开关电源EMI模块详解
- 格式:doc
- 大小:66.50 KB
- 文档页数:2
开关电源emi电路原理
开关电源EMI电路是指用来抑制电磁干扰(EMI)的电路。
开关电源是一种使用开关元件(如晶体管或MOSFET)工作
的电源,通过周期性地开关电流来提供电能。
开关电源会产生一定的电磁干扰,主要原因有以下几点:
1. 开关元件的快速开关会引起电压和电流的急剧变化,导致高频谐波成分的产生;
2. 开关电源中的变压器和电感器会产生磁场,进一步引起电磁辐射;
3. 开关电源中的电容器会产生串扰电容耦合,导致干扰信号的传导。
为了抑制开关电源的电磁干扰,可以采取以下措施:
1. 在开关电源输入端添加滤波器,用来抑制高频噪声,常见的滤波器包括电容滤波器和电感滤波器;
2. 设计合适的开关元件驱动电路,减小开关元件的开关速度,从而减小高频谐波的产生;
3. 采用引入屏蔽外壳或屏蔽包围电路等的屏蔽手段,减小电磁辐射;
4. 采用良好的地线布局和接地措施,降低地线电阻和噪声干扰;
5. 使用高频绕线技术和特殊布板设计,减少电感和电容器之间的串扰。
通过以上措施,可以有效地抑制开关电源产生的电磁干扰,提高电源的抗干扰能力,确保设备的正常运行。
开关电源的输入EMI差模电感磁芯材料引言开关电源是一种常见的电源应用,其设计和使用中需要考虑电磁干扰(EMI)的问题。
差模电感是开关电源中重要的组成部分,其磁芯材料的选择对EMI性能有着重要的影响。
本文将深入探讨开关电源的输入EMI差模电感磁芯材料的选择与应用。
差模电感的作用差模电感是开关电源中的滤波元件,主要作用有: 1. 过滤高频噪声:差模电感可以阻隔高频噪声,提高开关电源的抗干扰能力。
2. 平滑输出电流:差模电感能够减小开关电源输出的纹波电流,提高电源的稳定性和效率。
差模电感的结构和特点差模电感一般由磁芯、线圈和外壳组成。
其结构特点包括: 1. 磁芯材料:磁芯材料是差模电感的核心组成部分,决定了其电磁性能。
2. 线圈:线圈是差模电感的导电元件,同时也是差模电感电感值的决定因素。
3. 外壳:外壳对差模电感的屏蔽性能和机械强度有着重要影响。
磁芯材料的选择不同的磁芯材料具有不同的磁性能和电磁性能,对差模电感的EMI性能有着直接的影响。
常见的磁芯材料包括: 1. 铁氧体(Ferrite):铁氧体是一种性能稳定、价格相对便宜的磁芯材料。
在高频范围内的磁导率较低,适用于高频开关电源的差模电感。
2. 铁氟龙氧体(Powder Iron):铁氟龙氧体磁芯具有较高的饱和磁感应强度和磁导率,适用于高功率开关电源的差模电感。
3. 磁性不锈钢(MPP):磁性不锈钢磁芯具有较高的饱和磁感应强度和磁导率,同时具有良好的磁滞特性和稳定的温度性能,适用于高性能开关电源的差模电感。
磁芯材料的性能参数对于差模电感的磁芯材料,我们需要关注以下几个重要的性能参数: 1. 饱和磁感应强度(Bs):材料能承受的最大磁感应强度。
影响差模电感的磁能存储能力和工作点的选择。
2. 相对磁导率(μr):材料相对于真空中的磁导率。
决定了磁芯中的磁感应强度和磁场能量的关系。
3. 硬磁饱和(Hcs):材料达到饱和磁感应强度所需的磁场强度。
开关电源EMI滤波器原理和设计研究开关电源EMI滤波器是用来减少开关电源产生的电磁干扰(EMI)的一种装置。
EMI是指开关电源工作时产生的高频干扰信号,可能会对其他电子设备、无线通信和无线电接收产生干扰,影响它们的正常工作。
EMI滤波器通过合理设计,能有效地抑制开关电源产生的EMI信号,从而减少对其他设备的干扰。
EMI滤波器的原理是基于电流和电压的相位关系来实现的。
开关电源在工作时会产生高频电流脉冲,而这些电流脉冲会通过开关电源输入端的电容等元件,从而形成高频电流回路。
EMI滤波器通过给开关电源输入端加上一个电感元件,阻断高频电流回路的形成,从而减小EMI信号的辐射。
设计EMI滤波器时需要考虑以下几个因素:1.工作频率范围:EMI滤波器需要在开关电源产生EMI信号的频率范围内有效工作。
根据具体的应用环境和要求,选择合适的滤波器工作频率范围。
2.滤波特性:滤波器需要具有良好的滤波特性,对于较高频率的EMI信号能够有较好的抑制效果。
常用的滤波器类型有低通滤波器、带通滤波器和带阻滤波器等。
3.过渡区域:滤波器在过渡区域需要平衡阻抗和频率之间的变化。
过渡区域越宽,滤波器的性能越好。
过渡区域的宽度需要根据具体要求进行设计。
4.安全和可靠性:EMI滤波器需要满足安全和可靠性的要求。
在设计过程中,需要考虑电源参数范围、电流和电压的安全范围等因素,以确保滤波器的稳定性和可靠性。
设计EMI滤波器的方法有多种,可以根据需求选择不同的设计方法。
常见的方法包括线性滤波器设计、Pi型滤波器设计和C型滤波器设计等。
其中,Pi型滤波器是应用最广泛的一种,它由两个电感和一个电容组成,能够对高频信号进行抑制。
总之,开关电源EMI滤波器的原理和设计研究是为了降低开关电源产生的电磁干扰,保证其他设备的正常工作。
通过合理的滤波器设计和选择合适的滤波器类型,可以有效地减少EMI信号对其他设备的干扰,提高系统的抗干扰性能。
开关电源EMI滤波器原理和设计研究开关电源EMI滤波器是用于抑制开关电源产生的电磁干扰(EMI)的一种电路。
开关电源工作时,因为开关元件的开闭引起的瞬态电流和电压变化,会在电源线上产生高频噪声干扰,通过电磁辐射和传导的方式传播到其他电路中,对其他设备和系统产生干扰。
EMI滤波器的设计旨在通过选择合适的滤波器拓扑结构、滤波器元件和参数,以及合理布局和连接方式,来有效地抑制开关电源产生的高频噪声。
EMI滤波器的原理是通过串联和并联等方式构成一个低通滤波器,将开关电源的高频噪声滤除,使其只能在设定的频率范围内传递,从而减少对其他设备和系统的干扰。
EMI滤波器的设计研究需考虑以下几个方面:1.滤波器拓扑结构选择:常见的EMI滤波器拓扑结构包括LC滤波器、RC滤波器和LCL滤波器等。
不同的拓扑结构适用于不同的滤波需求,需根据实际应用场景选择适合的拓扑结构。
2.滤波器元件选择:滤波器中的元件包括电感、电容和电阻等。
选择合适的元件需要考虑元件的频率响应特性、阻抗特性、容值和功率等参数。
3.滤波器参数优化:滤波器的参数优化可以通过频率响应曲线和阻抗匹配等方法进行,以确保滤波器在设计频率范围内能够有效地滤除高频噪声。
4.布局和连接方式设计:合理的布局和连接方式可以减少电磁辐射和传导的路径,从而进一步提高滤波器的性能。
此外,还需对滤波器进行实验验证,通过在实际电路中的应用来评估滤波器的性能和有效性。
总之,开关电源EMI滤波器的原理和设计研究是为了抑制开关电源的高频噪声干扰,需要对滤波器的拓扑结构、元件选择、参数优化以及布局和连接方式进行综合考虑和设计,以提高滤波器的性能和效果。
开关电源EMI滤波器电路(安规电容)开关电源为减小体积、降低成本,单片开关电源一般采用简易式单级EMI滤波器,典型电路图1所示。
图(a)与图(b)中的电容器C能滤除串模干扰,区别仅是图(a)将C接在输入端,图(b)则接到输出端。
图(c)、(d)所示电路较复杂,抑制干扰的效果更佳。
图(c)中的L、C1和C2用来滤除共模干扰,C3和C4滤除串模干扰。
R为泄放电阻,可将C3上积累的电荷泄放掉,避免因电荷积累而影响滤波特性;断电后还能使电源的进线端L、N不带电,保证使用的安全性。
图(d)则是把共模干扰滤波电容C3和C4接在输出端。
EMI滤波器能有效抑制单片开关电源的电磁干扰。
图2中曲线a 为加EMI滤波器时开关电源上0.15MHz~30MHz传导噪声的波形(即电磁干扰峰值包络线)。
曲线b是插入如图1(d)所示EMI滤波器后的波形,能将电磁干扰衰减50dBμV~70dBμV。
显然,这种EMI滤波器的效果更佳。
图中c1 c2 c3 c4都是安规安规电容的定义安规电容是指用于这样的场合,即电容器失效后,不会导致电击,不危及人身安全. 它包括了X电容和Y电容。
x电容是跨接在电力线两线(L-N)之间的电容,一般选用金属薄膜电容;Y电容是分别跨接在电力线两线和地之间(L-E,N-E)的电容,一般是成对出现。
基于漏电流的限制,Y电容值不能太大,一般X 电容是uF级,Y电容是nF级。
X电容抑制差模干扰,Y电容抑制共模干扰。
Y 电容的电容量必须受到限制,从而达到控制在额定频率及额定电压作用下,流过它的漏电流的大小和对系统EMC性能影响的目的。
GJB151规定Y电容的容量应不大于0.1uF。
X电容底下又分为X1, X2, X3,主要差别在于: 1. X1耐高压大于2.5 kV, 小于等于4 kV, 2. X2耐高压小于等于2.5 kV, 3. X3耐高压小于等于1.2 kVY电容底下又分为Y1, Y2, Y3,Y4, 主要差别在于: 1. Y1耐高压大于8 kV, 2. Y2耐高压大于5 kV, 3. Y3耐高压 n/a 4. Y4耐高压大于2.5kV在滤波电路上有X电容,就是跨接L-N线;Y电容就是N-G线。
开关电源EMI滤波电路元件剖析电源是最容易被忽视的组件之一,不过其各路电压输出规格、电压稳定性、发生异常时的保护性却有相当重要的地位,因为主机内所有配件的所需电力均需由电源供应器供应,同时随着各硬件于不同状态下的耗电量去调节输出负载,又要兼顾长时间操作及全载输出的稳定性。
以下从开关电源交流输入端EMI滤波电路常见的组件开始介绍。
1、交流电输入插座此为交流电从外部输入电源的第一道关卡,为了阻隔来自电力在线干扰,以及避免电源运作所产生的交换噪声经电力线往外散布干扰其它用电装置,都会于交流输入端安装一至二阶的EMI(电磁干扰)Filter(滤波器),其功能就是一个低通滤波器,将交流电中所含高频的噪声旁路或是导向接地线,只让60Hz左右的波型通过。
2、X电容(Cx,又称为跨接线路滤波电容)、Y电容(Cy,又称为线路旁通电容器)X电容是EMI滤波电路组成中,用来跨接火线(L)与中性线(N)间的电容,用途是消除来自电力线的低通常态噪声。
Y电容为跨接于浮接地(FG)和火线(L)/中性线(N)之间,用来消除高通常态及共态噪声。
3、共态扼流圈(交连电感)共模态扼流圈在滤波电路中为串联在火线(L)与中性线(N)上,用来消除电力在线低通共态以及射频噪声。
有些电源的输入端线路,会有缠绕在磁芯上的设计,V♥攻种耗“民熔电气集团”快来看看也可以当作是简单的共态扼流圈。
其外观有环形与类似变压器的方形,部分可以见到外露的线圈。
4、保险丝保险丝就是当其流过其上的电流值超出额定限度时,会以熔断的方式来保护连接于后端电路,一般使用于电源供应器中的保险丝为快熔型,比较好的会使用防爆式保险丝,其与一般保险丝最大的差别是外管为米色陶瓷管,内填充防火材质避免熔断时产生火花。
5、负温度系数电阻(NTC)因为电源接通电源瞬间,其内的高压端电解电容属于无电状态,充电瞬间将产生过大电流突波以及线路压降,可能使桥式整流器等组件超出其额定电流而烧坏。
NTC使用时串联于L或N线路上,启动时其内部阻抗值可以限制充电瞬间的电流值,而负温度系数的定义是其电阻会随其温度上升而降低,所以随着电流流过本体使温度逐渐升高后,其阻值会随着降低,避免造成不必要功率消耗,其外观大多为黑色及墨绿色的圆饼状元件。
1)零线(N)、火线(L)、地线(G):通常家里的三角插头的零火地的辨别是左零右火上地。
在
电源板上,我们所说的220V市电,其实就是有效值为220V,最大值为220*1.414V的交流正弦电压。
这个电压都在火线上,零线一般不带电,零线只是提供一个电流回路而已,两侧的电压差除以等效电阻就是电流。
它在供电端(发电厂、变电站等)接地,或在入户前重复接地,是工作接地线,是输电线路的一部分(由于是一个电流回路,加上流经处的等效电阻,所以零线也是会带电的)。
而地线是在用户端接地,和用电器的金属外壳或人体可接触部位连接,使机壳与大地等电位(一般是零电位),零线不与输电线路构成回路,所以理论上没有电流。
(市电一般都是零线不带电,火线带全部电,但是有些AC Source由于设置的缘故往往火线和零线都带上一半的电。
)
2)保险丝Fuse:保险丝一般加在L端,因为正常情况下L端带电,而N端是不带电的。
但是有
时候为了安全方面的考虑,在L端与N端都配有保险丝(为了防止人工插拔造成的反插)。
在输入端加保险丝是为了防止开机瞬间可能产生的尖峰大电流对电路造成的伤害。
它的工作原理是:大电流流过,造成发热,当温度达到保险丝的熔点以上时自动熔断以达到保护电路的作用。
我们选择保险丝一般都是选择慢熔性(用T表示)的,也就是说熔断所需要的能量较普通的保险丝更大,所以它有较大的抵抗瞬间脉冲的能力。
保险丝的熔断电流是额定电流的2倍。
当通过保险丝的电流超过额定电流1.45倍时,它的熔断时间要在5分钟之内,当通过保险丝的电流超过额定电流2倍时,它的熔断时间要在1分钟之内。
通过Q=PT=I2RT就可以选择熔点值。
选择Fuse,我们必须测出开机浪涌电流和稳态工作电流的波形图。
Fuse的额定电压要大于最大稳态工作电压;额定电流要大于最大稳态工作电流/温度折减率。
举个计算I2T的例子:假设开机有3个正弦波的浪涌波,其浪涌电流最大值和持续时间对应为:20A,10us;
10A,10us;5A,10us。
那么I2T=½ *202*0.00001+ ½*102*0.00001+ ½*52*0.00001=0.002625。
考虑到安全折减率,所以选用的 Fuse的I2T可以适当小于这个值。
由于Fuse要承受每次开机关机的浪涌电流冲击,所以我们要设定它可耐冲击的次数。
一般保险丝还会规定一个额定电压,即当保险丝保护后(断开),两端加额定电压时,仍然处于断开状态,不会造成安全隐患。
3)负温敏电阻NTCR:它的工作原理是阻值随着温度的升高而减小,主要功能也是用来保护电路,
开机瞬间一般电流比较大,此时温度低,负温敏电阻阻值大,阻止了大电流对电路的伤害。
选择这个电阻时,一般要考虑零功率电阻值和最大稳态电流。
零功率电阻值即25°C时的电阻值,选择它时要考虑到电路开机瞬间的尖峰大小,同时我们也要保证最大稳态电流大于电路的最大电流。
4)Y电容:就是电路上连接L端和G端,N端和G端的两个电容,它是安规电容(所谓安规电容,
就是当电容器失效后不会导致电击,不会危及人身安全。
举个例子:若X电容失效导致短路,那么电网的N端和L端直接短路,至少造成设备无法工作,而且使电网被短路;若Y电容失效导致短路,那么L端和地短路,使得某些外壳接地的电器的外壳直接带上高电压,从而对人身安全带来威胁。
所以安规电容除了滤除EMI外还要保证在发生失效的时候不至于产生以上危险),由于在电路上看起来很像Y型而得名。
它的作用主要是用来滤除高频成分以及共模噪声(大小相等,方向相反的信号,共模噪声又称对地噪声,指的是两根线分别对地的噪声。
实际应用中,温度的变化、各种环境噪声的影响都可以视作共模噪声)。
根据电路的峰值脉冲电压的不同可以选择不同的Y电容,在Adapter电路中我们一般选择Y1电容,它的额定电压为250V,耐高压超过8KV(此外还有Y2和Y3电容)。
各个地区对Y电容的漏电流都有不同规定,以漏电流不小于0.35mA,工作电压为220市电为例,那么容值一般选择小于3500PF(电容越大,漏电流相应也会越大)。
备注:i=CdV/dt,则C=idt/dVt=0.35*0.001*(1/50/4)/(220*1.414-0)=3500PF。
单纯用探头测Y电容两端,可能有一个电容两端是没有电压的,但是实际上,两个Y电容可能是平分电压的。
5)X电容:X电容连接在L端和N端之间,也是一个安规电容。
它们的作用主要是用来滤除差模
噪声。
X电容的容值允许比Y电容大,但此时必须在X电容的两端并联泄放电阻,用于防止电源线拔掉时,由于该电容的充放电过程而导致电源线插头长时间带电。
安规规定,当正在工作的机器在电源线被拔掉时,在两秒内,电源线插头的两端带电的电压必须小于原来额定电压的30%。
6)共模电感和差模电感:差模电感可用于配合X电容滤除差模干扰(一般都没加),共模电感可
用于配合Y电容滤除共模干扰。
7)泄放电阻:顾名思义,这里的电阻就是用来消耗X电容上面的电压,电容的容值越大,为了
保证在规定的时间内电压降到安全范围,我们就要相应的减小电阻的阻值。
根据以往的经验这里的电阻总值一般在1M-2M之间,但是在功率和电阻的结构上有要求。
如果不用贴片电阻的话,我们要用玻璃釉或者金属釉制成的电阻,并且功率要求在1W-2W。
由于结构方面的原因我们可以直接选择贴片电阻。
8)CAPZero芯片:现在多用CAPZero芯片加电阻来来替代单纯用泄放电阻组成的泄放回路。
当
CAPZero两端施加AC电压时,CAPZero会侦测到AC电压的存在,此时它会阻断电阻的吸收回路,在电路正常工作的时候就可以避免这部分的功耗。
当AC电压消失的时候,这个通路导通,X电容上的电压就会通过电阻消耗掉。
所以我们可以采用较大值的X电容,从而可以把电感量降低,从而达到降低成本的目的(由于AC存在的时候,电阻耗电通路关断,所以X电容上的电不会损耗在电阻上,可以取很大的值,而不必担心功耗的问题)。
9)压敏电阻RV:当两端电压低于其阈值电压时,流过其电流极小,此时呈现高阻抗状态。
当电
压超过阈值电压时,流过其电流急剧增大,利用这一功能可以抑制瞬间高压(流过电流变大,使得压降变大,从而减小电路工作电压)。
可用于过压保护电路以及吸收浪涌电流。
一般在电路中会并在整流桥的两个交流极之间或者NL两侧。
10)放电管:一般并联在共模电感两侧,当放电管的两极施加一定的电压的时候,便在极间产生
不均匀的电场,当电场强度达到一定值的时候,电极间产生电弧,电离气体,从而使放电管马上转入导通的状态,当浪涌电压消失的时候,恢复原状。
11)整流桥堆:桥堆是由4个二极管组成的,主要的作用是要把交流电整成直流电。
它的工作原
理是:利用二极管的单向导电性和管压降将交流电整成同一方向的脉动直流,然后通过电容的滤波和充放电整成直流电。
桥堆一般要选择耐压值超过电路中可能出现的最大电压,电流一般要大于电流中可能出现的最大冲击电流。