7.1参数的点估计概念
- 格式:ppt
- 大小:1.55 MB
- 文档页数:62
点估计⼜称定值估计,是⼀种对未知的总体参数进⾏估计的统计⽅法,其估计结果是⼀个具体数值。
点估计的优点在于它能够提供总体参数的具体估计值,其表达更直观、简练,并可以作为⾏动决策的数量依据。
但其不⾜之处也是很明显:点估计所提供的信息量⽐较少,尤其不能提供估计的误差和把握程度⽅⾯的信息,⽐如说,误差会有多⼤,有多⼤把握可以保证结果正确等,这些信息在决策中往往是⾮常重要的。
点估计的⽅法主要有矩估计法、似然法及贝叶斯法等。
1.矩估计法
矩估计法⾸先在1849年由英国统计学家⽪尔逊提出,它有简单易⾏的优点。
⽤样本的矩作为相应(同类、同阶)总体矩的估计⽅法称为矩估计法。
在统计学中,矩是指以期望值为基础⽽定义的数字特征。
矩分原点矩和中⼼矩两种。
2.似然估计法
似然估计法是费歇在1912年提出的。
从理论上看,它是参数点估计中最重要的⽅法,具有优良的数学性质,应⽤⼗分⼴泛。
似然估计法是建⽴在似然原理基础上的求估计量的⽅法。
(1)似然原理
似然原理的直观想法是:将在试验中概率的事件推断为最可能出现的事件。
(2)似然估计法简介(略)
3.估计量的评选标准
(1)⽆偏性:⽆偏估计的实际意义就是⽆系统误差
(2)有效性:在多次重复试验中,估计值更为集中在真值的附近,就是有效性的直观意义。
综合上述两⽅⾯可知,⼀个好的估计量不仅要求它能围绕待估参数的真值摆动,⽽且希望摆动幅度越⼩越好。
参数的点估计及区间估计点估计的基本思想是根据样本数据,通过统计量来估计总体参数的值。
常用的点估计方法有最大似然估计和矩估计。
最大似然估计是找到一个参数值,使得样本观察值的概率最大。
矩估计是根据样本矩的性质来估计总体参数的值。
例如,如果总体服从正态分布,那么样本均值和样本方差就是总体均值和总体方差的估计量。
区间估计的基本思想是给出一个区间,使得总体参数落在该区间内的概率达到一定的置信水平。
在区间估计中,置信水平通常是根据统计学的理论设定的,常见的有95%和99%置信水平。
区间估计的计算方法主要有正态分布法和t分布法。
正态分布法适用于大样本情况下,而t分布法适用于小样本情况下。
对于点估计,我们需要考虑估计量的偏倚和方差。
偏倚表示估计量的期望值与总体参数的真实值之间的差异。
如果估计量的期望值与总体参数的真实值之间没有差异,就称为无偏估计;否则,就称为有偏估计。
方差表示估计量的离散程度。
我们通常希望找到无偏估计,并且方差越小越好。
对于区间估计,我们需要考虑置信水平和置信区间的宽度。
置信区间的宽度越小,说明估计的精度越高。
但是,要得到一个狭窄的置信区间就需要使用更大的样本量,或者降低置信水平。
在进行区间估计时,需要根据具体需求平衡估计的精度和置信水平。
在实际应用中,点估计和区间估计通常是一起使用的。
点估计提供了一个具体的估计值,而区间估计提供了一个参数值可能的范围。
通过点估计和区间估计,我们可以对总体参数进行合理的估计,并且给出估计的精度和可靠性的度量。
总之,参数的点估计和区间估计是统计学中常用的两种估计方法。
点估计通过选择适当的统计量来估计总体参数的值,而区间估计通过给出参数值可能的范围来表示估计的不确定性。
点估计和区间估计是统计学中重要的概念,对于数据分析和决策制定具有重要的指导意义。
点估计的基本概念及矩估计方法总体样本统计量描述作出推断随机抽样统计推断:参数估计和假设检验这类问题称为参数估计问题.参数估计问题的一般提法设有一个总体X ,其分布函数为F (x,θ),其中θ为未知参数,现从该总体抽样,得样本X 1,X 2,…,X n .参数估计问题就是利用从总体抽样得到的样本来估计总体未知参数的问题.要依据该样本对参数θ作出估计,或估计参数θ的某个函数g (θ).点估计(Point Estimation)参数估计区间估计(Interval Estimation)点估计——估计未知参数的值区间估计——根据样本构造出适当的区间,使它以一定的概率包含未知参数.这是点估计.这是区间估计.估计μ在区间(1.59, 1.77)内,假如我们要估计某队男生的平均身高.(假定身高服从正态分布N (μ,0.12)),现从该总体抽取容量为5的样本,分别为1.65 1.67 1.681.71 1.69,求总体均值μ的估计.估计μ为1.68,全部信息就由这5个数组成.设总体X 的分布函数F (x ,θ)形式已知,θ是待估参数,X 1, X 2, …, X n 为抽自总体X 的样本,x 1, x 2,…, x n 是相应的一个样本值. 据此,应如何估计未知参数θ呢?点估计问题为估计θ,需要构造一个适当的统计量每当有了样本观测值x 1,x 2,…,x n ,就代入该统计量计算出一个值作为未知参数θ的近似值.12ˆ(,,,),n X X X θ12ˆ(,,,)n x x x θ称为参数θ的估计量(Estimator ).称为参数θ的估计值(Estimate ).在不引起混淆情况下统称为估计,记为12ˆ(,,,)n X X X θ12ˆ(,,,)n x x x θˆθ注意:被估计的参数θ是一个未知常数,而估计量是样本的函数,是一个随机变量,当样本值取定后,估计值是个已知的数值.对于不同的样本值,θ的估计值一般不同.问题:使用什么样的统计量去估计θ?矩估计法(Method of Moments)最大似然估计法(Method of Maximum Likelihood)矩估计法由英国统计学家卡尔•皮尔逊(Karl Pearson)在20世纪初提出.1.矩估计方法的基本思想用样本矩估计总体矩利用样本k阶原点矩作为总体k阶原点矩的估计.由此进一步估计未知参数θ,这就是矩估计法.1857-1936由大数定律总体k 阶原点矩为因此,可以用A k 估计μk 设X 1,X 2, …, X n 为来自总体X 的一个样本,()kk E X μ=样本k 阶原点矩为若g 为连续函数,则用g (A k )估计g (μk )又由于μk 一般可以表示为总体中未知参数的函数,从而可以估计出未知参数.11n kk i i A X n ==∑11nP kk i i A X n ==−−→∑k μ()Pk g A −−→()k g μ2.矩估计的步骤(1)根据未知参数的个数,求出总体的各阶矩.设总体X~F (x ,θ1,θ2, …,θk ), X 1,X 2, …, X n 为来自总体X 的样本.1(,,),1,2,,l l k l kμμθθ==X 为连续型X 为离散型+12()(;,,)lll k E X x f x ,dxμθθθ∞-∞==⎰12()(;,,)Xll l k x R E X x p x ,μθθθ∈==∑总体X 的密度函数总体X 的分布律(3)用样本矩估计相应的总体矩,即:用A l 替代相应的μl ,得到θl 的矩估计量(2)解方程(组),得12ˆ(,,,),1,2,,l l kA A A l k θθ==(4)g (θ1 ,⋯,θk )的矩估计量为12ˆˆˆ(,,,)kg θθθ1(,,),1,2,,l l k l kθθμμ==解:(1)10.求总体的1阶矩例1.设总体X 的概率密度为其中α>−1是未知参数,X 1,X 2,…,X n 是取自总体X 的样本,求(1)参数α的矩估计量;(2)g (α)=(α+1)/α的矩估计量.(1),01()0,x x f x αα⎧+<<=⎨⎩其它1()E X μ=111(1)=2x dx αααα++=++⎰+()xf x dx ∞-∞=⎰112EX αμα+==+20. 解方程11211μαμ-=-21ˆ1X Xα-=-10.30. 用代替μ1,得α的矩估计为111nii A X X n ===∑用代替α,得g (α)=(α+1)/α的矩估计为ˆα21ˆ1X Xα-=-ˆ1ˆ()ˆgααα+=21X X =-例1.设总体X 的概率密度为其中α>−1是未知参数,X 1,X 2,…,X n 是来自总体X 的样本,求(1)参数α的矩估计量;(2)g (α)=(α+1)/α的矩估计量.(1),01()0,x x f x αα⎧+<<=⎨⎩其它例2.设总体X 的均值μ和方差σ2都存在,且σ2>0,但μ和σ2均未知,设X 1,X 2,…,X n 是来自总体X 的样本,求μ,σ2的矩估计量.解:10.求总体的1阶矩和2阶矩122222()()()()E X E X D X EX μμμσμ==⎧⎪⎨==+=+⎪⎩20.解方程组12221μμσμμ=⎧⎪⎨=-⎪⎩30.分别以A 1, A 2代替μ1, μ2得到μ, σ2的矩估计量分别为1ˆA X μ==22222211111ˆ()n ni i i i A A X X X X n n σ===-=-=-∑∑例2.设总体X 的均值μ和方差σ2都存在,且σ2>0,但μ和σ2均未知,设X 1,X 2,…,X n 是来自总体X 样本,求μ,σ2的矩估计量.特别,若X~N (μ, σ2),μ, σ2未知,则μ, σ2的矩估计量分别为ˆX μ=2211ˆ()ni i X X n σ==-∑若总体X~U [a,b ],其中a<b 且均未知,X 1,X 2, …,X n 是来自总体X 的样本,则a ,b 的矩估计量分别为213ˆ()ni i a X X X n ==--∑213ˆ()ni i b X X X n ==+-∑优点:直观、简单缺点(1)不唯一,如例1例1.设总体X 的概率密度为其中α>−1是未知参数,X 1,X 2,…,X n 是来自总体X 的样本,求(1)参数α的矩估计;(1),01()0,x x f x αα⎧+<<=⎨⎩其它可以求总体的二阶矩μ2,用A 2代替μ2得到矩估计.规定:用尽量低阶的矩求相应的矩估计.缺点(2)损失信息,如例2例2.设总体X的均值μ和方差σ2都存在,且σ2>0,但μ和σ2均未知,设X1, X2,…,X n是来自总体X样本,求μ,σ2的矩估计量.若已知总体X的服从正态分布,则该分布形式已知的信息没有用到,从而造成信息的损失.。
参数的点估计及区间估计1.点估计点估计是通过样本数据得出一个单一的数值作为参数的估计值。
常见的点估计方法有最大似然估计、矩估计等。
最大似然估计是通过寻找参数值,使得给定样本出现的可能性最大化,从而估计参数的值。
矩估计则是通过样本矩的估计值来估计参数的值。
点估计的优点是简单直观,计算方便,但它只给出了一个数值,无法反映参数估计的准确程度。
2.区间估计区间估计是通过样本数据得出一个区间,该区间内的值有一定概率包含着未知参数的真实值。
常见的区间估计方法有置信区间、预测区间等。
置信区间是通过样本数据得出一个区间,该区间内的值有一定程度的置信度来包含着未知参数的真实值。
预测区间是通过样本数据得出一个区间,该区间内的值有一定程度的置信度来包含着新的观测值。
区间估计的优点是可以反映参数估计的不确定性,给出了一个范围,但计算复杂,要求样本量较大。
对于点估计和区间估计,我们需要考虑一些概念和原则:1.无偏性:一个点估计量如果在大样本下的期望等于被估计参数的真实值,则称其为无偏估计量。
无偏估计量估计的是总体参数的中心值。
2.有效性:如果两个估计量都是无偏估计量,但一个估计量的方差较小,则称这个估计量为有效估计量。
3.一致性:一个估计量如果在样本量趋向于无穷大时,以概率1收敛于被估计参数的真实值,则称该估计量为一致估计量。
4.置信水平:置信区间是估计参数范围的一种方法,置信水平是指在重复抽样条件下,这个估计参数范围包含真实参数的概率。
总结起来,点估计提供了一个单一的参数估计值,简单直观,但没有反映参数估计的准确程度;区间估计提供了一个范围,可以反映参数估计的不确定性,但计算较复杂。
在实际应用中,可以根据问题的具体要求选择适当的估计方法,或者同时使用点估计和区间估计方法来对参数进行估计。
参数的区间估计和点估计在统计学中,参数是描述总体的量,如总体均值、总体方差等。
当我们研究总体时,除了掌握总体参数的点估计外,我们还需要对总体参数进行区间估计。
本文就对参数的区间估计和点估计进行详细的介绍。
一、参数点估计参数点估计是指用样本数据推断出总体参数的一个近似值。
比如,从总体中抽取一些样本,计算出它们的平均值,把这个平均值作为总体均值的近似值。
常用的参数点估计方法有:1.极大似然估计极大似然估计法是指假设参数值已知,用样本数据来确定这个参数估计值,即找到一个参数估计值,使得这个参数值下,样本的似然函数取得最大值。
例如,抛硬币实验中,随机变量X表示正面出现的次数。
当硬币的正面概率p未知时,用样本求出p的极大似然估计,即:P(X=k|p) = Cnkp^k(1-p)^(n-k)为了找到样本数据下的极大似然估计值,将似然函数求导,令导数等于0,求得估计值。
在实际中,极大似然估计可以被广泛应用于估计均值、方差、参数等。
2.矩估计矩估计是利用样本的矩来推断总体参数的方法。
常见的矩估计方法有:(1)样本均值估计总体均值。
用矩估计法时,对于同一参数,不同样本可能得到不同的结果,但随着样本数的增加,结果会更加接近。
1.基于正态分布的参数区间估计如果总体服从正态分布,且总体方差未知,我们通常采用t分布来进行参数区间估计。
我们假设一个区间,称之为置信区间,该区间可以以某个概率(置信度)包含总体参数,置信度通常取0.9或0.95或0.99等常用值。
置信区间估计是指在某个置信度下,估计出总体参数的一个区间,称这个区间为置信区间。
置信区间可以通过以下步骤计算。
(1)计算样本平均数和标准差,以此估计总体均值和总体标准差,分别记为X和S。
(2)确定置信度和自由度n-1,从t分布表中查找t分布值tα/2。
(3)计算置信区间:X - ts/√n ≤ $\mu$ ≤ X + ts/√n,其中t为样本t统计量,s为标准差,n为样本量,α/2为置信水平。