素的有限序列,它可以分为顺序表和链表。
顺序表是一种用连续的存储单元依次存储线性表的元素的数据结构,而链表则是通过每个元素中存储下一个元素的地址来实现线性关系。
栈和队列是线性结构的特殊形式。
栈是一种先进后出(LIFO)的数据结构,它可以通过顺序栈或链栈来实现。
队列是一种先进先出(FIFO)的数据结构,它可以通过顺序队列或链队列来实现。
二、树形结构树形结构是一种非线性结构,它具有层次关系,由节点和边组成。
常见的树形结构包括二叉树、二叉搜索树、平衡二叉树和哈夫曼树。
二叉树是每个节点最多只有两个子节点的树,它可以是空树、只有一个根节点的树或者一个根节点连接两棵不相交的二叉树。
二叉搜索树是一种特殊的二叉树,它的左子树上所有节点的值小于根节点的值,右子树上所有节点的值大于根节点的值。
平衡二叉树是一种特殊的二叉搜索树,它的左子树和右子树的高度差不超过1,这样可以保证在最坏情况下的查找效率。
哈夫曼树是一种特殊的二叉树,它的叶子节点代表字符,而各节点的权值表示字符出现的频率,通过构造哈夫曼树可以实现数据的压缩编码。
三、图形结构图形结构是一种包含节点和边的非线性数据结构,它由顶点集合和边集合组成。
图形结构可以分为无向图和有向图,每个节点可以有一个或多个相邻节点。
图形结构的常见算法有深度优先搜索(DFS)和广度优先搜索(BFS)。
深度优先搜索是一种通过递归或栈实现的搜索算法,它先访问起始节点的一个邻接节点,再依次访问该节点的未被访问过的邻接节点,直到所有节点都被访问过。
广度优先搜索则是一种通过队列实现的搜索算法,它先访问起始节点的所有邻接节点,再依次访问这些邻接节点的邻接节点,以此类推,直到所有节点都被访问过。
2010年自学考试《数据结构》一至三章复习要点总结第一章概论数据就是指能够被计算机识别、存储和加工处理的信息的载体。
数据元素是数据的基本单位,可以由若干个数据项组成。
数据项是具有独立含义的最小标识单位。
数据结构的定义:·逻辑结构:从逻辑结构上描述数据,独立于计算机。
·线性结构:一对一关系。
·线性结构:多对多关系。
·存储结构:是逻辑结构用计算机语言的实现。
·顺序存储结构:如数组。
·链式存储结构:如链表。
·稠密索引:每个结点都有索引项。
·稀疏索引:每组结点都有索引项。
·散列存储结构:如散列表。
·对数据的操作:定义在逻辑结构上,每种逻辑结构都有一个运算集合。
·常用的有:检索、插入、删除、更新、排序。
·数据类型:是一个值的集合以及在这些值上定义的一组操作的总称。
·原子类型:由语言提供。
·结构类型:由用户借助于描述机制定义,是导出类型。
抽象数据类型ADT:·是抽象数据的组织和与之的操作。
相当于在概念层上描述问题。
·优点是将数据和操作封装在一起实现了信息隐藏。
程序设计的实质是对实际问题选择一种好的数据结构,设计一个好的算法。
算法取决于数据结构。
算法是一个良定义的计算过程,以一个或多个值输入,并以一个或多个值输出。
评价算法的好坏的因素:·算法是正确的;·执行算法的时间;·执行算法的存储空间(主要是辅助存储空间);··取结点:GetNode(L,i) ·查找:LocateNode(L,x) ·插入:InsertList(L,x,i) ·删除:Delete(L,i)顺序表是按线性表的逻辑结构次序依次存放在一组地址连续的存储单元中。
在存储单元中的各元素的物理位置和逻辑结构中各结点相邻关系是一致的。
数据结构复习资料复习提纲知识要点归纳数据结构复习资料:复习提纲知识要点归纳一、数据结构概述1. 数据结构的定义和作用2. 常见的数据结构类型3. 数据结构与算法的关系二、线性结构1. 数组的概念及其特点2. 链表的概念及其分类3. 栈的定义和基本操作4. 队列的定义和基本操作三、树结构1. 树的基本概念及定义2. 二叉树的性质和遍历方式3. 平衡二叉树的概念及应用4. 堆的定义和基本操作四、图结构1. 图的基本概念及表示方法2. 图的遍历算法:深度优先搜索和广度优先搜索3. 最短路径算法及其应用4. 最小生成树算法及其应用五、查找与排序1. 查找算法的分类及其特点2. 顺序查找和二分查找算法3. 哈希查找算法及其应用4. 常见的排序算法:冒泡排序、插入排序、选择排序、归并排序、快速排序六、高级数据结构1. 图的高级算法:拓扑排序和关键路径2. 并查集的定义和操作3. 线段树的概念及其应用4. Trie树的概念及其应用七、应用案例1. 使用数据结构解决实际问题的案例介绍2. 如何选择适合的数据结构和算法八、复杂度分析1. 时间复杂度和空间复杂度的定义2. 如何进行复杂度分析3. 常见算法的复杂度比较九、常见问题及解决方法1. 数据结构相关的常见问题解答2. 如何优化算法的性能十、总结与展望1. 数据结构学习的重要性和难点2. 对未来数据结构的发展趋势的展望以上是数据结构复习资料的复习提纲知识要点归纳。
希望能够帮助你进行复习和回顾,加深对数据结构的理解和掌握。
在学习过程中,要注重理论与实践相结合,多进行编程练习和实际应用,提高数据结构的实际运用能力。
祝你复习顺利,取得好成绩!。
数据结构必考知识点总结在准备考试时,了解数据结构的基本概念和相关算法是非常重要的。
以下是一些数据结构的必考知识点总结:1. 基本概念数据结构的基本概念是非常重要的,包括数据、数据元素、数据项、数据对象、数据类型、抽象数据类型等的概念。
了解这些概念有助于更好地理解数据结构的本质和作用。
2. 线性表线性表是数据结构中最基本的一种,它包括顺序表和链表两种实现方式。
顺序表是将数据元素存放在一块连续的存储空间内,而链表是将数据元素存放在若干个节点中,每个节点包含数据和指向下一个节点的指针。
了解线性表的概念和基本操作是非常重要的。
3. 栈和队列栈和队列是两种特殊的线性表,它们分别具有后进先出和先进先出的特性。
栈和队列的实现方式有多种,包括数组和链表。
掌握栈和队列的基本操作和应用是数据结构的基本内容之一。
4. 树结构树是一种非线性的数据结构,它包括二叉树、多路树、二叉搜索树等多种形式。
了解树的基本定义和遍历算法是必考的知识点。
5. 图结构图是一种非线性的数据结构,它包括有向图和无向图两种形式。
了解图的基本概念和相关算法是非常重要的,包括图的存储方式、遍历算法、最短路径算法等。
6. 排序算法排序是一个非常重要的算法问题,掌握各种排序算法的原理和实现方式是必不可少的。
常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。
7. 查找算法查找是另一个重要的算法问题,包括顺序查找、二分查找、哈希查找、树查找等。
了解各种查找算法的原理和实现方式是必考的知识点之一。
8. 算法复杂度分析算法的时间复杂度和空间复杂度是评价算法性能的重要指标,掌握复杂度分析的方法和技巧是非常重要的。
9. 抽象数据类型ADT是数据结构的一种概念模型,它包括数据的定义和基本操作的描述。
了解ADT的概念和实现方式是非常重要的。
10. 动态存储管理动态存储管理是数据结构中一个重要的问题,包括内存分配、内存释放、内存回收等。
了解动态存储管理的基本原理和实现方式是必考的知识点之一。
第一章数据结构概述基本概念与术语1.数据:数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序所处理的符号的总称。
2.数据元素:数据元素是数据的基本单位,是数据这个集合中的个体,也称之为元素,结点,顶点记录。
(补充:一个数据元素可由若干个数据项组成。
数据项是数据的不可分割的最小单位。
)3.数据对象:数据对象是具有相同性质的数据元素的集合,是数据的一个子集。
(有时候也叫做属性。
)4.数据结构:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。
(1)数据的逻辑结构:数据的逻辑结构是指数据元素之间存在的固有逻辑关系,常称为数据结构。
数据的逻辑结构是从数据元素之间存在的逻辑关系上描述数据与数据的存储无关,是独立于计算机的。
依据数据元素之间的关系,可以把数据的逻辑结构分成以下几种:1.集合:数据中的数据元素之间除了“同属于一个集合“的关系以外,没有其他关系。
2.线性结构:结构中的数据元素之间存在“一对一“的关系。
若结构为非空集合,则除了第一个元素之外,和最后一个元素之外,其他每个元素都只有一个直接前驱和一个直接后继。
3.树形结构:结构中的数据元素之间存在“一对多“的关系。
若数据为非空集,则除了第一个元素(根)之外,其它每个数据元素都只有一个直接前驱,以及多个或零个直接后继。
4.图状结构:结构中的数据元素存在“多对多”的关系。
若结构为非空集,折每个数据可有多个(或零个)直接后继。
(2)数据的存储结构:数据元素及其关系在计算机内的表示称为数据的存储结构。
想要计算机处理数据,就必须把数据的逻辑结构映射为数据的存储结构。
逻辑结构可以映射为以下两种存储结构:1.顺序存储结构:把逻辑上相邻的数据元素存储在物理位置也相邻的存储单元中,借助元素在存储器中的相对位置来表示数据之间的逻辑关系。
2.链式存储结构:借助指针表达数据元素之间的逻辑关系。
不要求逻辑上相邻的数据元素物理位置上也相邻。
数据结构复习重点数据结构是计算机科学中非常重要的一门学科,它关注的是如何组织和存储数据,以及如何通过算法处理和操作这些数据。
在计算机领域中,数据结构的掌握对于问题解决和算法设计至关重要。
本文将介绍数据结构的一些复习重点,以帮助读者更好地掌握这一学科。
一、线性数据结构线性数据结构是最简单和最常见的数据结构之一,它按照线性的方式组织和存储数据。
其中包括数组、链表、栈和队列等。
在复习线性数据结构时,需要重点关注以下几个方面:1. 数组(Array):数组是一组按照连续内存地址存储的元素。
复习时需要了解数组的基本操作,如插入、删除和查找,以及数组的优缺点和应用场景。
2. 链表(Linked List):链表是一种通过节点之间的引用链接在一起的数据结构。
复习时需要了解链表的种类,如单向链表、双向链表和循环链表,以及链表的基本操作和应用场景。
3. 栈(Stack):栈是一种遵循后进先出(LIFO)原则的数据结构。
复习时需要了解栈的基本操作,如压栈和弹栈,以及栈的应用,如函数调用和表达式求值等。
4. 队列(Queue):队列是一种遵循先进先出(FIFO)原则的数据结构。
复习时需要了解队列的基本操作,如入队和出队,以及队列的应用,如BFS算法等。
二、非线性数据结构非线性数据结构是相对于线性数据结构而言的,它的数据元素之间存在多对多的关系。
其中包括树(Tree)和图(Graph)等。
复习非线性数据结构时,需要重点关注以下几个方面:1. 树(Tree):树是一种由节点和边组成的层次结构。
复习时需要了解树的种类,如二叉树、平衡二叉树和堆等,以及树的遍历方式,如前序、中序和后序遍历,以及树的应用,如查找和排序等。
2. 图(Graph):图是一种由节点和边组成的网络结构。
复习时需要了解图的种类,如有向图和无向图,以及图的表示方式,如邻接矩阵和邻接表,以及图的遍历方式,如深度优先搜索和广度优先搜索,以及图的应用,如最短路径和网络流等。
A—熟练掌握B—理解C—了解第一章:绪论1. 基本概念:包括数据的逻辑结构、数据的存储结构和数据的相关运算。
C四类数据组织结构:集合、线性表、树形、图状结构C数据的存储方式:顺序存储和链式存储。
B2.算法和分析算法的特征、时间复杂度的分析和常见的时间复杂度增长率排序、空间复杂度B本章重点:分析算法时间复杂度例1. 下面关于算法说法错误的是()A.算法最终必须由计算机程序实现B.为解决某问题的算法同为该问题编写的程序含义是相同的C. 算法的可行性是指指令不能有二义性D. 以上几个都是错误的D例2. 以下那一个术语与数据的存储结构无关?()A.栈 B. 哈希表 C. 线索树 D. 双向链表A.例3..求下段程序的时间复杂度:void mergesort(int i, int j){int m;if(i!=j){m=(i+j)/2;mergesort(i,m);mergesort(m+1,j);merge(i,j,m);}}其中mergesort()用于对数组a[n]归并排序,调用方式为mergesort(0,n-1);,merge()用于两个有序子序列的合并,是非递归函数,时间复杂度为。
解:分析得到的时间复杂度的递归关系:为merge()所需的时间,设为cn(c为常量)。
因此令,有有第二章:线性表1.线性表的基本运算:….. C2.线性表的顺序存储(利用静态数组或动态内存分配)。
相应的表示与操作 A3.线性表的链式存储。
相应的表示与操作。
包括循环链表、双向链表。
A4.顺序存储与链式存储的比较:基于时间的考虑--分别适用于静态的和动态的操作:比如静态查找和插入删除);基于空间的考虑-- ……. B这也适用于后面用两种方式存储的其他数据结构。
★本章重点:很熟悉顺序表,单链表、双链表,循环链表的基本操作;并学会在各种链表上进行一些算法设计(与基本操作类似的操作或组合),请仔细复习。
例4.假设有两个按元素值递增次序排列的线性表,均以单链表形式存储。
第1章绪论1.1 数据结构的基本概念数据元是数据的基本单位,一个数据元素可由若干个数据项完成,数据项是构成数据元素的不可分割的最小单位。
例如,学生记录就是一个数据元素,它由学号、姓名、性别等数据项组成。
数据对象是具有相同性质的数据元素的集合,是数据的一个子集。
数据类型是一个值的集合和定义在此集合上一组操作的总称。
•原子类型:其值不可再分的数据类型•结构类型:其值可以再分解为若干成分(分量)的数据类型•抽象数据类型:抽象数据组织和与之相关的操作抽象数据类型(ADT)是指一个数学模型以及定义在该模型上的一组操作。
抽象数据类型的定义仅取决于它的一组逻辑特性,而与其在计算机内部如何表示和实现无关。
通常用(数据对象、数据关系、基本操作集)这样的三元组来表示。
#关键词:数据,数据元素,数据对象,数据类型,数据结构数据结构的三要素:1.逻辑结构是指数据元素之间的逻辑关系,即从逻辑关系上描述数据,独立于计算机。
分为线性结构和非线性结构,线性表、栈、队列属于线性结构,树、图、集合属于非线性结构。
2.存储结构是指数据结构在计算机中的表示(又称映像),也称物理结构,包括数据元素的表示和关系的表示,依赖于计算机语言,分为顺序存储(随机存取)、链式存储(无碎片)、索引存储(检索速度快)、散列存储(检索、增加、删除快)。
3.数据的运算:包括运算的定义和实现。
运算的定义是针对逻辑结构的,指出运算的功能;运算的实现是针对存储结构的,指出运算的具体操作步骤。
1.2 算法和算法评价算法是对特定问题求解步骤的一种描述,有五个特性:有穷性、确定性、可行性、输入、输出。
一个算法有零个或多个的输入,有一个或多个的输出。
时间复杂度是指该语句在算法中被重复执行的次数,不仅依赖于问题的规模n,也取决于待输入数据的性质。
一般指最坏情况下的时间复杂度。
空间复杂度定义为该算法所耗费的存储空间。
算法原地工作是指算法所需辅助空间是常量,即O(1)。
第2章线性表2.1 线性表的定义和基本操作线性表是具有相同数据类型的n个数据元素的有限序列。
数据结构复习要点1.选择题(12小题,24分)2.填空题(8小题,16分)3.解答题(5小题,44分)4.算法设计题(2小题,16分)第一章绪论数据结构、数据类型逻辑结构、物理结构逻辑地址、物理地址线性结构、非线性结构(树、图)算法、算法分析(时间复杂度、空间复杂度)第二章线性表线性表、线性关系(前驱、后继)顺序表(插入、删除、查找)链表(插入、删除、查找)*第三章栈和队列栈特点(先进后出)栈的基本操作(入栈、出栈、取栈顶元素)顺序栈的实现(Init/Push/Pop/GetTop)队列特点(先进先出)队列的基本操作(入列、出列)第四章串字符串、空串、空格串串的长度、串相等的条件串的基本操作(SUBSTR/INDEX/CONCA T)第五章数组和广义表二维数组存储(行优先、列优先)二维数组任意元素aij的地址计算稀疏矩阵的压缩存储(三元组、十字链表)广义表特点(层次)广义表的表头、表尾、长度、深度广义表的实现(Head/Tail)第六章树二叉树的概念(完全二叉树、满二叉树、与度为2的树的区别)二叉树的性质(5个)及应用二叉树的遍历(先序、中序、后序)及应用算法*线索二叉树(线索化)最优二叉树(Huffman)的构造及WPL计算*第七章图图(有向图、无向图、有向网、无向网)完全图(有向完全图、无向完全图)图的存储(邻接表、邻接矩阵)*图的遍历(深度、广度)*最小生成树(普里姆、克鲁斯卡尔)* 最短路径关键路径第八章查找顺序查找、折半查找二叉排序树哈希表的构造和平均查找长度的计算* 第九章排序冒泡排序*快速排序*注:有星号标记的表示有大题。
数据结构复习要点(整理版)第一章数据结构概述基本概念与术语1.数据:数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序所处理的符号的总称。
2. 数据元素:数据元素是数据的基本单位,是数据这个集合中的个体,也称之为元素,结点,顶点记录。
(补充:一个数据元素可由若干个数据项组成。
数据项是数据的不可分割的最小单位。
)3.数据对象:数据对象是具有相同性质的数据元素的集合,是数据的一个子集。
(有时候也叫做属性。
)4.数据结构:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。
(1)数据的逻辑结构:数据的逻辑结构是指数据元素之间存在的固有逻辑关系,常称为数据结构。
数据的逻辑结构是从数据元素之间存在的逻辑关系上描述数据与数据的存储无关,是独立于计算机的。
依据数据元素之间的关系,可以把数据的逻辑结构分成以下几种:1. 集合:数据中的数据元素之间除了“同属于一个集合“的关系以外,没有其他关系。
2. 线性结构:结构中的数据元素之间存在“一对一“的关系。
若结构为非空集合,则除了第一个元素之外,和最后一个元素之外,其他每个元素都只有一个直接前驱和一个直接后继。
3. 树形结构:结构中的数据元素之间存在“一对多“的关系。
若数据为非空集,则除了第一个元素(根)之外,其它每个数据元素都只有一个直接前驱,以及多个或零个直接后继。
4. 图状结构:结构中的数据元素存在“多对多”的关系。
若结构为非空集,折每个数据可有多个(或零个)直接后继。
(2)数据的存储结构:数据元素及其关系在计算机内的表示称为数据的存储结构。
想要计算机处理数据,就必须把数据的逻辑结构映射为数据的存储结构。
逻辑结构可以映射为以下两种存储结构:1. 顺序存储结构:把逻辑上相邻的数据元素存储在物理位置也相邻的存储单元中,借助元素在存储器中的相对位置来表示数据之间的逻辑关系。
2. 链式存储结构:借助指针表达数据元素之间的逻辑关系。
不要求逻辑上相邻的数据元素物理位置上也相邻。
期末考试重点复习资料二、考试重点内容第一章绪论1、时间复杂度和空间复杂度的计算。
要求能够计算出程序的执行次数。
2、各种概念:数据结构、数据项、数据元素第二章线性表1、单链表的各种操作,包括单链表的建立、插入、删除结点的操作语句序列2、单链表(带头结点、不带头结点、循环单链表)的逆置运算。
3、双链表的插入和删除操作语句序列。
4、单链表的直接插入排序运算。
5、静态单链表的插入和删除操作。
6、二个有序单链表的合并、一个单链表拆分为多个单链表第三章栈和队列1、栈的输入序列和输出序列、递归函数的输出结果2、循环队列的入队、出队操作以及有效元素个数的计算第四章串1、KMP算法中的next和nextval值的计算第五章数组和广义表1、二维数组任意元素地址的计算2、稀疏矩阵的转置算法3、广义表的两个操作函数:取表头和表尾第六章树和二叉树1、二叉树的性质(特别是完全二叉树的性质,例如求完全二叉树的深度等)2、二叉树的遍历(特别是中序和先序遍历,要求能够使用堆栈完成非递归遍历编程和递归算法编程,在遍历基础上的各种操作,例如求二叉树的叶子数、二叉树结点数等操作,包括有编程算法和编程填空题)3、线索二叉树(特别是中序线索化二叉树和中序线索化二叉树的中序遍历,包括编程算法和编程填空题,希望大家着重研究)4、哈夫曼编码(主要是应用题,包括哈夫曼的编码与解码,也包括哈夫曼树的特点)5、树与森林在转化成二叉树时,左右子树的结点数有何特点)6、树的层次遍历(使用队列完成、借助树的层次遍历可以判断二叉树是否为完全二叉树)、判断二叉树是否为排序二叉树等,可能有编程题或编程填空题)补充:二叉树的物理存储结构(链式和顺序存储)*第七章图1、图的两种物理存储方式(邻接矩阵与邻接表存储表示)2、图的生成树与最小生成树(生成树特点)、图的遍历3、求最小生成树的两种算法(重点是PRIM 算法,特别会写出用PRIM算法求最小生成树的过程)4、使用迪杰斯特拉算法求单源最短路径,写出求解过程5、拓扑排序6、求关键路径,要求写出事件和活动的最早和最晚开始时间,深刻理解关键路径的含义。
第一章复习要点是:数据、数据元素、数据结构(包括逻辑结构、存储结构)以及数据类型的概念、数据的逻辑结构分为哪两大类,及其逻辑特征、数据的存储结构可用的四种基本存储方法。
时间复杂度与渐近时间复杂度的概念,如何求算法的时间复杂度。
可能出的题目有选择题、填空题或简答题。
第二章复习要点是:线性表的逻辑结构特征、常见的线性表的基本运算,并可以根据这些基本运算组合得到更复杂的运算。
顺序表的特征、顺序表中结点地址的计算。
顺序表上实现的基本运算(算法):主要是插入和删除的算法。
顺序表的算法应该掌握。
算法时间复杂度要记住。
单链表的特征、图形表示法。
单链表的各种算法实现,并能运用这些算法解决一些简单问题;循环链表的特征、双链表的特征以及它们的主要算法实现。
可能出的题型有:填空题、简答题、应用题和算法题。
第三章复习要点是:栈的定义、其逻辑结构特征、栈的基本运算、栈的上溢、下溢的概念。
队列的逻辑结构,队列的基本运算;循环队列的边界条件处理;以上各种基本运算算法的实现。
算法的简单应用。
可能出的题型有填空、选择、简答、算法等。
第四章复习要点是:串是一种特殊的线性表,它的结点仅由一个字符组成。
空串与空白串的区别:空串是长度为零的串,空白串是指由一个或多个空格组成的串。
串运算的实现中子串定位运算又称串的模式匹配或串匹配。
串匹配中,一般将主串称为目标(串),子串称为模式(串)。
本章可能出的题型多半为选择、填空等。
第五章复习要点是:多维数组和广义表的逻辑结构特征:它们是复杂的非线性结构。
一个数据元素可能有多个直接前趋和多个直接后继。
多维数组的两种顺序存储方式:行优先顺序和列优先顺序。
这两种存储方式下的地址计算方法。
几种特殊矩阵的特征及其压缩存储地址对应关系。
稀疏矩阵的三元组表示(画图形表示)。
广义表是线性表的推广,也是树的推广。
能画出广义表的图形表示法。
广义表的取表头运算与取表尾运算要注意,表头是广义表的第一个元素,它不一定是原子,表尾则必是子表。
408-数据结构考研知识点整理一.绪论(一)数据结构1.基本概念a)数据●信息的载体b)数据元素●描述一个个体●是数据的基本单位c)组合项●构成数据元素的单位d)数据项●构成数据元素或组合项的不可分割的最小单位e)数据对象●具有相同性质的数据元素的集合f)数据类型●一个值的集合和定义在此集合上的一组操作的总称●原子类型●不可再分的数据类型●结构类型●其值可以再分解的数据类型●抽象数据类型●抽象数据组织及与之相关的操作●定义了数据结构的逻辑结构和运算g)数据结构●相互之间存在一种或多种特定关系的数据元素的的集合2.逻辑结构a)定义:数据元素之间的逻辑关系b)线性结构●线性表c)非线性结构●集合●树形结构●网状结构3.存储结构a)定义:数据结构在计算机中的表示(又称映像),也称物理结构b)顺序存储●逻辑上相邻的元素存储在物理位置也相邻的存储单元中●优点:可以实现随机存储,每个元素占用最少的存储空间●缺点:只能使用相邻的一整块的存储单元,可能产生较多的外部碎片c)链式存储●不要求物理位置相邻,借助指示元素存储位置的指针来表示元素之间的逻辑关系●优点:不会出现碎片现象,能充分利用所有存储单元●缺点:因存储位置指针而占用额外的存储空间,且只能实现顺序存储d)索引存储●在存储元素信息的同时,还建立附加的索引表●优点:检索速度快●缺点:附加的索引表额外占用存储空间,增加和删除数据时因修改索引表而耗时较长e)散列存储●根据元素关键字直接计算出元素的存储位置,又称哈希(Hash)存储●优点:检索、增加、删除结点速度都很快●缺点:可能出现元素单元冲突,处理冲突会增加时间和空间开销4.运算a)运算的定义●针对逻辑结构,指出运算的功能b)运算的实现●针对物理结构,指出运算的具体操作步骤(二)算法与算法评价1.基本概念出入穷定行a)定义:对特定问题求解步骤的一种描述b)5个特性●有穷性●一个算法可以在有穷时间内完成●确定性●算法中每条指令有其确定的含义,对于相同的输入有相同的输出●可行性●算法可以实现●输入●一个算法有0个或多个输入●输出●一个算法有1个或多个输出c)好的算法应达到的目标●正确性●正确求解问题●可读性●可读性高,易于理解●健壮性●合理处理非法输入,不易崩溃●效率和低存储量需求●时间复杂度低●空间复杂度低2.算法效率评价a)时间复杂度●一般不考虑最好时间复杂度●两个复杂度相加即取高阶●两个复杂度相乘即相乘●常见时间复杂度:常对幂指阶b)空间复杂度●算法所需的辅助空间,不包括指令、常数、变量和输入数据占用空间,即局部变量●算法原地工作指的是算法所需的辅助空间为常量二.线性表(一)逻辑结构1.具有相同数据类型的n (n≥0)个数据元素的有限序列2.表中元素具有逻辑上的顺序性,表中元素有其先后次序即线性有序3.次序从1开始,数组下标从0开始(二)线性表的顺序表示(顺序表)1.定义a)用一组地址连续的存储单元一次存储线性表中的数据元素,一个变量存储当前线性表长度b)支持随机存储的存储结构c)特点:表中元素的逻辑顺序与物理顺序相同d)静态分配●一旦空间占满,再加入新的数据就会产生溢出e)动态分配●一旦空间占满,就另外开辟一块更大的存储空间,用以替换原来的存储空间f)优点:支持随机存取,存储密度高g)缺点:插入删除操作需要大量移动元素2.实现a)插入●在顺序表L第i个位置插入新元素,第i个元素及其后所有元素依次往后移动一个位置●平均时间复杂度O(n)b)删除●删除顺序表L中第i个位置的元素,第i个元素之后的所有元素依次往前移动一个位置●平均时间复杂度O(n)c)查找●依次遍历所有值●平均时间复杂度O(n)(三)线性表的链式表示(链表)1.单链表a)定义●结点结构分为数据域和指针域●分为带头结点的单链表和不带头结点的单链表●头结点不存储数据b)操作●利用头插法建立单链表●读入数据的顺序和生成的链表的顺序是相反的●时间复杂度为O(1)●利用尾插法建立单链表●增加一个指向当前链表的尾指针r,使时间复杂度为O(1)2.双链表a)单链表中只有一个指向其后继结点的指针,双链表增加了一个指向其前驱结点的指针3.循环链表a)最后一个结点指向头结点b)判空条件:头结点的指针是否指向头结点4.循环双链表a)判空条件:头结点的前驱结点后驱结点是否指向头结点5.静态链表a)借助数组来描述线性表的链式存储结构b)结点的指针是结点的相对地址(数组下标)又称游标c)需要预先分配一块连续的内存空间d)主要用于不支持指针的高级语言中实现链表(四)顺序表和链表的比较1.存储(读写)方式a)顺序表:可顺序存取也可随机存取b)链表:只能从表头顺序存取元素2.逻辑结构与物理结构a)顺序表:逻辑结构相邻的元素,物理结构也相邻b)链表:不一定相邻,对应的逻辑关系通过指针链接来表示3.查找、插入和删除操作a)按值查找●顺序表无序时,两者的时间复杂度均为O(n)●顺序表有序时,可采用折半查找,时间复杂度为O(log2n)b)按序号查找●顺序表:O(1)●链表:O(n)c)插入、删除●顺序表:O(n)●链表:O(n)4.空间分配a)顺序表●静态分配:不能扩充●动态分配:空间可以扩充,但需移动大量元素b)链表●只要有内存可分配就可扩充(五)如何选取存储结构1.基于存储考虑a)难以估计数据规模时,不宜采用顺序表2.基于运算考虑a)顺序表适用于访问频繁的场景b)链表适用于插入、删除频繁的场景3.基于环境考虑a)高级语言中顺序表易于实现三.栈、队列和数组(一)栈1.后入后出2.操作受限的线性表3.n个不同元素进栈,出栈元素不同排列的个数为\frac{1}{n+1}C^{n}_{2n}(卡特兰数)4.出栈入栈注意栈顶指针的初值5.存储结构a)顺序栈●共享栈:两个顺序栈共享一个一维数组空间(为了更有效地利用存储空间)b)链栈●优点:便于多个栈共享存储空间和提高其效率,且不存在栈上溢的情况(二)队列1.先进先出2.假溢出-->循环队列3.判断循环队列是否队满a)牺牲一个单元b)设置变量:元素个数c)设置变量:tag,最近一次操作入队为true,出队为false4.链队列5.双端队列(三)栈和队列的应用1.栈a)括号匹配b)中缀表达式转后缀表达式c)计算后缀表达式d)递归、函数调用2.队列a)树的层次遍历b)数据缓冲区c)操作系统调度算法3.数组和特殊矩阵a)数组●定长的线性表,一经初始化即不可改变长度●按行优先和按列优先b)特殊矩阵的压缩存储●对称矩阵●特征:关于主对角线对称●三角矩阵●特征:只有主对角线以上或以下的位置有值,其他位置为同一常量●三对角矩阵●也称带状矩阵●特征:主对角线两侧有值,其余位置为0●稀疏矩阵●矩阵中非零元素个数远远小于矩阵大小●存储方式●三元组●十字链表●稀疏矩阵压缩存储后失去了随机存储的特性四.串(一)由零个或多个字符构成的有限序列(二)存储结构1.定长顺序存储,即静态数组2.堆分配存储,即动态数组3.块链存储,即以链表形式存储,每个结点由一个或多个字符组成(三)模式匹配1.朴素模式匹配2.K MP算法a)求next数组b)求nextval数组(改进KMP)五.树与二叉树(一)树1.基本概念和术语a)n个结点的优先集。
《数据结构》复习资料1一、选择题1. 一棵二叉树中第6层上最多有()个结点。
A. 2B. 31C. 32D. 642. 顺序表中数据元素的存取方式为()。
A. 随机存取B. 顺序存取C. 索引存取D. 连续存取3. 设有无向图G=(V,E),其中顶点集合V={a,b,c,d,e,f},边集合E={(a,b), (a,e), (a,c), (b,e), (c,f), (f,d), (e,d)}。
对G进行深度优先遍历,正确的遍历序列是()。
A. a,b,e,c,d,fB. a,c,f,e,b,dC. a,e,b,c,f,dD. a,e,d,f,c,b4. 在待排元素序列基本有序的前提下,效率最高的排序方法是()。
A. 插入B. 选择C. 快速D. 归并5. 设表中含100个数据元素,用折半查找法进行查找,则所需最大比较次数为()。
A. 50B. 25C. 10D. 76. 设哈希表地址范围为0~19,哈希函数H(key)=key%17,使用二次探测再散列法处理冲突。
若表中已存放有关键字值为6、22、38、55的记录,则再放入关键字值为72的记录时,其存放地址应为()。
A. 2B. 3C. 4D. 7E. 8F. 以上都不对7. 设对下图从顶点a出发进行深度优先遍历,则()是可能得到的遍历序列。
A. acfgdebB. abcdefgC. acdgbefD. abefgcd8. 若需在O(nlog2n)的时间内完成对数组的排序,且要求排序是稳定的,则可选择的排序方法是()。
A. 快速排序B. 堆排序C. 归并排序D. 直接插入排序9. 设有一组关键字值(46,79,56,38,40,84),则用堆排序的方法建立的初始堆为()。
A. 79,46,56,38,40,84B. 84,79,56,38,40,46C. 84,79,56,46,40,38D. 84,56,79,40,46,3810. 设广义表L=((a,()),b,(c,d,e)),则Head(Tail(Tail(L)))的值为()。
第1章绪论内容提要:◆数据结构研究的内容。
针对非数值计算的程序设计问题,研究计算机的操作对象以及它们之间的关系和操作。
数据结构涵盖的内容:◆基本概念:数据、数据元素、数据对象、数据结构、数据类型、抽象数据类型。
数据——所有能被计算机识别、存储和处理的符号的集合。
数据元素——是数据的基本单位,具有完整确定的实际意义。
数据对象——具有相同性质的数据元素的集合,是数据的一个子集。
数据结构——是相互之间存在一种或多种特定关系的数据元素的集合,表示为:Data_Structure=(D, R)数据类型——是一个值的集合和定义在该值上的一组操作的总称。
抽象数据类型——由用户定义的一个数学模型与定义在该模型上的一组操作,它由基本的数据类型构成。
◆算法的定义及五个特征。
算法——是对特定问题求解步骤的一种描述,它是指令的有限序列,是一系列输入转换为输出的计算步骤。
算法的基本特性:输入、输出、有穷性、确定性、可行性◆算法设计要求。
①正确性、②可读性、③健壮性、④效率与低存储量需求◆算法分析。
时间复杂度、空间复杂度、稳定性学习重点:◆数据结构的“三要素”:逻辑结构、物理(存储)结构及在这种结构上所定义的操作(运算)。
◆用计算语句频度来估算算法的时间复杂度。
第二章线性表内容提要:◆线性表的逻辑结构定义,对线性表定义的操作。
线性表的定义:用数据元素的有限序列表示◆线性表的存储结构:顺序存储结构和链式存储结构。
顺序存储定义:把逻辑上相邻的数据元素存储在物理上相邻的存储单元中的存储结构。
链式存储结构: 其结点在存储器中的位置是随意的,即逻辑上相邻的数据元素在物理上不一定相邻。
通过指针来实现!◆线性表的操作在两种存储结构中的实现。
数据结构的基本运算:修改、插入、删除、查找、排序1)修改——通过数组的下标便可访问某个特定元素并修改之。
核心语句:V[i]=x;顺序表修改操作的时间效率是O(1)2)插入——在线性表的第i个位置前插入一个元素实现步骤:①将第n至第i 位的元素向后移动一个位置;②将要插入的元素写到第i个位置;③表长加1。
数据结构复习资料第一章绪论1.1基本概念和术语1.数据是对客观事物的符号表示;数据元素是数据的基本单位,一个数据元素可由若干个数据项组成,数据项是数据的不可分割的最小单位;数据对象是性质相同的数据元素的集合,是数据的一个子集。
2.数据结构是相互之间存在一种或多种特定关系的数据元素的集合。
3.A.数据结构的三要素:①数据的逻辑结构②数据的存储结构③数据的运算(算法)B.任何一个算法的设计取决于选定的逻辑结构,而算法的实现依赖于采用的存储结构4.数据的逻辑结构:①集合②线性结构③树型结构④图状结构或网状结构1.2算法和算法分析1.算法的五个特性:①有穷性②确定性③可行性④输入⑤输出2.时间复杂度:时间复杂度是指执行算法所需要的计算工作量空间复杂度:空间复杂度是指执行这个算法所需要的内存空间第二章线性表2.1线性表的顺序表示和实现1.线性表的顺序表示指的是用一组地址连续的存储单元依次存储线性表的数据元素。
2.优点:线性表的顺序存储结构是一种随机存取的存储结构3.顺序线性表插入:顺序线性表删除:4.线性表的链式存储结构的特点是用一组任意的存储单元存储线性表的数据元素(可连续,可不连续)5.对数据元素来说,除了存储其自身的信息之外,还需存储一个指示其直接后继的信息(存储位置),这两部分信息组成数据元素的存储映像,称为结点。
他包括两个域:其中存储数据元素信息的域称为数据域;存储直接后继存储位置的域称为指针域。
指针域中存储的信息称为指针或域。
N个结点链结成一个链表,即为线性表的链式存储结构。
又由于此链表的每个结点中只包含一个指针域,故又称为线性链表或单链表。
6.链表的插入与删除7.双向链表的插入与删除第三章栈和队列3.1 栈1.栈是限定仅在表尾进行插入或删除操作的线性表。
因此,对栈来说,表尾端有其特殊含义,称为栈顶,相应的,表头端称为栈底。
不含元素的空表称为空栈。
2.栈又称为后进先出的线性表3.栈的进栈与出栈操作3.2队列1.队列是一种先进先出的线性表,它只允许在表的一段进行插入,而在另一端删除元素。
数据结构重点整理第一点:数据结构的基本概念与类型数据结构是计算机科学中用于存储、组织和管理数据的一种方式。
它涉及多种不同的技术和算法,旨在提高数据处理的效率和可靠性。
数据结构可以根据其组织和操作方式的不同,分为多种基本类型,包括但不限于:1.1 线性结构线性结构是最常见的数据结构类型,其特点是数据元素之间存在一对一的关系。
常见的线性结构有:•数组:一种固定大小的数据集合,元素按顺序存储,可以通过索引快速访问。
•链表:由一系列节点组成,每个节点包含数据部分和指向下一个节点的指针。
•栈:遵循后进先出(LIFO)原则的线性结构,主要用于解决递归和深度优先搜索等问题。
•队列:遵循先进先出(FIFO)原则的线性结构,常用于广度优先搜索和任务调度等场景。
1.2 非线性结构非线性结构的数据元素之间存在一对多或多对多的关系,可以更有效地模拟现实世界中的复杂关系。
常见的非线性结构有:•树:由节点组成的层次结构,每个节点包含数据部分和指向子节点的指针。
•图:由顶点(节点)和边组成的结构,用于模拟实体之间的复杂关系和网络结构。
第二点:数据结构在实际应用中的重要性数据结构在现代计算机科学和软件开发中扮演着至关重要的角色。
掌握和应用合适的数据结构可以大幅提高程序的性能、可维护性和可扩展性。
2.1 性能优化选择合适的数据结构对于优化程序性能至关重要。
例如,使用哈希表可以实现对数据的快速查找和插入,而使用平衡树可以实现更高效的数据更新和删除操作。
对于大规模数据处理,合适的数据结构可以显著降低计算复杂度,提高程序的响应速度。
2.2 代码可读性和可维护性良好的数据结构设计可以提高代码的可读性和可维护性。
清晰的数据结构使代码更易于理解和修改,降低出现bug的风险,并提高开发效率。
此外,合理的结构设计可以避免不必要的数据冗余和耦合,使得系统更加模块化和灵活。
2.3 算法实现数据结构是算法实现的基础。
许多高效的算法,如排序、搜索、动态规划等,都依赖于特定的数据结构。
数据结构B复习要点
第1章基础知识
1、算法与数据结构(数据结构概念、基本逻辑结构、数据存储表示等,会分析、使用各种数据结构)
2、数据抽象和抽象数据类型(数据结构规范、实现)
3、算法分析的基本方法(时间复杂性、空间复杂性)
第2章线性表
1、性表的顺序和链接表示
2、理解在顺序表、单链表、双链表上实现线性表运算,能设计相应算法
3、顺序和链接表示的优缺点比较
4、了解多项式的算术运算
第3章堆栈和队列
1、了解栈和队列的概念、特点
2、理解顺序栈和循环队列运算的实现
3、算术表达式计算(中缀转后缀,后缀表达式计算)算法
第4章数组和字符串
1、一维数组和对称矩阵的压缩存储方法(二维到一维的转换公式)
2、三元组存储稀疏矩阵的方法
3、了解三元组表示的快速矩阵转置方法,num[]和k[]数组的计算。
第5章树
1、二叉树的定义、性质及二叉链表
2、理解二叉树的遍历算法(遍历结果、算法设计),能设计相应算法
3、森林与二叉树的相互转换算法
4、哈夫曼树构造算法、哈夫曼编码、WPL计算
第6章集合与搜索
1、了解有序表的顺序搜索算法
2、理解对半搜索算法和程序,会画二叉判定树
3、会计算平均搜索长度
第7章搜索树
1、理解二叉搜索树的定义、性质和插入、删除算法,搜索算法的程序
2、B-树的定义和插入、删除算法
第8章散列表
1、掌握散列函数的相关概念
2、除法散列函数
3、掌握解决冲突的开地址法(线性探测、二次探查法、双散列法)
第9章图
1、理解图的基本概念、术语和存储结构
2、掌握图的算法(结果):遍历、拓扑排序、最小代价生成树(Prim算法)
第10章内排序
1、三种简单排序算法、快速排序和两路合并排序算法、过程、结果
2、排序算法的时间复杂度(最好、最差)、稳定性
考试样题
一、填空题(10分,每题1分)
1、写出表达式a*b+c/d的后缀形式________。
2、已知一无向图G=(V,E),其中V={a,b,c,d,e},E={(a,b), (a,d), (a,c) (d,c), (b,e)},现用某一种遍历方法从顶点a开始遍历图,得到的序列为abecd,则采用的是__________遍历方法。
3、在顺序表长度为n中,平均在表中插入一个元素需要移动元素的个数可用计算公式为________。
4、6×7×8的整型数组A,其每个数组元素占1个字节,已知A[0][0] [0]在内存中的地址是L,按行主序,A[2][3][4]的地址是。
二、选择题(10分,每题2分)
1、具有n 个顶点的有向完全图中,边的总数为()条。
A)n(n+1) B)n(n-1)
C)n(n-1)/2 D)n(n+1)/2
2、设一个栈输入序列是1、2、
3、
4、5,则下列序列中不可能是栈的输出序列是()。
A)32541 B)15432
C)14523 D)23145
3、二叉树的前序遍历为EFHIGJK,中序遍历序列为HFIEJKG。
该二叉树根结点的右子树的根是()
A) E B) F
C) G D) H
4、对有14个元素的有序表A[1]-A[14]作对半查找,查找元素A[4]时的被比较元素依次为()
A. A[1],A[2],A[3],A[4]
B.A[7],A[3],A[5],A[4]
C. A[1],A[2],A[7],A[4]
D.A[7],[A5],A[3],A[4]
5、设有一个长度为100且已排好序的表,用对半搜索进行查找,若搜索不成功,则至少要比较______次。
()
A.9 B.8 C.7 D.6
三、简答题(20分,每题5分)
1、用一维数组存放的一棵完全二叉树如图所示:
A B C D E F
图
写出前序、中序、后序遍历该二叉树时访问结点的顺序。
2、图的邻接表表示一个给定的无向图。
(1)给出从顶点v1开始,用深度优先搜索法进行遍历时的顶点序列;
(2)给出从顶点v1开始,用广度优先搜索法进行遍历时的顶点序列。
v1
v2
v3
v4
v5
v623^14^14 5^23 6^36^45^
四、解答题(32分,每题8分)
1、设数据集合d={1,12,5,8,3,10,7,13,9},试完成下列各题:
(1)依次取d 中各数据,构造一棵二叉搜索树bt 。
(2)画出在二叉树bt 中删除12后的树结构。
2、对图的3阶B-树,依次执行下列操作,画出各步操作的结果。
(1)插入90 ;(2)插入25;(3)插入45;(4)删除60;
50
30
808 2035 4060100
图
五、程序阅读题(10分)
图采用邻接表存储表示,边结点的结构如图所示,下面的程序是邻接表类LinkedGraph 的某个成员函数
template <class T>
void LinkedGraph<T>::A()
{
int *in=new int[n]; for (int i=0;i<n;i++) in[i]=0;
ENode<T> *p; for (i=0;i<n;i++) { p=a[i]; while (p) { in[p->adjvex]++; p=p->nextarc;
}
}
cout<<endl;
for (i=0;i<n;i++) cout<<i<<": "<<in[i]<<";"<<endl;
delete []in;
adjvex weight nextarc 图 0 ^
1 2 3 0 4
2 5 ^ 0 1
1 1 ^ 3 3 ^
图
}
⑴请说明该成员函数的作用是什么?
⑵若有一个邻接表如图8所示,请给出执行该函数的结果?
六、算法设计题(10分)
1、在以二叉链表表示的二叉树类BinaryTree中增加一个成员函数LeavesInTree( )。
该模板函数为递归函数,其功能是求二叉树类BinaryTree的对象中叶子结点的数目。
实现该递归函数。
函数原型如下:template <class T>
int BinaryTree<T>::LeavesInTree( )
参考答案:
template <class T>
int BinaryTree<T>::LeavesInTree( )
{
return Leaf(root);
}
template <class T>
int BinaryTree<T>::Leaf(BTNode<T> *t)
{
if (t == NULL) return 0;
if ((t->lChild == NULL)&&(t->rChild == NULL)) return 1;
return Leaf(t->lChild) + Leaf(t->rChild);
}
2、输入n个数据。
设计一个时间复杂度为O(n)的算法,删除表中所有数值相同的多余元素,并释放结点空间。
例如:
(7,42,10,21,30,51,42,10,42,70)
经算法操作后变为
(7,10,21,30,42,51,70)
(1)设计一个存储结构存放输入数据;
(2)在此基础上设计算法实现。