第二章+扩散的机制、扩散方程及其解
- 格式:ppt
- 大小:28.76 MB
- 文档页数:136
一、扩散方程稳态扩散与非稳态扩散1.稳态扩散下的菲克第一定律(一定时间内,浓度不随时间变化dc/dt=0)单位时间内通过垂直于扩散方向的单位截面积的扩散物质流量(扩散通量)与该面积处的浓度梯度成正比即J=-D(dc/dx)其中D:扩散系数,cm2/s,J:扩散通量,g/cm2·s ,式中负号表明扩散通量的方向与浓度梯度方向相反。
可见,只要存在浓度梯度,就会引起原子的扩散。
x轴上两单位面积1和2,间距dx,面上原子浓度为C1、C2则平面1到平面2上原子数n1=C1dx ,平面2到平面1上原子数n2=C2dx若原子平均跳动频率f, dt时间内跳离平面1的原子数为n1f·dt跳离平面2的原子数为n2fdt,但沿一个方向只有1/2的几率,则单位时间内两者的差值即扩散原子净流量。
令,则上式2.扩散系数的测定:其中一种方法可通过碳在γ-Fe中的扩散来测定纯Fe的空心园筒,心部通渗碳气氛,外部为脱碳气氛,在一定温度下经过一定时间后,碳原子从内壁渗入,外壁渗出达到平衡,则为稳态扩散单位时单位面积中碳流量:A:圆筒总面积,r及L:园筒半径及长度,q:通过圆筒的碳量则:即:则:q可通过炉内脱碳气体的增碳求得,再通过剥层法测出不同r处的碳含量,作出C-lnr曲线可求得D。
第一定律可用来处理扩散中浓度不因时间变化的问3.菲克第二定律:解决溶质浓度随时间变化的情况,即dc/dt≠0两个相距dx垂直x轴的平面组成的微体积,J1、J2为进入、流出两平面间的扩散通量,扩散中浓度变化为,则单元体积中溶质积累速率为(Fick第一定律)(Fick第一定律)(即第二个面的扩散通量为第一个面注入的溶质与在这一段距离内溶质浓度变化引起的扩散通量之和)若D不随浓度变化,则故:4.Fick第二定律的解:很复杂,只给出两个较简单但常见问题的解a. 无限大物体中的扩散设:1)两根无限长A、B合?金棒,各截面浓度均匀,浓度C2>C12)两合金棒对焊,扩散方向为x方向3)合金棒无限长,棒的两端浓度不受扩散影响4)扩散系数D是与浓度无关的常数根据上述条件可写出初始条件及边界条件初始条件:t=0时, x>0则C=C1,x<0, C=C2边界条件:t≥0时, x=∞,C=C1, x=-∞, C=C2令,代入则,则菲克第二定律为即(1)令代入式(1)则有(2)若代入(2)左边化简有而积分有(3)令,式(3)为由高斯误差积分:应用初始条件t=0时x>0, c=c1,x<0, c=c2,从式(4)求得(5)则可求得(6)将(5)和(6)代入(4)有:上式即为扩散偶经过时间t扩散之后,溶质浓度沿x方向的分布公式,其中为高斯误差函数,可用表查出:根据不同条件,无限大物体中扩散有不同情况(1)B金属棒初始浓度,则(2)扩散偶焊接面处溶质浓度c0,根据x=0时,,则,若B棒初始浓度,则。
扩散方程其中一种方法可通过碳在γ-Fe中的扩散来测定纯Fe的空心园筒,心部通渗碳气氛,外部为脱碳气氛,在一定温度下经过一定时间后,碳原子从内壁渗入,外壁渗出达到平衡,则为稳态扩散单位时单位面积中碳流量:A:圆筒总面积,r及L:园筒半径及长度,q:通过圆筒的碳量则:即:则:q可通过炉内脱碳气体的增碳求得,再通过剥层法测出不同r处的碳含量,作出C-lnr曲线可求得D。
第一定律可用来处理扩散中浓度不因时间变化的问3.菲克第二定律:解决溶质浓度随时间变化的情况,即dc/dt≠0两个相距dx垂直x轴的平面组成的微体积,J1、J2为进入、流出两平面间的扩散通量,扩散中浓度变化为,则单元体积中溶质积累速率为(Fick第一定律)(Fick第一定律)(即第二个面的扩散通量为第一个面注入的溶质与在这一段距离内溶质浓度变化引起的扩散通量之和)若D不随浓度变化,则故:4.Fick第二定律的解:很复杂,只给出两个较简单但常见问题的解a. 无限大物体中的扩散设:1)两根无限长A、B合?金棒,各截面浓度均匀,浓度C2>C12)两合金棒对焊,扩散方向为x方向3)合金棒无限长,棒的两端浓度不受扩散影响4)扩散系数D是与浓度无关的常数根据上述条件可写出初始条件及边界条件初始条件:t=0时, x>0则C=C1,x<0, C=C2边界条件:t≥0时, x=∞,C=C1, x=-∞, C=C2令,代入则,则菲克第二定律为即(1)令代入式(1)则有(2)若代入(2)左边化简有而积分有(3)令,式(3)为由高斯误差积分:应用初始条件t=0时x>0, c=c1,x<0, c=c2,从式(4)求得(5)则可求得(6)将(5)和(6)代入(4)有:上式即为扩散偶经过时间t扩散之后,溶质浓度沿x方向的分布公式,其中为高斯误差函数,可用表查出:根据不同条件,无限大物体中扩散有不同情况(1)B金属棒初始浓度,则(2)扩散偶焊接面处溶质浓度c0,根据x=0时,,则,若B棒初始浓度,则。
扩散方程研究气体的扩散,液体的渗透,半导体材料中的杂质扩散等问题所满足的微分方程。
在考虑扩散问题时,需用到相应的扩散定律和质量守恒定律扩散定律 扩散物质在单位时间内沿法线方向n 流过单位面积的曲面的质量与物质浓度(,,,)C x y z t 沿法线方向n 的方向导数C n∂∂成正比。
由扩散定律,扩散物质在时段dt 内沿法线方向n 流过面积为dS 的曲面的质量dm为:(,,)C dm D x y z dS dt n∂=-⋅⋅⋅∂ 其中(,,)D x y z 为扩散系数,出现负号是由于物质总是由浓度高的一侧向浓度低的一侧渗透。
任取一封闭曲面Γ,它所围区域记为Ω,则从时刻1t 到时刻2t 进入此闭曲面的物质质量为21{(,,)}t t C m D x y z dS dt nΓ∂=∂⎰⎰⎰ 由高斯公式(,,){()()()}C C C C D x y z dS D D D dV n x x y y z z ΓΩ∂∂∂∂∂∂∂=++∂∂∂∂∂∂∂⎰⎰⎰⎰⎰ , 21{{()()()}}t t C C C m D D D dV dt x x y y z z Ω∂∂∂∂∂∂=++∂∂∂∂∂∂⎰⎰⎰⎰ 同时,物质渗透到区域Ω内,使得内部的浓度发生变化,在时间间隔11[,]t t 内,浓度由1(,,,)C x y z t 变化为2(,,,)C x y z t ,增加的物质质量为221121((,,,)(,,,))()()t t t t C C C x y z t C x y z t dV dt dV dV dt t t ΩΩΩ∂∂-==∂∂⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ 由质量守恒即有2211{{()()()}}()t t t t C C C C D D D dV dt dV dt x x y y z z t ΩΩ∂∂∂∂∂∂∂++=∂∂∂∂∂∂∂⎰⎰⎰⎰⎰⎰⎰⎰ 于是得到扩散方程()()()C C C C D D D t x x y y z z∂∂∂∂∂∂∂=++∂∂∂∂∂∂∂ 若扩散系数(,,)D x y z 为常数,则扩散方程为222222()C C C C D t x y z∂∂∂∂=++∂∂∂∂。
热扩散方程的推导与解析热扩散方程是描述热量传输的一种方程形式,它在物理、工程和生物领域都有着广泛的应用。
本文将针对热扩散方程进行推导和解析,探讨其数学性质和实际应用。
一、热扩散方程的背景与引入热扩散方程是由法国物理学家让·巴蒂斯特·约瑟夫·傅科在1822年提出的。
它描述了热量在物质中的传输行为,可以用来研究材料的热传导性质以及温度分布情况。
在推导热扩散方程之前,我们需要先引入一些基本的概念。
首先,热量的传输方式主要有三种:导热、对流和辐射。
本文主要关注导热传输,即物质内部的热量传导。
其次,我们需了解热量传导的基本原理,即热量从高温区域流向低温区域。
最后,我们引入了温度概念,温度是描述物质内部热平衡程度的指标。
二、热扩散方程的推导过程为了推导热扩散方程,我们需要先了解热量传导的基本原理。
根据能量守恒定律,热量的传输必须满足能量平衡的条件。
根据热量与温度之间的关系,可以得到热量传输的基本方程:Q = -kA(dT/dx)dt其中,Q表示热量、k表示热导率、A表示传热面积、dT/dx表示温度梯度,dt 表示时间间隔。
这个方程描述了热量传输的基本规律。
接下来,我们将上述方程进行推导。
假设物体的热传导过程遵循一维情况,并假设物体是均匀的。
那么,我们可以得到以下方程:Q = -kA(dT/dx)dt = mc(dT/dx)dt其中,m表示物体的质量、c表示物体的比热容。
通过整理和化简上述方程,可以得到:dT/dt = (k/(mc))d²T/dx²这个方程就是热扩散方程的一维形式。
它描述了温度随时间和位置变化的规律。
三、热扩散方程的解析对于热扩散方程的解析,需要根据具体的边界条件和初值条件进行求解。
下面我们以一维无边界条件的情况进行讨论。
假设初始时刻物体的温度分布为f(x),那么根据热扩散方程,我们可以得到:dT/dt = αd²T/dx²其中,α=k/(mc)表示热扩散系数。
一、扩散方程稳态扩散与非稳态扩散1.稳态扩散下的菲克第一定律(一定时间,浓度不随时间变化dc/dt=0)单位时间通过垂直于扩散方向的单位截面积的扩散物质流量(扩散通量)与该面积处的浓度梯度成正比即J=-D(dc/dx)其中D:扩散系数,cm2/s,J:扩散通量,g/cm2·s ,式中负号表明扩散通量的方向与浓度梯度方向相反。
可见,只要存在浓度梯度,就会引起原子的扩散。
x轴上两单位面积1和2,间距dx,面上原子浓度为C1、C2则平面1到平面2上原子数n1=C1dx ,平面2到平面1上原子数n2=C2dx若原子平均跳动频率f, dt时间跳离平面1的原子数为n1f·dt跳离平面2的原子数为n2fdt,但沿一个方向只有1/2的几率,则单位时间两者的差值即扩散原子净流量。
令,则上式2.扩散系数的测定:其中一种方法可通过碳在γ-Fe中的扩散来测定纯Fe的空心园筒,心部通渗碳气氛,外部为脱碳气氛,在一定温度下经过一定时间后,碳原子从壁渗入,外壁渗出达到平衡,则为稳态扩散单位时单位面积中碳流量:A:圆筒总面积,r及L:园筒半径及长度,q:通过圆筒的碳量则:即:则:q可通过炉脱碳气体的增碳求得,再通过剥层法测出不同r处的碳含量,作出C-lnr曲线可求得D。
第一定律可用来处理扩散中浓度不因时间变化的问3.菲克第二定律:解决溶质浓度随时间变化的情况,即dc/dt≠0两个相距dx垂直x轴的平面组成的微体积,J1、J2为进入、流出两平面间的扩散通量,扩散中浓度变化为,则单元体积中溶质积累速率为(Fick第一定律)(Fick第一定律)(即第二个面的扩散通量为第一个面注入的溶质与在这一段距离溶质浓度变化引起的扩散通量之和)若D不随浓度变化,则故:4.Fick第二定律的解:很复杂,只给出两个较简单但常见问题的解a. 无限大物体中的扩散设:1)两根无限长A、B合?金棒,各截面浓度均匀,浓度C2>C12)两合金棒对焊,扩散方向为x方向3)合金棒无限长,棒的两端浓度不受扩散影响4)扩散系数D是与浓度无关的常数根据上述条件可写出初始条件及边界条件初始条件:t=0时, x>0则C=C1,x<0, C=C2边界条件:t≥0时, x=∞,C=C1, x=-∞, C=C2令,代入则,则菲克第二定律为即(1)令代入式(1)则有(2)若代入(2)左边化简有而积分有(3)令,式(3)为由高斯误差积分:应用初始条件t=0时x>0, c=c1,x<0, c=c2,从式(4)求得(5)则可求得(6)将(5)和(6)代入(4)有:上式即为扩散偶经过时间t扩散之后,溶质浓度沿x方向的分布公式,其中为高斯误差函数,可用表查出:根据不同条件,无限大物体中扩散有不同情况(1)B金属棒初始浓度,则(2)扩散偶焊接面处溶质浓度c0,根据x=0时,,则,若B棒初始浓度,则。
扩散第二定律扩散第二定律是描述质点扩散过程中的扩散速率的物理定律,也被称为菲克定律。
它描述了在稳态条件下,质点由高浓度区域向低浓度区域扩散的速率是由浓度梯度决定的。
扩散是指由高浓度区域向低浓度区域自发地传播的现象。
当浓度不均匀存在时,质点会受到无规则的碰撞,从而发生随机运动。
扩散过程中,质点会由高浓度区域向低浓度区域移动,直到达到浓度均匀分布的稳态。
具体地,扩散第二定律可以用以下方程来表示:∂C/∂t = D * ∇²C其中,∂C/∂t表示浓度变化的时间导数,C表示浓度分布函数,D表示扩散系数,∇²表示拉普拉斯算子。
扩散第二定律描述了浓度分布随时间的变化规律。
扩散第二定律可以通过下面的推导得到:考虑一个一维的情况,即扩散发生在一个长度为L的导体中。
假设浓度梯度在x方向上为Grad(C),并假设扩散系数D是常数。
根据物质守恒定律,单位时间内从x处流出的物质量等于单位时间内通过x处横截面的物质量减去单位时间内通过x+Δx处横截面的物质量:J(x)ΔS - J(x+Δx)ΔS = - ∂C/∂t ΔV其中,J(x)表示单位面积横截面通过x处的物质流,ΔS表示横截面面积,ΔV表示长度为Δx的小段体积。
将上式展开并忽略二阶项,可以得到:-J(x)ΔS + [Δx∂(J(x)ΔS)/∂x] = - ∂C/∂t ΔV将J(x) = -D∂C/∂x代入上式,并取极限∆x趋近于0,可以得到:∂C/∂t = D∂²C/∂x²这就是一维情况下的扩散第二定律。
类似地,可以推导出二维和三维情况下的扩散第二定律:∂C/∂t = D(∂²C/∂x² + ∂²C/∂y²)∂C/∂t = D(∂²C/∂x² +∂²C/∂y² + ∂²C/∂z²)扩散系数D是一个与物质性质相关的常数。
它表示单位浓度梯度下的物质传递率。
一、扩散方程稳态扩散与非稳态扩散1.稳态扩散下的菲克第一定律(一定时间,浓度不随时间变化dc/dt=0)单位时间通过垂直于扩散方向的单位截面积的扩散物质流量(扩散通量)与该面积处的浓度梯度成正比即J=-D(dc/dx)其中D:扩散系数,cm2/s,J:扩散通量,g/cm2·s ,式中负号表明扩散通量的方向与浓度梯度方向相反。
可见,只要存在浓度梯度,就会引起原子的扩散。
x轴上两单位面积1和2,间距dx,面上原子浓度为C1、C2则平面1到平面2上原子数n1=C1dx ,平面2到平面1上原子数n2=C2dx若原子平均跳动频率f, dt时间跳离平面1的原子数为n1f·dt跳离平面2的原子数为n2fdt,但沿一个方向只有1/2的几率,则单位时间两者的差值即扩散原子净流量。
令,则上式2.扩散系数的测定:其中一种方法可通过碳在γ-Fe中的扩散来测定纯Fe的空心园筒,心部通渗碳气氛,外部为脱碳气氛,在一定温度下经过一定时间后,碳原子从壁渗入,外壁渗出达到平衡,则为稳态扩散单位时单位面积中碳流量:A:圆筒总面积,r及L:园筒半径及长度,q:通过圆筒的碳量则:即:则:q可通过炉脱碳气体的增碳求得,再通过剥层法测出不同r处的碳含量,作出C-lnr曲线可求得D。
第一定律可用来处理扩散中浓度不因时间变化的问3.菲克第二定律:解决溶质浓度随时间变化的情况,即dc/dt≠0两个相距dx垂直x轴的平面组成的微体积,J1、J2为进入、流出两平面间的扩散通量,扩散中浓度变化为,则单元体积中溶质积累速率为(Fick第一定律)(Fick第一定律)(即第二个面的扩散通量为第一个面注入的溶质与在这一段距离溶质浓度变化引起的扩散通量之和)若D不随浓度变化,则故:4.Fick第二定律的解:很复杂,只给出两个较简单但常见问题的解a. 无限大物体中的扩散设:1)两根无限长A、B合?金棒,各截面浓度均匀,浓度C2>C12)两合金棒对焊,扩散方向为x方向3)合金棒无限长,棒的两端浓度不受扩散影响4)扩散系数D是与浓度无关的常数根据上述条件可写出初始条件及边界条件初始条件:t=0时, x>0则C=C1,x<0, C=C2边界条件:t≥0时, x=∞,C=C1, x=-∞, C=C2令,代入则,则菲克第二定律为即(1)令代入式(1)则有(2)若代入(2)左边化简有而积分有(3)令,式(3)为由高斯误差积分:应用初始条件t=0时x>0, c=c1,x<0, c=c2,从式(4)求得(5)则可求得(6)将(5)和(6)代入(4)有:上式即为扩散偶经过时间t扩散之后,溶质浓度沿x方向的分布公式,其中为高斯误差函数,可用表查出:根据不同条件,无限大物体中扩散有不同情况(1)B金属棒初始浓度,则(2)扩散偶焊接面处溶质浓度c0,根据x=0时,,则,若B棒初始浓度,则。
扩散模型详解扩散模型是一种描述物质在空气或水中传播的数学模型。
它可以用于研究许多现实生活中的问题,例如空气污染、水污染、疾病传播等等。
二、扩散模型的基本原理扩散模型的基本原理是描述物质在空气或水中的传播过程,即物质从高浓度区域向低浓度区域扩散的过程。
扩散模型通常包括三个主要组成部分:扩散方程、初始条件和边界条件。
三、扩散方程扩散方程是扩散模型的核心。
它描述了物质浓度随时间和空间的变化规律。
扩散方程通常采用偏微分方程来表示,其中涉及到时间、空间和浓度等参数。
扩散方程可以用于不同的物质传播情况,如二维扩散、三维扩散等。
四、初始条件初始条件是指在初始时间点,物质在空间中的浓度分布情况。
通常情况下,初始条件是一个简单的函数形式,例如高斯分布函数或正弦函数等。
五、边界条件边界条件是指在模型边界上,物质浓度的变化情况。
根据实际情况,边界条件可以设置为不同的形式。
例如,可以设置边界为完全反射型、部分反射型或者零浓度型。
六、应用扩散模型广泛应用于许多领域,例如环境污染、气象预测、电子设备散热等。
在环境污染方面,扩散模型可以用于预测空气中有害物质的浓度分布情况,有助于制定相应的治理计划。
在气象预测方面,扩散模型可以用于预测雾、霾等天气现象的变化情况。
在电子设备散热方面,扩散模型可以用于计算电子设备中热量的传导和散热情况,有助于优化设备结构和散热设计。
七、总结扩散模型是一种重要的数学模型,可以用于描述物质在空气或水中的传播过程。
扩散模型包括扩散方程、初始条件和边界条件。
扩散模型在环境污染、气象预测、电子设备散热等领域有广泛的应用。