2021届高三物理一轮复习力学曲线运动生活中的圆周运动专题练习
- 格式:docx
- 大小:126.06 KB
- 文档页数:5
高考物理生活中的圆周运动专项训练100(附答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。
杆静止时,小环靠在杆上,细绳方向竖直;当杆绕竖直轴以角速度ω旋转时,如图所示,小环与Q 点等高,细绳恰好被绷断。
重力加速度g =10m /s 2,忽略一切摩擦。
求:(1)杆静止时细绳受到的拉力大小T ; (2)细绳断裂时杆旋转的角速度大小ω; (3)小环着地点与O 点的距离D 。
【答案】(1)5N (2)53/rad s (3)1.6m 【解析】 【详解】(1)杆静止时环受力平衡,有2T =mg 得:T =5N(2)绳断裂前瞬间,环与Q 点间距离为r ,有r 2+d 2=(L -r )2 环到两系点连线的夹角为θ,有d sin L r θ=-,rcos L rθ=- 绳的弹力为T 1,有T 1sinθ=mg T 1cosθ+T 1=m ω2r 得53/rad s ω=(3)绳断裂后,环做平抛运动,水平方向s =vt竖直方向:212H d gt -=环做平抛的初速度:v =ωr小环着地点与杆的距离:D 2=r 2+s 2 得D =1.6m 【点睛】本题主要是考查平抛运动和向心力的知识,解答本题的关键是掌握向心力的计算公式,能清楚向心力的来源即可。
2.如图甲所示,粗糙水平面与竖直的光滑半圆环在N 点相切,M 为圈环的最高点,圆环半径为R =0.1m ,现有一质量m =1kg 的物体以v 0=4m/s 的初速度从水平面的某点向右运动并冲上竖直光滑半圆环,取g =10m/s 2,求:(1)物体能从M 点飞出,落到水平面时落点到N 点的距离的最小值X m(2)设出发点到N 点的距离为S ,物体从M 点飞出后,落到水平面时落点到N 点的距离为X ,作出X 2随S 变化的关系如图乙所示,求物体与水平面间的动摩擦因数μ(3)要使物体从某点出发后的运动过程中不会在N 到M 点的中间离开半固轨道,求出发点到N 点的距离S 应满足的条件【答案】(1)0.2m ;(2)0.2;(3)0≤x ≤2.75m 或3.5m ≤x <4m . 【解析】 【分析】(1)由牛顿第二定律求得在M 点的速度范围,然后由平抛运动规律求得水平位移,即可得到最小值;(2)根据动能定理得到M 点速度和x 的关系,然后由平抛运动规律得到y 和M 点速度的关系,即可得到y 和x 的关系,结合图象求解;(3)根据物体不脱离轨道得到运动过程,然后由动能定理求解. 【详解】(1)物体能从M 点飞出,那么对物体在M 点应用牛顿第二定律可得:mg ≤2M mv R,所以,v M gR 1m /s ;物体能从M 点飞出做平抛运动,故有:2R =12gt 2,落到水平面时落点到N 点的距离x =v M t 2RgR g2R =0.2m ; 故落到水平面时落点到N 点的距离的最小值为0.2m ;(2)物体从出发点到M 的运动过程作用摩擦力、重力做功,故由动能定理可得:−μmgx −2mgR =12mv M 2−12mv 02; 物体从M 点落回水平面做平抛运动,故有:2R =12gt 2,22044(24)0.480.8M M R Ry v t v v gx gR x g gμμ⋅=--⋅=-==由图可得:y2=0.48-0.16x,所以,μ=0.160.8=0.2;(3)要使物体从某点出发后的运动过程中不会在N到M点的中间离开半圆轨道,那么物体能到达的最大高度0<h≤R或物体能通过M点;物体能到达的最大高度0<h≤R时,由动能定理可得:−μmgx−mgh=0−12mv02,所以,22122mv mgh v hxmg gμμμ--==,所以,3.5m≤x<4m;物体能通过M点时,由(1)可知v M≥gR=1m/s,由动能定理可得:−μmgx−2mgR=12mv M2−12mv02;所以22221124 222MMmv mv mgR v v gRxmg gμμ----==,所以,0≤x≤2.75m;【点睛】经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解.3.如图所示,A、B两球质量均为m,用一长为l的轻绳相连,A球中间有孔套在光滑的足够长的水平横杆上,两球处于静止状态.现给B球水平向右的初速度v0,经一段时间后B 球第一次到达最高点,此时小球位于水平横杆下方l/2处.(忽略轻绳形变)求:(1)B球刚开始运动时,绳子对小球B的拉力大小T;(2)B球第一次到达最高点时,A球的速度大小v1;(3)从开始到B球第一次到达最高点的过程中,轻绳对B球做的功W.【答案】(1)mg+m2vl(2)212v glv-=3)24mgl mv-【解析】【详解】(1)B球刚开始运动时,A球静止,所以B球做圆周运动对B球:T-mg=m2 0 v l得:T =mg +m 20v l(2)B 球第一次到达最高点时,A 、B 速度大小、方向均相同,均为v 1以A 、B 系统为研究对象,以水平横杆为零势能参考平面,从开始到B 球第一次到达最高点,根据机械能守恒定律,2220111112222l mv mgl mv mv mg -=+- 得:2012v gl v -= (3)从开始到B 球第一次到达最高点的过程,对B 球应用动能定理 W -mg221011222l mv mv =- 得:W =204mgl mv -4.如图所示,在竖直平面内有一“∞”管道装置,它是由两个完全相同的圆弧管道和两直管道组成。
高中物理第五章曲线运动第7节生活中的圆周运动练习新人教版必修2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中物理第五章曲线运动第7节生活中的圆周运动练习新人教版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中物理第五章曲线运动第7节生活中的圆周运动练习新人教版必修2的全部内容。
生活中的圆周运动一、单项选择题1。
洗衣机的甩干筒在转动时有一衣物附在筒壁上,如图所示.此时( )A。
衣物受到重力、筒壁的弹力和摩擦力、向心力的作用B。
筒壁的弹力随筒的转速增大而增大C. 衣物随筒壁做圆周运动的向心力是由于摩擦的作用D. 筒壁对衣物的摩擦力随转速增大而增大2. 乘坐游乐园的翻滚过山车时,质量为m的人随车在竖直平面内旋转.下列说法正确的是( )A。
车在最高点时人处于倒坐状态,全靠保险带拉住,没有保险带,人就会掉下来B。
人在最高点时对座位不可能产生压力C。
人在最低点时对座位的压力等于mgD. 人在最低点时对座位的压力大于mg3。
如图所示,汽车过拱形桥时的运动可以看做匀速圆周运动,质量为m的汽车以速度v 过桥,桥面的圆弧半径为R,重力加速度为g,则汽车通过桥面最高点时对桥面的压力大小为()A. mgB. m错误!C. mg-m错误! D。
mg+m错误!4. 如图所示,飞机做特技表演时,常做俯冲拉起运动,此运动在最低点附近可看做是半径为500 m的圆周运动.若飞行员的质量为65 kg,飞机经过最低点时速度为360 km/h,则这时飞行员对座椅的压力为(g取10 m/s2)( )A. 650 NB. 1 300 NC。
1 800 N D. 1 950 N5。
1 / 52021届高三物理一轮复习力学曲线运动生活中的圆周运动拱桥和凹桥模型专题练习一、填空题1.有一辆质量为800kg 的小汽车驶上圆弧半径为50m 的拱桥。
汽车到达桥顶时速度为5m/s ,汽车对桥的压力是________N ;汽车速度v =________m/s 时恰好对桥没有压力而腾空。
(210m/s g =) 2.如图所示,拱桥桥顶部分路面是部分圆周,汽车通过拱桥顶点速度为v 时,车对桥的压力为车重的59。
如果汽车通过拱桥顶点时对桥顶恰无压力,则汽车速度大小为_______。
3.若汽车在拱桥上以速度v 前进,桥面的圆弧半径为R ,求汽车过桥的最高点时对桥面的压力_______ 4.如图所示,一质量为m 的物体在半径为R 的半圆形轨道上滑行,经过最低点的速度为v ,物体与轨道之间的动摩擦因数为μ,则它在最低点受到的摩擦力大小为_______.5.将一个力传感器连接到计算机上,我们就可以测量快速变化的力.图中所示就是用这种方法测得的小滑块在半球形碗内在竖直平面内来回滑动时,对碗的压力大小随时间变化的曲线.从这条曲线提供的信息,可以判断滑块约每隔 秒经过碗底一次,随着时间的变化滑块对碗底的压力 (填“增大”、“减小”、“不变”或“无法确定”).6.公路上的拱形桥是常见的,汽车过桥时的运动也可以看做圆周运动.质量为m 的汽车在拱形桥上以速度v 前进,设桥面的圆弧半径为R ,则汽车通过桥的最高点时对桥的压力为____________(重力加速度为g..7.汽车以72km/h 的速度过凸型桥最高点时,对桥的压力是车重的一半。
将凸型桥看成圆弧,重力加速度取10m/s 2。
则该桥的半径为_________m.8.如图是滑道压力测试的示意图,光滑斜面与半径为R 滑圆弧轨道, 在滑圆弧轨道弧的最低点B 处平滑相连接,某质量为m 的滑块从斜面上高h 处由静止下滑,重力加速度为g 则:(1)滑块运动到斜面底端的B 点时的速度大小为________;(2)滑块进入圆弧轨道的B 对轨道的压力_________。
生活中的圆周运动1.我国高铁技术发展迅猛,全国高铁总里程超过3万公里。
京张智能高铁的开通为2022年冬奥会的举办提供了极大便利。
已知我国的铁路轨距为150cm ,其中在一转弯半径为5400m 的弯道处外轨比内轨高10cm (角度较小时可认为tan sin θθ=,重力加速度g 取210m /s ),则高铁在通过此弯道时,按规定行驶速度应为( )A .40m /sB .50m /sC .60m /sD .70m /s2.如图所示,竖直光滑杆上固定一轻质光滑定滑轮,滑块B 套在杆上可自由滑动,用长度一定的细线绕过定滑轮连接滑块B 和小球A ,让杆转动使细线带着小球绕杆的竖直轴线以角速度ω做匀速转动,此时滑块B 刚好处于静止状态,滑块B 到定滑轮的距离为h 且该段细线与杆平行,悬吊小球的细线与竖直方向的夹角为θ,若h 越小,则( )A .θ越大B .θ越小C .ω越大D .ω越小3.如图所示为赛车场的一个水平“U ”形弯道,转弯处为圆心在O 点的半圆,内外半径分别为r 和2r ,一辆质量为m 的赛车通过AB 线经弯道到达A′B′线,有如图所示的①②③三条路线,其中路线③是以O ′为圆心的半圆,OO ′=r 。
赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max,选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则下列说法错误的是()A.选择路线①,赛车经过的路程最短B.选择路线②,赛车的速率最小C.选择路线③,赛车所用时间最短D.①②③三条路线的圆弧上,赛车的向心加速度大小相等4.如图所示,半径为R的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴OO'重合。
转台以一定角速度ω匀速转动,一质量为m的小物块落入陶罐内,经过一段时间后小物块随陶罐一起转动且相对罐壁静止,此时小物块受到的摩擦力恰好为零,它和O点的连线与OO'之间的夹角θ为60 ,重力加速度大小为g,下列说法正确的是()A gBCD.陶罐对物块的弹力大小为35.如图,半径为R的半球形容器固定在水平转台上,转台绕过容器球心O的竖直轴线以角速度ω匀速转动.质量相等的小物块A、B随容器转动且相对器壁静止.A、B和球心O点连线与竖直方向的夹角分别为α、β,α>β.则下列说法正确的是( )A.A的向心力等于B的向心力B.容器对A的支持力一定小于容器对B的支持力C.若ω缓慢增大,则A、B受到的摩擦力一定都增大D.若A不受摩擦力,则B受沿容器壁向下的摩擦力6.如图所示,为一辆越野车在比赛时经过一段起伏路段,M、N分别为该路段的最高点和最低点,已知在最高点M附近汽车所走过的那一小段圆弧可认为是圆周运动的一部分,其对应半径为R,在最低点N附近对应圆周运动的半径为23R,假设汽车整个运动可近似认为速率不变,汽车经过最高点M时对轨道的压力为汽车自重的0.9倍,那么汽车经过最低点N时对轨道的压力为自重的()A.1.1倍B.1.15倍C.1.2倍D.1.25倍7.如图所示,一个上表面粗糙、中心有孔的水平圆盘绕轴MN转动,系有不可伸长细线的木块置于圆盘上,细线另一端穿过中心小孔O系着一个小球。
专题四曲线运动探考情悟真题【考情探究】考点考向5年考情预测热度考题示例学业水平关联考点素养要素解法曲线运动、运动的合成与分解曲线运动、运动的合成与分解2018北京理综,20,6分 2 模型建构★★☆2015广东理综,14,4分 3 运动与相互作用观念抛体运动平抛运动2019课标Ⅱ,19,6分 4 v-t图像模型建构★★★2018课标Ⅲ,17,6分 4 动能定理模型建构2017课标Ⅱ,17,6分 4 机械能守恒科学推理圆周运动圆周运动中的动力学分析2019江苏单科,6,4分 4 牛顿第二定律模型建构★★★2018江苏单科,6,4分 2 模型建构分析解读曲线运动是高考的重点内容,运动的合成与分解、平抛运动、圆周运动是高考的考点。
抛体运动的规律、竖直平面内的圆周运动规律及所涉及的临界问题、能量问题是我们学习的重点,也是难点。
这些规律与实际生产、生活、科技相联系的命题已经成为一种命题趋势。
【真题探秘】破考点练考向【考点集训】考点一曲线运动、运动的合成与分解1.(2020届四川成都树德模拟)(多选)某河宽为600 m,河中某点的水流速度v与该点到较近河岸的距离d的关系如图所示。
船在静水中的速度为4 m/s,要想使船渡河的时间最短,下列说法正确的是()A.船在航行过程中,船头应与河岸垂直B.船在河水中航行的轨迹是一条直线C.渡河的最短时间为240 sD.船离开河岸400 m时的速度大小为2√5 m/s答案AD2.如图所示,一激光探照灯在竖直平面内转动时,发出的光照射在云层底面上,云层底面是与地面平行的平面,云层底面距地面高度为h,当光束转到与竖直方向的夹角为θ时,云层底面上光点的移动速度是v,则探照灯转动的角速度为()A.vℎB.vcosθℎC.vcos2θℎD.vℎtanθ答案 C3.(2019一线名师模拟卷)如图所示,一根长为L的轻杆OA,O端用铰链固定,轻杆靠在一个高为h的物块上,某时刻杆与水平方向的夹角为θ,物块向右运动的速度为v,则此时A点速度为()A.LvsinθℎB.LvcosθℎC.Lvsin2θℎD.Lvcosθℎ答案 C考点二抛体运动1.(2018安徽皖南八校联考,1)某幼儿园举行套圈比赛,图为一名儿童正在比赛,他将圈从A点水平抛出,圈正好套在地面上B点的物体上,若A、B间的距离为s,A、B两点连线与水平方向的夹角为θ,重力加速度为g,不计圈的大小,不计空气的阻力。
2021年高考物理一轮复习:圆周运动考点一 圆周运动的运动学问题1.匀速圆周运动(1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长__相等__,就是匀速圆周运动.(2)特点:加速度大小__不变__,方向始终指向__圆心__,是变加速运动.(3)条件:合外力大小__不变__、方向始终与__线速度__方向垂直且指向圆心. 2.描述圆周运动的物理量常用的有:线速度、角速度、周期、转速、频率、向心加速度等.它们的比较见下表:3.对公式v =rω和a =v 2r =rω2的理解(1)v =rω⎩⎪⎨⎪⎧r 一定时v 与ω成正比ω一定时v 与r 成正比v 一定时ω与r 成反比(2)a=v 2r =rω2⎩⎪⎨⎪⎧v 一定时a 与r 成反比ω一定时a 与r 成正比 【理解巩固1】 如图所示,当正方形薄板绕着过其中心O 并与板垂直的转动轴转动时,板上A 、B 两点( )A .角速度之比ωA ∶ωB =2∶1 B .角速度之比ωA ∶ωB =1∶ 2C .线速度之比v A ∶v B =2∶1D .线速度之比v A ∶v B =1∶ 2[解析] 板上A 、B 两点的角速度相等,角速度之比ωA ∶ωB =1∶1,选项A 、B 错误;线速度v =ωr ,线速度之比v A ∶v B =1∶2,选项C 错误,D 正确.[答案] D例1 如图所示为两级皮带传动装置,转动时皮带均不打滑,中间两个轮子是固定在一起的,轮1的半径和轮2的半径相同,轮3的半径和轮4的半径相同,且为轮1和轮2半径的一半,则轮1边缘的a 点和轮4边缘的c 点相比( )A .线速度之比为1∶4B .角速度之比为4∶1C .向心加速度之比为8∶1D .向心加速度之比为1∶8[解析] 由题意知2v a =2v 3=v 2=v c ,其中v 2、v 3为轮2和轮3边缘的线速度,所以v a ∶v c =1∶2,A 错.设轮4的半径为r ,则a a =v 2a r a =(v c 2)22r =v 2c8r =18a c ,即a a ∶a c =1∶8,C 错,D 对.ωa ωc =v a r a v c r c =v a2r 2v a r=14,B 错.[答案] D几种常见的传动装置(1)传动装置的分类主要有四种:①同轴转动(图甲);②皮带传动(图乙);③齿轮传动(图丙);④摩擦传动(图丁).(2)传动装置的特点传动问题包括皮带传动(链条传动、齿轮传动、摩擦传动)和同轴传动两类,其中运动学物理量遵循下列规律.①同轴传动的轮子或同一轮子上的各点的角速度大小相等.②皮带传动的两轮,皮带不打滑时,皮带接触处的线速度大小相等.链条传动、摩擦传动也一样.③齿轮的齿数与半径成正比,即周长=齿数×齿间距(大小齿轮的齿间距相等). ④在齿轮传动中,大、小齿轮的转速跟它们的齿数成反比.)考点二 匀速圆周运动的一般动力学问题对应学生用书p 751.匀速圆周运动的向心力(1)作用效果:向心力产生向心加速度,只改变速度的方向,不改变速度的大小. (2)大小:F =__m v 2r __=__mω2r__=m 4π2T 2r =mωv =4π2mf 2r.(在F =mv 2r 中,v 是运动物体相对圆心的速度)(3)方向:始终沿半径方向指向__圆心__,时刻在改变,即向心力是一个__变力__. (4)来源:向心力可以由一个力提供,也可能由几个力的合力提供,还可以由一个力的分力提供.2.近心运动和离心运动(1)做圆周运动的物体,如果所受合外力不等于物体做圆周运动所需的向心力,物体将做近心运动或离心运动.(2)受力特点①当F n =mω2r 时,物体做圆周运动. ②当F n =0时,物体沿切线方向飞出.③当F n <m ω2r 时,物体逐渐远离圆心,做离心运动. ④当F n >m ω2r 时,物体将逐渐靠近圆心,做近心运动.【理解巩固2】(多选)如图,物体m用不可伸长的细线通过光滑的水平板间的小孔与砝码M相连,且正在做匀速圆周运动,若减少M的质量,则物体m的轨道半径r,角速度ω,线速度v的大小变化情况是()A.r不变,v减小B.r增大,ω减小C.r增大,v减小D.r减小,ω不变[解析] 小球在砝码的重力作用下,在光滑水平面上做匀速圆周运动.砝码的重力提供向心力,当砝码的重量减小,此时向心力大于砝码的重力,从而做离心运动,导致半径变大.当再次出现砝码的重力与向心力相等时,小球又做匀速圆周运动.由于半径变大从而M的势能增大,而m和M整个系统机械能守恒,所以m的动能要减少,故可确定其v变小,故A 不正确;由于半径变大,而向心力大小变小,则角速度减小,故B、C正确,D不正确.[答案] BC对应学生用书p76例2如图所示,在光滑的圆锥体顶用长为L的细线悬挂一质量为m的小球,圆锥体固定在水平面上不动,其轴线沿竖直方向,母线与轴线之间的夹角为30°,小球以速率v绕圆锥体轴线做水平圆周运动.(1)当v1=gL6时,求细线对小球的拉力大小;(2)当v2=3gL2时,求细线对小球的拉力大小.[审题指导] 先求出小球刚要离开圆锥面时的临界速度,此时支持力为零,根据牛顿第二定律求出该临界速度.当速度大于临界速度,则物体离开锥面,当速度小于临界速度,物体还受到支持力,根据牛顿第二定律,物体在竖直方向上的合力为零,水平方向上的合力提供向心力,求出绳子的拉力.[解析] 小球离开圆锥面的临界条件为圆锥体对小球的支持力F N=0,如图甲所示,设此时小球的线速度为v0,则F =m v 20r =m v 20L sin 30°=mg tan 30°解得v 0=3gL6(1)因v 1<v 0,F N ≠0,对小球受力分析,如图乙所示,有 F T sin 30°-F N cos 30°=mv 21L sin 30°F T cos 30°+F N sin 30°=mg 解得F T =(1+33)mg6(2)因为v 2>v 0,小球离开圆锥面,对小球受力分析,如图丙所示,有F T ′sin α=mv 22L sin αF T ′cos α=mg解得F T ′=2mg ⎝⎛⎭⎫F T ′=-12mg 舍去., 解答圆周运动问题的基本思路(1)审清题意,确定研究对象.(2)分析物体的运动情况,即物体的线速度、角速度、周期、轨道平面、圆心、半径等. (3)分析物体的受力情况,画出受力示意图,确定向心力.无论是否为匀速圆周运动,物体受到沿半径指向圆心的合力一定为其向心力.(4)据牛顿运动定律由向心力的不同表达式列方程.(5)求解并讨论.)考点三水平面内的圆周运动对应学生用书p761.火车转弯问题在平直轨道上匀速行驶的火车,所受合外力为零.在火车转弯时,什么力提供向心力呢?若在火车转弯处,让外轨高于内轨,如图所示,转弯时所需向心力由重力和弹力的合力提供.若轨道水平,转弯时所需向心力应由外轨对车轮的挤压力提供,而这样对车轨会造成损坏.车速大时,容易出事故.设车轨间距为L,两轨高度差为h,车转弯半径为R,质量为M的火车运行时应当有多大的速度?根据三角形边角关系知sinθ=hL,对火车的受力情况分析得tanθ=FMg=hL2-h2.因为θ角很小,粗略处理时,取sinθ≈tanθ,故hL=FMg,所以向心力F=hL Mg,又因为F=Mv2R,所以车速v=ghRL.2.圆锥摆圆锥摆是运动轨迹在水平面内的一种典型的匀速圆周运动,此类模型的特点是:(1)运动特点:物体做匀速圆周运动,轨迹和圆心在水平面内;(2)受力特点:物体所受的重力与弹力(拉力或支持力)的合力充当向心力,合力的方向是水平指向圆心的,F=mg tanα.(3)周期特点:mg tanα=mω2h tanα,知ω=gh,又T=2πω=2πhg=2πL cosαg,L为圆锥摆的摆长.摆长不同的圆锥摆,只要圆锥高度相同,周期就相同.【理解巩固3】如图所示的圆锥摆,摆线与竖直方向的夹角为θ,悬点O到圆轨道平面的高度为h,下列说法正确的是()A .摆球质量越大,则h 越大B .角速度ω越大,则摆角θ也越大C .角速度ω越大,则h 也越大D .摆球周期与质量有关[解析] 由圆周运动规律有mg tan θ=mω2 r ,则g r h =ω2 r 可得h =gω2,与质量无关,A错误;由圆周运动规律有mg tan θ=mω2r ,r =l sin θ,则有ω=gl cos θ,则角速度ω越大,则摆角θ也越大,B 正确;由A 知,h =gω2,则角速度ω越大,则h 越小;C 错误;由T =2πω=2πl cos θg知,摆球周期与质量无关,D 错误. [答案] B对应学生用书p 77火车转弯问题例3 (多选)火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶的速度为v ,则下列说法中正确的是( )A .当火车以v 的速度通过此弯路时,火车所受重力与轨道面支持力的合力提供向心力B .当火车以v 的速度通过此弯路时,火车所受重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力C .当火车速度大于v 时,轮缘挤压外轨D .当火车速度小于v 时,轮缘挤压外轨[解析] 火车转弯时,为了保护铁轨,应避免车轮边缘与铁轨间的摩擦,故火车受到重力和支持力的合力完全提供向心力,有F =mg tan θ=m v 2R ,解得v =gR tan θ,故A 正确,B 错误;若实际转弯速度大于v ,有离心趋势,与外侧铁轨挤压,反之,挤压内侧铁轨,故C 正确,D 错误;故选AC .[答案] AC圆锥摆问题例4 (多选)如图所示,两根长度相同的细线分别系有两个完全相同的小球,细线的上端都系于O 点.设法让两个小球均在水平面上做匀速圆周运动.已知L 1跟竖直方向的夹角为60°,L 2跟竖直方向的夹角为30°,下列说法正确的是( )A .细线L 1和细线L 2所受的拉力大小之比为3∶1B .小球m 1和m 2的角速度大小之比为3∶1C .小球m 1和m 2的向心力大小之比为3∶1D .小球m 1和m 2的线速度大小之比为33∶1[解析] 由mg =F 1cos 60°可得F 1=2mg ,由mg =F 2cos 30°可得F 2=233mg ,则细线L 1和细线L 2所受的拉力大小之比为3∶1,选项A 正确;由mg tan θ=mω2L sin θ,可得小球的角速度ω=g L cos θ,则m 1和m 2的角速度大小之比为43∶1,选项B 错误;小球m 1和m 2的向心力大小之比为mg tan 60°∶mg tan 30°=3∶1,选项C 正确;由mg tan θ=m v 2L sin θ,可得小球m 1和m 2的线速度大小之比为v 1v 2=sin θ1tan θ1sin θ2tan θ2=33∶1,选项D 错误.[答案] AC水平转盘上的圆周运动问题例5 有一种餐桌,其中心是一个可以匀速转动的、半径为R 的圆盘,如图所示.圆盘与餐桌在同一水平面内且两者之间的间隙可忽略不计,放置在圆盘边缘的小物块(可视为质点)与圆盘间的动摩擦因数是其与餐桌间动摩擦因数的两倍,设最大静摩擦力等于滑动摩擦力.现缓慢增大圆盘的转速,直到小物块恰好从圆盘边缘滑出,结果小物块恰好滑到餐桌的边缘,则餐桌的半径为( )A .1.5RB .2RC .2RD .3R[审题指导] 小物块刚要滑动时,最大静摩擦力提供向心力,滑动后物体在餐桌上做匀减速运动,利用几何关系解题即可.[解析] 为使物体不从圆盘上滑出,向心力不能大于最大静摩擦力,故μ1mg ≥m ω2R ,解得ω≤μ1gR,物体从圆盘上滑出时的速度为v 1=ωm R ;物体滑到餐桌边缘速度减小到0时,恰好不滑落到地面,根据匀变速直线运动规律2μ2gx 1=v 21,可得滑过的位移:x 1=v 212μ2g,又μ1=2μ2,∴x 1=R ,故餐桌最小半径:R 1=x 21+R 2=2R.故选C .[答案] C考点四 竖直面内的圆周运动对应学生用书p 771.解答竖直面内的圆周运动问题,主要运用两个力学观点,抓住一个关键. (1)动力学观点:在最高点和最低点由什么力提供向心力; (2)功能的观点:建立起最高点与最低点的速度关系; (3)抓住一个关键:过最高点的临界条件. 2.竖直面内圆周运动中常见的两种模型轻绳模型轻杆模型常见类型均是不可受到支撑作用的小球均是可以受到支撑作用的小球过最高点的临界条件由mg =m v 2临r得v 临=gr由小球能运动即可得v 临=0 讨论分析(1)过最高点时,v ≥gr , F N +mg =m v 2r ,绳、轨道对球产生弹力F N (2)当v <gr 时,不能过最高点,在到达最高点前小球已经脱离了圆轨道(1)当v =0时,F N =mg ,F N 为支持力,沿半径背离圆心 (2)当0<v <gr 时,mg -F N =m v 2r ,F N 背离圆心,随v 的增大而减小(3)当v =gr 时,F N =0 (4)当v >gr 时,F N +mg =m v 2r,F N 指向圆心并随v 的增大而增大 在最高点的F N -v 2图线取竖直向下为正方向取竖直向下为正方向【理解巩固4】 一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径为R 的圆周运动,如图所示,则下列说法正确的是( )A .小球过最高点时,杆所受到的弹力可以等于零B .小球过最高点的最小速度是gRC .小球过最高点时,杆对球的作用力一定随速度增大而增大D .小球过最高点时,杆对球的作用力一定随速度增大而减小[解析] 轻杆可对小球产生向上的支持力,小球经过最高点的速度可以为零,当小球过最高点的速度v =gR 时,杆所受的弹力等于零,A 正确,B 错误;若v <gR ,则杆在最高点对小球的弹力竖直向上,mg -F =m v 2R ,随v 增大,F 减小,若v >gR ,则杆在最高点对小球的弹力竖直向下,mg +F =m v 2R,随v 增大,F 增大,故C 、D 均错误.[答案] A对应学生用书p 78轻绳模型例6 如图所示,长均为L 的两根轻绳,一端共同系住质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间的距离也为L.重力加速度大小为g.现使小球在竖直平面内以AB 为轴做圆周运动,若小球在最高点速率为v 时,两根轻绳的拉力恰好均为零,则小球在最高点速率为2v 时,每根轻绳的拉力大小为( )A .3mgB .433mg C .3mg D .23mg[解析] 小球在运动过程中,A 、B 两点与小球所在位置构成等边三角形,由此可知,小球圆周运动的半径R =L·sin 60°=32L ,两绳与小球运动半径方向间的夹角为30°,由题意,小球在最高点的速率为v 时,mg =m v 2R,当小球在最高点的速率为2v 时,应有:F +mg =m (2v )2R,可解得:F =3mg.由2F T cos 30°=F ,可得两绳的拉力大小均为F T =3mg ,A 项正确.[答案] A轻杆模型例7 (多选)长为L 的轻杆一端固定质量为m 的小球,另一端有固定转轴O.现使小球绕转轴无摩擦在竖直平面内做圆周运动,P 为圆周轨道的最高点.若小球通过圆周轨道最低点时的速度大小为92gL ,则以下判断正确的是( ) A .小球到达P 点时的速度小于gLB .小球不能到达P 点C .小球能到达P 点,且在P 点受到轻杆向上的弹力D .小球能到达P 点,且在P 点受到轻杆向下的弹力[解析] 根据动能定理得,-mg·2L =12mv 2P -12mv 2,又v =92gL ,解得v P =12gL.小球在最高点的临界速度为零,所以小球能到达最高点,故B 错误,A 正确.设杆子在最高点表现为支持力,则mg -F =m v 2P L ,解得F =12mg ,故杆表现为支持力,小球在P 点受到轻杆向上的弹力,故C 正确,D 错误.[答案] AC考点五 圆周运动的临界问题对应学生用书p 78与摩擦力有关的临界极值问题例8 (多选)如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细线相连的质量相等的两个物体A 和B ,它们与盘间的动摩擦因数相同,当圆盘转速加快到两物体刚要发生滑动时,烧断细线,则( )A .两物体均沿切线方向滑动B .物体B 仍随圆盘一起做匀速圆周运动,同时所受摩擦力减小C .两物体仍随圆盘一起做匀速圆周运动,不会发生滑动D .物体B 仍随圆盘一起做匀速圆周运动,物体A 发生滑动,离圆盘圆心越来越远[审题指导] 对AB 两个物体进行受力分析,找出向心力的来源,即可判断AB 的运动情况.做向心运动的条件是提供的向心力大于需要的向心力;做离心现象的条件是提供的向心力小于需要的向心力.[解析] 当圆盘转速加快到两物体刚要发生滑动时,A 物体靠细线的拉力与圆盘的最大静摩擦力的合力提供向心力做匀速圆周运动,B 靠指向圆心的最大静摩擦力和拉力的合力提供向心力,所以烧断细线后,A 所受最大静摩擦力不足以提供其做圆周运动所需要的向心力,A 要发生相对滑动,离圆盘圆心越来越远,但是B 所需要的向心力小于B 的最大静摩擦力,所以B 仍保持相对圆盘静止状态,做匀速圆周运动,且静摩擦力比绳子烧断前减小.故B 、D 正确,A 、C 错误.[答案] BD与弹力有关的临界极值问题例9 (多选)如图所示,处于竖直平面内的光滑细金属圆环半径为R ,质量均为m的带孔小球A 、B 穿于环上,两根长为R 的细绳一端分别系于A 、B 球上,另一端分别系于圆环的最高点和最低点,现让圆环绕竖直直径转动,当角速度缓慢增大到某一值时,连接B 球的绳子恰好拉直,转动过程中绳不会断,则下列说法正确的是()A.连接B球的绳子恰好拉直时,转动的角速度为2g RB.连接B球的绳子恰好拉直时,金属圆环对A球的作用力为零C.继续增大转动的角速度,金属环对B球的作用力可能为零D.继续增大转动的角速度,A球可能会沿金属环向上移动[审题指导] 球A、B均做匀速圆周运动,合力提供向心力,考虑细线拉力为零的临界情况,根据牛顿第二定律列式分析即可.[解析] 当连接B球的绳刚好拉直时,mg tan60°=mRω2sin60°,求得ω=2g R,A项正确;连接B球的绳子恰好拉直时,A球与B球转速相同,A球所受合力也为mg tan 60°,又小球A所受重力为mg,可判断出A球所受绳的拉力为2mg,A球不受金属圆环的作用力,B项正确;继续增大转动的角速度,连接B球的绳上会有拉力,要维持B球竖直方向所受外力的合力为零,环对B球必定有弹力,C项错误;当转动的角速度增大,环对B球的弹力不为零,根据竖直方向上A球和B球所受外力的合力都为零,可知绳对A球的拉力增大,绳应张得更紧,因此A球不可能沿环向上移动,D项错误.[答案] AB, 1.与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力.(1)如果只是摩擦力提供向心力,则最大静摩擦力f m=mv2r,静摩擦力的方向一定指向圆心.(2)如果除摩擦力以外还有其他力,如绳两端连接物体随水平面转动,其中一个物体存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心.2.与弹力有关的临界极值问题(1)压力、支持力的临界条件是物体间的弹力恰好为零.(2)绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力等.)。
高考物理一轮复习 专项训练 物理生活中的圆周运动一、高中物理精讲专题测试生活中的圆周运动1.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m ,一质量m =1kg 的小物块(视为质点)从左側水平轨道上的A 点以大小v 0=12m /s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D 点.已知A 、B 两点间的距离L 1=5.75m ,物块与水平轨道写的动摩擦因数μ=0.2,取g =10m /s 2,圆形轨道间不相互重叠,求:(1)物块经过B 点时的速度大小v B ; (2)物块到达C 点时的速度大小v C ;(3)BD 两点之间的距离L 2,以及整个过程中因摩擦产生的总热量Q 【答案】(1) 11/m s (2) 9/m s (3) 72J 【解析】 【分析】 【详解】(1)物块从A 到B 运动过程中,根据动能定理得:22101122B mgL mv mv μ-=- 解得:11/B v m s =(2)物块从B 到C 运动过程中,根据机械能守恒得:2211·222B C mv mv mg R =+ 解得:9/C v m s =(3)物块从B 到D 运动过程中,根据动能定理得:22102B mgL mv μ-=- 解得:230.25L m =对整个过程,由能量守恒定律有:20102Q mv =- 解得:Q=72J 【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.2.如图所示,在竖直平面内固定有两个很靠近的同心圆形轨道,外圆ABCD 光滑,内圆的上半部分B′C′D′粗糙,下半部分B′A′D′光滑.一质量m=0.2kg 的小球从轨道的最低点A 处以初速度v 0向右运动,球的直径略小于两圆间距,球运动的轨道半径R=0.2m ,取g=10m/s 2.(1)若要使小球始终紧贴着外圆做完整的圆周运动,初速度v 0至少为多少? (2)若v 0=3m/s ,经过一段时间小球到达最高点,内轨道对小球的支持力F C =2N ,则小球在这段时间内克服摩擦力做的功是多少?(3)若v 0=3.1m/s ,经过足够长的时间后,小球经过最低点A 时受到的支持力为多少?小球在整个运动过程中减少的机械能是多少?(保留三位有效数字) 【答案】(1)0v 10m/s (2)0.1J (3)6N ;0.56J 【解析】 【详解】(1)在最高点重力恰好充当向心力2Cmv mg R= 从到机械能守恒220112-22C mgR mv mv =解得010m/s v =(2)最高点'2-CC mv mg F R= 从A 到C 用动能定理'22011-2--22f C mgR W mv mv =得=0.1J f W(3)由0=3.1m/s<10m/s v 于,在上半圆周运动过程的某阶段,小球将对内圆轨道间有弹力,由于摩擦作用,机械能将减小.经足够长时间后,小球将仅在半圆轨道内做往复运动.设此时小球经过最低点的速度为A v ,受到的支持力为A F212A mgR mv =2-AA mv F mg R= 得=6N A F整个运动过程中小球减小的机械能201-2E mv mgR ∆=得=0.56J E ∆3.如图所示,一质量为m 的小球C 用轻绳悬挂在O 点,小球下方有一质量为2m 的平板车B 静止在光滑水平地面上,小球的位置比车板略高,一质量为m 的物块A 以大小为v 0的初速度向左滑上平板车,此时A 、C 间的距离为d ,一段时间后,物块A 与小球C 发生碰撞,碰撞时两者的速度互换,且碰撞时间极短,已知物块与平板车间的动摩擦因数为μ ,重力加速度为g ,若A 碰C 之前物块与平板车已达共同速度,求: (1)A 、C 间的距离d 与v 0之间满足的关系式;(2)要使碰后小球C 能绕O 点做完整的圆周运动,轻绳的长度l 应满足什么条件?【答案】(1);(2)【解析】(1)A 碰C 前与平板车速度达到相等,设整个过程A 的位移是x ,由动量守恒定律得由动能定理得:解得满足的条件是(2)物块A 与小球C 发生碰撞,碰撞时两者的速度互换, C 以速度v 开始做完整的圆周运动,由机械能守恒定律得小球经过最高点时,有解得【名师点睛】A 碰C 前与平板车速度达到相等,由动量守恒定律列出等式;A 减速的最大距离为d ,由动能定理列出等式,联立求解。
2021届高三物理一轮复习力学曲线运动生活中的圆周运动专题练习
一、填空题
1.在使用体温计之前,都要将里面的水银甩回到泡里,在甩动的时候,手要拿着________端,这是利用了________现象.
2.如图所示,光滑水平面上,小球m在拉力作用下做匀速圆周运动,若小球运动到P点时,拉力F突然为零,则小球沿____ (填“Pa”、“Pb”或“Pc”,下同)方向运动;若F<mω2r,则小球可能沿______ 方向运动.
3.汽车转弯时速度过大,会因为________运动造成交通事故.(填“向心”或“离心”)
4.如图所示,细线下面悬挂一个小钢球(可看作质点),让小钢球在水平面内做匀速圆周运动.若测得小钢球做圆周运动的圆半径为r,悬点O到圆心O’之间的距离为h,小球质量为m.忽略空气阻力,重力加速度为g.则小球所受的向心力F向= __________;小球做匀速圆周运动的周期T=________________.
5.做匀速圆周运动的物体,如果合外力减小,物体将脱离原来的轨道做________运动;如果合外力增大,物体将脱离原来的轨道做________运动;如果合外力突然消失,物体将沿着轨迹________方向做匀速直线运动.
6.洗衣机脱水桶是利用________的原理制成的机械,将衣服放在洗衣机的甩干桶内,当甩干桶高速旋转时,衣服也随之旋转,当水的附着力________(填“大于”)“小于”或“等于”)圆周运动所需要的向心力时,衣服上的水滴就被甩出.
7.如图,一质量为m的光滑小球,在半径为R的竖直光滑圆环内侧做圆周运动,已知小球到达圆环最高点时环对球的压力刚好等于零,则此时小球的受到的向心力为_____)此时小球的线速度大小为_____)
8.如图所示,圆弧轨道AB是在竖直平面内的1
4
圆周,在B点轨道的切线是水平的,一质点自A点从静止
开始下滑,滑到B 点时的速度大小是2gR ,则在质点刚要到达B 点时的加速度大小为________,滑过B 点时的加速度大小为________)
9.如图所示,某宇航员在X 星球表面用一根细线悬挂一个质量为m 的小球,并将小球从与悬点O 同一高度处由静止释放,测得小球过最低点时绳子拉力为F 。
已知X 星球半径为R ,星球表面为真空,不考虑星球自转,则X 星球表面的重力加速度为________;若能让小球靠近X 星球表面绕该星球做匀速圆周运动,小球的速度大小应为________。
10.若车胎和水平路面间的动摩擦因数0.5μ=,转弯的路径近似看成一段圆弧,圆弧半径20m R =。
为
安全转弯,车速不能超_______m s 。
(设最大静摩擦力等于滑动摩擦力,210m g =)
11.游乐场的大型摩天轮匀速旋转,其半径为R ,旋转一周需要时间为t .质量为m 的小明乘坐的车厢处于摩天轮的最底部,以此刻开始计时.求:小明运动的周期 ____________;小明运动的线速度_________________;小明在最低点时的座椅对他的作用力____________________;
12.如图所示,轻杆长3L ,在杆两端分别固定质量均为m 的球A 和B ,光滑水平转轴穿过杆上距离A 为L 处的O 点,外界给系统一定能量后,杆和球在竖直平面内无摩擦转动,球B 运动到最高点时,杆对球B 恰好无作用力(忽略空气阻力,重力加速度为g ).则球B 在最高点时的速度为___________,杆对A 的拉力为______________.
13.如图所示,一半径为r 的圆筒绕其中心轴以角速度ω匀速转动,圆筒内壁上紧靠着一个质量为m 的物体与圆筒一起运动,相对筒无滑动.若已知筒与物体之间的摩擦因数为μ,重力加速度为g ,试求:
(1)物体所受到的摩擦力大小__________(2)筒内壁对物体的支持力____________
14.如图所示小球做匀速圆周运动,细线与竖直方向夹角为θ,线长为L ,小球质量为m ,重力加速度为g ,则小球的向心力大小为________,小球运动的线速度大小为________。
15.劲度系数为100k N /m 的一根轻质弹簧,原长为10cm ,一端拴一质量为0.6kg 的小球,以弹簧的另一端为圆心,使小球在光滑水平面上做匀速圆周运动,其角速度为l0rad /s .那么小球运动时受到的向心力大小为__________.
二、解答题
16.第24届冬季奥林匹克运动会,将由北京市和张家口市联合举行。
冬奥会运动项目跳台滑雪是其中极具观赏性的项目之一。
如图所示,质量m =60 kg 的运动员从长直助滑滑道AB 的A 处由静止开始匀加速下滑,已知该运动员的加速度a =3.6 m/s 2,到达助滑道末端B 时的速度v B =24 m/s ,A 与B 的竖直高度差H =48m 。
为了改变运动员的运动方向,在助滑道与起跳台之间用一段圆弧滑道平滑衔接,已知助滑道末端B 与圆弧滑道最低点c 的高度差h =5m 。
圆弧半径R =12m ,运动员运动到C 点时对轨道的压力F N =6mg ,取g =10m/s 2。
试求:
(1)运动员在AB 段下滑时受到阻力F f 的大小;
(2)运动员从B 点运动到C 点克服阻力做的功W 。
17.如图所示,竖直平面内的34
圆弧形光滑轨道ABC ,其半径为R ,A 端与圆心O 等高,B 为轨道最低点,C 为轨道最高点,AE 为水平面。
一小球从A 点正上方由静止释放,自由下落至A 点进入圆轨道,到达C 点
g 。
求:
(1)小球到达C 点时对轨道的压力F ;
(2)小球到达D 点时的速度大小v D ;
(3)释放点距A 点的竖直高度h.。
18.某人站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,使球在竖直平面内以手为圆心做圆周运动。
当球某次运动到最低点时,绳恰好受到所能承受的最大拉力被拉断,球以绳断时的速度水平飞出,通过水平距离d 后落地。
已知握绳的手离地面高度为d ,手与球之间的绳长为4
d ,重力加速度为g ,忽略空气阻力。
(1)绳能承受的最大拉力是多少?
(2)保持手的高度不变,改变绳长,使球重复上述运动,若绳仍在球运动到最低点时达到最大拉力被拉断,要使球抛出的水平距离最大,绳长应是多少?最大水平距离是多少?
参考答案
1.B 离心 2. Pa ; Pb . 3.离心 4.mgr h
2 5.离心 向心 切线 6.离心现象 小于 7.mg
8.2g g 9.3F m
10.10m/s 11.T 2R t π 224mR mg t
π+ 12
1.5mg 13.mg mω2r 14.tan mg θ
15.15N 16.(1)144N ;(2)
2280J 17.(1)F mg =;
(2)D v =(3)2h R = 18.(1)113F mg =;(2)2d r =
;3
x d =。