7.1.2《用坐标表示平移》同步练习题(2)及答案
- 格式:doc
- 大小:43.00 KB
- 文档页数:2
人教版数学七下7.2.2《用坐标表示平移》同步练习一、选择题1.将点A(2,1)向左平移2个单位长度得到点A′,则点A′的坐标是( )A.(2,3)B.(2,-1)C.(4,1)D.(0,1)2.在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点坐标是( )A.(1,3)B.(2,2)C.(2,4)D.(3,3)3.如图,如果将三角形ABC向左平移2格得到三角形A′B′C′,则顶点A′的位置用数对表示为( )A.(5,1)B.(1,1)C.(7,1)D.(3,3)4.如图,将三角形PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是( )A.(-2,-4)B.(-2,4)C.(2,-3)D.(-1,-3)5.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是( )A.(2,5)B.(-8,5)C.(-8,-1)D.(2,-1)6.如果一个图案沿x轴负方向平移3个单位长度,那么这个图案上的点坐标变化为( )A.横坐标不变,纵坐标减少3个单位长度B.纵坐标不变,横坐标减少3个单位长度C.横纵坐标都没有变化D.横纵坐标都减少3个单位长度7.已知线段CD是由线段AB平移得到的,点A(-1,4)的对应点为点C(4,7),则点B(-4,-1)的对应点D的坐标为( )A.(1,2)B.(2,9)C.(5,3)D.(-9,-4)8.在如图所示的单位正方形网格中,三角形ABC经过平移后得到三角形A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,则P1点的坐标为( )A.(1.4,-1)B.(1.5,2)C.(-1.6,-1)D.(2.4,1)9.点G(-2,-2),将点G先向右平移6个单位长度,再向上平移5 个单位长度,得到G′,则G′的坐标为( )A.(6,5)B.(4,5)C.(6,3)D.(4,3)10.将点A(a,-3)先向右平移2个单位长度,再向上平移4个单位长度得到点B(4,b),则a和b的值分别为( )A.(1,4)B.(4,1)C.(2,1)D.(1,2)二、填空题11.在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是,A1的坐标是 .12.将点A(-3,1)向右平移5个单位长度,再向上平移6个单位长度,可以得到对应点A′的坐标为 .13.在平面直角坐标系中,三角形ABC的三个顶点的横坐标保持不变,纵坐标都减去2个单位长度,则得到的新三角形与原三角形相比向平移了个单位长度.14.已知三角形ABC,若将三角形ABC平移后,得到三角形A′B′C′,且点A(1,0)的对应点A′的坐标是(-1,0),则三角形ABC是向平移个单位得到三角形A′B′C′.15.在平面直角坐标系中,已知线段AB的两个端点的坐标分别是A(4,-1)、B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为 .三、作图题16.如图所示,一小船,将其向左平移6个单位长度,再向下平移5个单位长度,试确定A,B,C,D,E,F,G平移后对应点的坐标并画出平移后的图形.17.如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系xOy,按要求解答下列问题:(1)写出△ABC三个顶点的坐标;(2)画出△ABC向右平移6个单位后的图形△A1B1C1;(3)求△ABC的面积.四、解答题18.如图所示,三角形ABC三点坐标分别为A(-3,4),B(-4,1),C(-1,2).(1)说明三角形ABC平移到三角形A1B1C1的过程,并求出点A1,B1,C1的坐标;(2)由三角形ABC平移到三角形A2B2C2又是怎样平移的?并求出点A2,B2,C2的坐标.19.如图,三角形ABC是由三角形A1B1C1平移后得到的,三角形ABC中任意一点P(x,y)经平移后对应点为P1(x-3,y-5),求A1、B1、C1的坐标.。
人教版七年级下册数学同步课时作业第七章平面直角坐标系7.2坐标方法的简单应用7.2.2用坐标表示平移1. 在平面直角坐标系中,点A'(2,-2)可以由点A(-2,3)经过两次平移得到,则正确的是()A.先向左平移4个单位长度,再向上平移5个单位长度B.先向右平移4个单位长度,再向上平移5个单位长度C.先向左平移4个单位长度,再向下平移5个单位长度D.先向右平移4个单位长度,再向下平移5个单位长度2. 将点A(-2,-3)先向右平移3个单位长度,再向下平移2个单位长度得到点B,则点B所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限3. 已知三角形ABC的三个顶点坐标分别是(-2,1),(2,3),(-3,-1),把三角形ABC移动到一个确定位置,则点A,B,C所对应的顶点坐标可能是()A.(0,3),(0,1),(-1,-1)B.(-3,2),(3,2),(-4,0)C.(1,-2),(3,2),(-1,-3)D.(-1,3),(3,5),(-2,1)4. 如图,在平面直角坐标系中,点A,B的坐标分别为A(0,6),B(-3,-3).将线段AB平移后,点A的对应点为A'(10,10),则点B的对应点B'的坐标为()A.(10,10)B.(-3,-3)C.(-3,3)D.(7,1)5. 在平面直角坐标系中,点P(1,2)平移后的坐标是P'(-3,3).若按照同样的规律平移其他点,则以下各点的平移变换中符合此种规律的是()A.(3,2)→(4,-2)B.(-1,0)→(-5,-4)C.(1.2,5)→(-3.2,6)D.(2.5,-13)→(-1.5,23)6. 如图,将线段AB平移到线段CD的位置,则a+b的值为()A.4B.3C.0D.-57. 如图是由边长为1的小正方形组成的网格图,点A,B,C都在格点上,若将线段AB沿BC方向平移,使点B与点C重合,则线段AB扫过的面积为()A.11B.10C.9D.88. 将画在透明胶片上的平行四边形ABCD放在如图所示的平面直角坐标系内,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A'(4,-2)处,则此平移是()A.先向右平移5个单位长度,再向下平移1个单位长度B.先向右平移5个单位长度,再向下平移3个单位长度C.先向右平移4个单位长度,再向下平移4个单位长度D.先向右平移4个单位长度,再向下平移3个单位长度9. 将点P(-3,y)向上平移3个单位长度,向左平移2个单位长度后得到点Q(x,-1),则xy的值为.10. A,B两点的坐标分别为(2,0),(0,2),若将线段AB平移至A1B1,点A1,B1的坐标分别为(1,a),(b,6),则b a =.11. 如图,将线段AB平移,使点B平移到点C,则平移后点A的坐标为.12. 如图,把“笑脸”放在平面直角坐标系中,已知左眼的坐标是(-2,3),嘴唇的坐标为(-1,1),则将此“笑脸”向右平移3个单位长度后,右眼的坐标是.13. 点A,B的坐标分别为(-7,0),(0,-6).若将线段AB平移到A1B1,点A1,B1的坐标分别为(-2,a),(b,5),则a+b的平方根是.14. 如图,在平面直角坐标系xOy中,将点A(2,4)向右平移4个单位长度,再向下平移2个单位长度得到点B.(1)标出点B的位置,并写出点B的坐标;(2)求出三角形OAB的面积.15. 已知三角形ABC与三角形A'B'C'在平面直角坐标系中的位置如图所示.(1)分别写出点B,B'的坐标:B,B';(2)若P(a,b)是三角形ABC内部一点,则平移后三角形A'B'C'内的对应点P'的坐标为;(3)求三角形ABC的面积.16. 如图,四边形ABCD的各顶点的坐标分别为A(-2,0),B(3,0),C(2,3),D(-1,2).(1)若各顶点的纵坐标不变,横坐标增加3,得到点A1,B1,C1,D1,写出点A1,B1,C1,D1的坐标;(2)若将(1)中点A1,B1,C1,D1依次连接起来,得到四边形A1B1C1D1,则四边形A1B1C1D1是由原四边形ABCD如何变化得到的?(3)若各顶点的横坐标不变,纵坐标增加3,得到的四边形A2B2C2D2是由原四边形ABCD如何变化得到的?参考答案1. D2. D3. D4. D5. D6. A7. B8. C9. 2010. 111. (-1,1)12. (3,3)13. ±4 14. 解:(1)图略;点B的坐标为(6,2).(2)S三角形OAB=6×4-12×4×2-12×4×2-12×6×2=10.15. 解:(1)(3,-4) (-2,0) (2)(a-5,b+4)(3)S三角形ABC=4×4-12×2×4-12×4×1-12×2×3=7.16. 解:(1)点A1(1,0),B1(6,0),C1(5,3),D1(2,2).(2)四边形A1B1C1D1是由原四边形ABCD向右平移3个单位长度得到的.(3)四边形A2B2C2D2是由原四边形ABCD向上平移3个单位长度得到的.。
绝密★启用前用坐标表示平移班级:姓名:一、单项选择题1.已知点A( 5,﹣ 1),现将点 A 沿 x 轴正方向挪动 1 个单位长度后抵达点B,那么点 B 的坐标是()A.( 6,﹣ 1)B.( 5,0)C.(4,﹣ 1)D.(﹣ 5, 1)2.将点A 2, 1 向左平移 3 个单位长度,在向上平移4 个单位长度获得点B,则点B的坐标是()A.5,3B.5,5C.1, 5D.1,33.如图,已知点,的坐标分别为( 3,0 ),( 0,4),将线段平移到,若点的对应点的坐标为( 4,2 ),则的对应点的坐标为()A.( 1,6)B.( 2,5)C.( 6, 1)D.( 4, 6)4.将某图形的各极点的横坐标保持不变,纵坐标减去3,可将该图形()A.横向向右平移3个单位B.横向向左平移3个单位C.纵向向上平移3个单位D.纵向向下平移3个单位5.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A.向右平移了 3 个单位B.向左平移了 3 个单位C.向上平移了 3 个单位D.向下平移了 3 个单位6.在内的随意一点经过平移后的对应点为,已知在经过此次平移后对应点的坐标为,则的值为()A.B.C.D.7.已知线段AB 在平面直角坐标系中,A, B 坐标分别为( m, n),( 2, 3),将线段AB 平移至A1B1, A1, B1坐标为( n-1,3-m ),( -1, -2),则 A 点的坐标是()A.( -5, 3)B.( -3, 5)C.( 3, -5)D.( 5, 3)8.如图,将点 A 先向右平移 3 个单位长度,在向下平移 5 个单位长度,获得A’;将点 B 先向下平移5 个单位长度,再向右平移 4 个单位长度,获得B’,则 A’与 B’相距()A. 4 个单位长度B. 5 个单位长度C.6 个单位长度D.7 个单位长度二、填空题9.在平面直角坐标系中,将点A(5,﹣8)向左平移获得点B( x+3,x﹣ 2),则点 B 的坐标为 _____.10.如图,将直角三角形ABC 沿 BC 方向平移必定距离获得三角形DEF ,若AB 8 , BE 3 ,DG 2 则图中暗影部分面积为_____.11.在平面直角坐标系中,将点Q 向下平移 4 个单位长度后获得点2, 6 ,则点 Q 的坐标是__________.12.如图,在△AOB 中, AO=AB,在直角坐标系中,点 A 的坐标是(2,2),点 O 的坐标是( 0,0),将△AOB 平移获得△ A′O′,B使′得点 A′在 y 轴上.点 O′、 B′在 x 轴上.则点 B'的坐标是 ______三、解答题13.如图,在平面直角坐标系中,△ ABC的三个极点的坐标分别为:A( -1, 2), B(-2, -1), C (2,0).( 1)作图:将△ ABC先向右平移4 个单位,再向上平移 3 个单位,则获得△ A1B1C1,作出△A1B1C1;(不要求写作法)(2)写出以下点的坐标: A1______ ;B1______; C1______.(3)求△ ABC 的面积 .一、单项选择题1.在平面直角坐标系中,将点A(﹣ 1,﹣ 2)向右平移 3 个单位长度获得点B,则点 B 对于 x 轴的对称点 B′的坐标为()A.(﹣ 3,﹣ 2)B.( 2, 2)C.(﹣ 2, 2)D.( 2,﹣ 2)2.在直角坐标系中 ,某三角形三个极点的横坐标不变,纵坐标都增添 2 个单位长度 ,则所得三角形与原三角形对比()A.形状不变 ,面积扩大 2 倍B.形状不变 ,地点向上平移 2 个单位长度C.形状不变 ,地点向右平移 2 个单位长度D.以上都不对3.将三角形 ABC的三个极点的纵坐标都加上3,横坐标不变,表示将该三角形()A.沿 x 轴的正方向平移了3个单位长度B.沿 x 轴的负方向平移了3个单位长度C.沿 y 轴的正方向平移了3个单位长度D.沿 y 轴的负方向平移了3个单位长度4.如图,已知一个直角三角板的直角极点与原点重合,另两个极点A, B 的坐标分别为(-1, 0),( 0, 3 ).现将该三角板向右平移使点 A 与点 O 重合,获得△ OCB’,则点 B 的对应点B’的坐标是()A.(1,0)B.(3, 3 )C.(1,3)D.(-1, 3 )5.如图,在 x 轴的正半轴和与x 轴平行的射线上各搁置一块平面镜,发光点(0,1)处沿如下图方向发射一束光,每当遇到镜面时会发生反射(反射时反射角等于入射角,认真看光芒与网格线和镜面的夹角),当光芒第20 次遇到镜面时的坐标为()A.( 60,0)B.( 58,0 )C.( 61,3)D.( 58,3)6.在平面直角坐标系中,线段CF是由线段AB 平移获得的;点A( -1,4)的对应点为C( 4, 1);则点 B( a, b)的对应点 F 的坐标为()A.( a+3, b+5)B.( a+5, b+3)C.( a-5,b+3)D.( a+5,b-3)7.将某图形的横坐标都减去2,纵坐标不变,则该图形()A.向右平移 2 个单位B.向左平移 2 个单位C.向上平移 2 个单位D.向下平移 2 个单位8.点 A(-3, -5)向右平移 2 个单位,再向下平移 3 个单位到点B,则点 B 的坐标为()A.(-5,-8)B. (-5,-2)C. (-1,-8)D. (-1,-2)二、填空题9.如图,△ ABC的极点都在网格点上,将△ ABC向右平移 3 个单位长度,再向上平移 2 个单位长度,则平移后获得的△ A′B′三C个′极点 A′、 B′、C′的坐标分别是 _____.10.如图,线段AB 经过平移获得线段A'B' ,此中点A,B的对应点分别为点A', B' ,这四个点都在格点上,若线段AB 上有一个点P a,b ,则点P在A'B'上的对应点P'的坐标为______.11.若将P 1,m向右平移 2 个单位长度后,再向上平移 1 个单位长度获得点Q n,3 ,则点 m,n的实质坐标是 ______ .12.线段 CD 是由线段 AB 平移获得的,此中点 A(﹣ 1,4)平移到点 C(﹣ 3, 2),点 B( 5,﹣ 8)平移到点 D,则 D 点的坐标是 ________.三、解答题13.如图,△ ABC在直角坐标系中,(1)请写出△ ABC各点的坐标 .(2)求出△ ABC的面积 .(3)若把△ ABC向上平移 2 个单位,再向右平移 2 个单位得△ A′B′,C在′图中画出△ ABC 变化地点。
7.2.2用坐标表示平移一、选择题1.在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是( )A.(3,1) B.(-1,1) C.(1,3) D.(1,-1)2.在平面直角坐标系中,将点P(-3,2)向下平移4个单位得到点P′,则点P′所在的象限为( ) A.第一象限B.第二象限C.第三象限D.第四象限3.在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是( )A.(-1,1) B.(3,1) C.(4,-4) D.(4,0)4.如图,把三角形ABC先向右平移3个单位,再向上平移2个单位得到三角形DEF,则顶点C(0,-1)的对应点坐标为( )A.(0,0) B.(1,2) C.(1,3) D.(3,1)5.如图,点A(2,1),将线段OA先向上平移2个单位长度,再向左平移3个单位长度,得到线段O′A′,则点A的对应点A′的坐标是( )A.(-3,2) B.(0,4) C.(-1,3) D.(3,-1)6.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为( )A.(1,3) B.(5,1) C.(1,3)或(3,5) D.(1,3)或(5,1)7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,3).现将该三角板向右平移使点A与点O重合,得到三角形OCB′,则点B的对应点B′的坐标是( )A.(1,0) B.(3,3) C.(1,3) D.(-1,3)二、填空题8.点N(-1,3)可以看作由点M(-1,-1)向平移个单位所得到的.9.已知点M(3a-9,1-a),将点M向左平移3个单位长度后落在y轴上,则a=. 10.如图,三角形OAB的顶点A,B的坐标分别为(3,5),(4,0),把三角形OAB沿x轴向右平移得到三角形CDE.如果CB=1,那么点D的坐标为.11.如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点A1(1,1);把点A1向上平移2个单位,再向左平移2个单位,得到点A2(-1,3);把点A2向下平移3个单位,再向左平移3个单位,得到点A3(-4,0);把点A3向下平移4个单位,再向右平移4个单位,得到点A4(0,-4)……按此做法进行下去,则点A10的坐标为.12.如图①是一个斜角坐标系,水平放置的轴称为横轴(记作a轴),斜向放置的轴称为斜轴(记作b轴).类似于直角坐标系,对于斜角坐标平面内的任意一点P,过点P分别作b轴、a轴的平行线交a轴、b轴于点M,N,若点M,N分别在a轴、b轴上所对应的实数为m与n,则称有序实数对(m,n)为点P的坐标.如图②,三角形ABC中,A(1,4),C(3,5),如果平移三角形ABC 得到三角形A′B′C′,使点A′与点C重合,在三角形ABC内部,有一任意点D(x,y),则平移后点D的对应点D′的坐标为________________.三、解答题13.如图,三角形ABC的顶点坐标分别为A(-2,3),B(-3,0),C(-1,-1).将三角形ABC 平移后得到三角形A′B′C′,且点A的对应点是A′(2,3),点B,C的对应点分别是B′,C′.(1)点A,A′之间的距离是;(2)请在图中画出三角形A′B′C′.14.如图,已知坐标平面内的三个点A(1,3),B(3,1),O(0,0).(1)平移三角形ABO至三角形A1B1O1,当点A1和点B重合时,求点O1的坐标;(2)平移三角形ABO至三角形A2B2O2,需要至少向下平移超过单位,并且至少向左平移超过个单位,才能使三角形A2B2O2位于第三象限.15.在平面直角坐标系中,三角形A′B′C′是由三角形ABC平移后得到的,已知三角形ABC内部的一点P(x0,y0)经平移后的对应点为P′(x0+5,y0-2).(1)三角形A′B′C′是由三角形ABC如何平移得到的?(2)若已知A(-1,2),B(-4,5),C(-3,0),请写出A′,B′,C′的坐标;(3)在(2)的条件下,求三角形A′B′C′的面积.16.如图,第一象限内有两点P(m-3,n),Q(m,n-2),将线段PQ平移,使点P,Q分别落在两条坐标轴上,求点P平移后的对应点的坐标.17.如图,在平面直角坐标系中,A(1,4),B(3,2),O为坐标原点,且OC∥AB,OC=AB.试用平移的知识求C点的坐标,并求四边形ABCO的面积.参考答案一、选择题1.在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是( A)A.(3,1) B.(-1,1) C.(1,3) D.(1,-1)2.在平面直角坐标系中,将点P(-3,2)向下平移4个单位得到点P′,则点P′所在的象限为( C) A.第一象限B.第二象限C.第三象限D.第四象限3.在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是( A)A.(-1,1) B.(3,1) C.(4,-4) D.(4,0)4.如图,把三角形ABC先向右平移3个单位,再向上平移2个单位得到三角形DEF,则顶点C(0,-1)的对应点坐标为( D)A.(0,0) B.(1,2) C.(1,3) D.(3,1)5.如图,点A(2,1),将线段OA先向上平移2个单位长度,再向左平移3个单位长度,得到线段O′A′,则点A的对应点A′的坐标是( C)A.(-3,2) B.(0,4) C.(-1,3) D.(3,-1)6.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为( D)A.(1,3) B.(5,1) C.(1,3)或(3,5) D.(1,3)或(5,1)7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,3).现将该三角板向右平移使点A与点O重合,得到三角形OCB′,则点B的对应点B′的坐标是( C)A.(1,0) B.(3,3) C.(1,3) D.(-1,3)二、填空题8.点N(-1,3)可以看作由点M(-1,-1)向平移个单位所得到的.【答案】上 49.已知点M(3a-9,1-a),将点M向左平移3个单位长度后落在y轴上,则a=. 【答案】410.如图,三角形OAB的顶点A,B的坐标分别为(3,5),(4,0),把三角形OAB沿x轴向右平移得到三角形CDE.如果CB=1,那么点D的坐标为.【答案】(6,5)11.如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点A1(1,1);把点A1向上平移2个单位,再向左平移2个单位,得到点A2(-1,3);把点A2向下平移3个单位,再向左平移3个单位,得到点A3(-4,0);把点A3向下平移4个单位,再向右平移4个单位,得到点A4(0,-4)……按此做法进行下去,则点A10的坐标为.【答案】(-1,11)12.如图①是一个斜角坐标系,水平放置的轴称为横轴(记作a轴),斜向放置的轴称为斜轴(记作b轴).类似于直角坐标系,对于斜角坐标平面内的任意一点P,过点P分别作b轴、a轴的平行线交a轴、b轴于点M,N,若点M,N分别在a轴、b轴上所对应的实数为m与n,则称有序实数对(m,n)为点P的坐标.如图②,三角形ABC中,A(1,4),C(3,5),如果平移三角形ABC 得到三角形A′B′C′,使点A′与点C重合,在三角形ABC内部,有一任意点D(x,y),则平移后点D的对应点D′的坐标为________________.【答案】(x+2,y+1)三、解答题13.如图,三角形ABC的顶点坐标分别为A(-2,3),B(-3,0),C(-1,-1).将三角形ABC 平移后得到三角形A′B′C′,且点A的对应点是A′(2,3),点B,C的对应点分别是B′,C′.(1)点A,A′之间的距离是;(2)请在图中画出三角形A′B′C′.解:(1)4(2)如图所示,三角形A′B′C′即为所求.14.如图,已知坐标平面内的三个点A(1,3),B(3,1),O(0,0).(1)平移三角形ABO至三角形A1B1O1,当点A1和点B重合时,求点O1的坐标;(2)平移三角形ABO至三角形A2B2O2,需要至少向下平移超过单位,并且至少向左平移超过个单位,才能使三角形A2B2O2位于第三象限.解:(1)点O1的坐标为(2,-2).(2)3 315.在平面直角坐标系中,三角形A′B′C′是由三角形ABC平移后得到的,已知三角形ABC内部的一点P(x0,y0)经平移后的对应点为P′(x0+5,y0-2).(1)三角形A′B′C′是由三角形ABC如何平移得到的?(2)若已知A(-1,2),B(-4,5),C(-3,0),请写出A′,B′,C′的坐标;(3)在(2)的条件下,求三角形A′B′C′的面积.解:(1)三角形ABC先向右平移5个单位长度,再向下平移2个单位长度(或先向下平移2个单位长度,再向右平移5个单位长度)得到三角形A′B′C′.(2)A′(4,0),B′(1,3),C′(2,-2).(3)将三角形A ′B ′C ′补成如图所示的长方形,则S 三角形A ′B ′C ′=3×5-12×5×1-12×2×2-12×3×3=6.16.如图,第一象限内有两点P (m -3,n ),Q (m ,n -2),将线段PQ 平移,使点P ,Q 分别落在两条坐标轴上,求点P 平移后的对应点的坐标.解:设平移后点P ,Q 的对应点分别是P ′,Q ′.分两种情况:①P ′在y 轴上,Q ′在x 轴上,则P ′的横坐标为0,Q ′的纵坐标为0.∵0-(n -2)=-n +2,∴n -n +2=2.∴点P 平移后的对应点的坐标是(0,2).②P ′在x 轴上,Q ′在y 轴上,则P ′的纵坐标为0,Q ′的横坐标为0.∵0-m =-m ,∴m -3-m =-3.∴点P 平移后的对应点的坐标是(-3,0).综上可知,点P 平移后的对应点的坐标是(0,2)或(-3,0).17.如图,在平面直角坐标系中,A (1,4),B (3,2),O 为坐标原点,且OC ∥AB ,OC =AB .试用平移的知识求C 点的坐标,并求四边形ABCO 的面积.解:∵把A 点向左平移1个单位长度,再向下平移4个单位长度可得到原点O (0,0),又∵OC ∥AB ,OC =AB ,∴OC 可由AB 向左平移1个单位长度,再向下平移4个单位长度得到.∴点B (3,2)向左平移1个单位长度,再向下平移4个单位长度得到点C (2,-2).分别过A ,C 作x 轴的平行线,过B 作y 轴的平行线,交点为D ,E ,F ,G ,如图所示.S 四边形ABCO =S 长方形DEFG-S 三角形AOD -S 三角形COE -S 三角形BCF -S 三角形ABG =3×6-12×1×4-12×2×2-12×1×4-12×2×2=10.。
第七章平面直角坐标系7.2.2 用坐标表示平移(2)一、新知探究坐标系下图形的平移:如图,三角形ABC三个顶点的坐标是A(4,3)、B(3,1)、C(1,2).(1)若将三角形ABC向左平移6个单位,写出A、B、C的对应点的坐标,并画出平移后的三角形。
(2)若将三角形ABC向下平移5个单位,写出A、B、C对应顶点的坐标,并画出平移后的三角形。
总结:一般地,在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向__ __(或向__ __)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数b,相应的新图形就是把原图形向__ __(或向_ ___)平移b个单位长度.简记:横坐标加a,向__ __平移a个单位长度;横坐标减a,向__ __平移a个单位长度;纵坐标加b,向__ __平移b个单位长度;纵坐标减b,向__ __平移b个单位长度.二、例题点拨例1:在直角三角形ABO中,∠OAB=90°,且点B的坐标为(4,2)。
(1)画出直角三角形ABO向下平移3个单位后的三角形A1B1O1;(2)写出A1,B1,O1的坐标;(3)求三角形A1B1O1的面积。
例2:如图,△A′B′C′是由△ABC平移后得到的,已知△ABC中一点P(x0,y0)经平移后对应点为P′(x0+5,y0﹣2).(1)已知A(﹣1,2),B(﹣4,5),C(﹣3,0),请写出A′、B′、C′的坐标;(2)试说明△A′B′C′是如何由△ABC平移得到的;(3)求出△A′B′C′的面积。
三、课堂练习1、如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)求△ABC的面积。
第7章平面直角坐标系7.2坐标方法的简单应用-7.2.2用坐标表示平移班级:姓名:知识点1用坐标表示点的平移1.将点A(2,1)向左平移2个单位长度得到点A',则点A'的坐标是()A.(0,1)B.(2,-1)C.(4,1)D.(2,3)2.把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到B,点B的坐标是()A.(-5,3)B.(1,3)C.(1,-3)D.(-5,-1)3.点P(2,-3)先向左平移4个单位长度,再向上平移1个单位长度,得到点P'的坐标是.4.将点A(-3,-2)先沿y轴向上平移5个单位长度,再沿x轴向左平移4个单位长度得到点A',则点A'的坐标是.5.将点A(1,-3)向右平移2个单位长度,再向下平移2个单位长度后得到点B(a,b),则ab=.6.(1)如图,将点A向右平移几个单位长度可得到点B()A.3个单位长度B.4个单位长度C.5个单位长度D.6个单位长度(2)将点A向下平移5个单位长度后,将重合于图中的()A.点CB.点FC.点DD.点E(3)将点A先向右平移3个单位长度,再向下平移5个单位长度,得到A',将点B先向下平移5个单位长度,再向右平移3个单位长度,得到B',则A'与B'相距()A.4个单位长度B.5个单位长度C.6个单位长度D.7个单位长度(4)点G(-2,-2),将点G先向右平移6个单位长度,再向上平移5个单位长度,得到G',则G'的坐标为()A.(6,5)B.(4,5)C.(6,3)D.(4,3)7.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A.(2,5)B.(-8,5)C.(-8,-1)D.(2,-1)知识点2用坐标表示图形的平移8.将一个三角形的三个顶点的坐标分别向上平移1个单位长度,再向左平移4个单位长度所得点的坐标分别是(2,1),(-1,3),(4,-5),则平移前三个顶点的坐标分别是()A.(6,0),(3,2),(8,-6)B.(-1,-5),(2,-7),(3,-1)C.(1,5),(2,-7),(-3,1)D.(-1,5),(2,-7),(-3,1)9.如图,将三角形PQR向右平移2个单位长度,再向下平移3个单位长度,则点P平移后的坐标是()A.(-2,-4)B.(-2,4)C.(2,-3)D.(-1,-3)10.如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(-4,2),(-2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是.11.如图,三角形OAB 的顶点B 的坐标为(4,0),把三角形OAB 沿x 轴向右平移得到三角形CDE.如果CB=1,那么OE 的长为.12.如图,A,B 的坐标分别为(1,0),(0,2),若将线段AB 平移至A 1B 1,A 1,B 1的坐标分别为(2,a),(b,3),则a+b=.13.如图,梯形A'B'C'D'可以由梯形ABCD 经过怎样的平移得到?对应点的坐标有什么变化?综合点学科内综合14.如图,点A,B 的坐标分别为(1,2),(4,0),将三角形AOB 沿x 轴向右平移,得到三角形CDE,已知DB=1,则点C 的坐标为.15.如图,三角形A'B'C'是由三角形ABC 平移后得到的,已知三角形ABC 中一点P(x 0,y 0)经平移后对应点为P'(x 0+5,y 0-2).(1)已知A(-1,2),B(-4,5),C(-3,0),请写出A',B',C'的坐标;(2)试说明三角形A'B'C'是如何由三角形ABC平移得到的;(3)请直接写出三角形A'B'C'的面积为_____.拓展训练拓展点坐标中的规律探究16.如图,三角形DEF 是三角形ABC 经过某种变换后得到的图形,分别写出点A 与点D,点B 与点E,点C 与点F 的坐标,并观察它们的关系,如果三角形ABC 中任一点M 的坐标(x,y),那么它的对应点N的坐标是什么?第7章平面直角坐标系7.2坐标方法的简单应用-7.2.2用坐标表示平移答案与点拨1.A(点拨:点A'的横坐标为2-2=0,纵坐标为1,∴A'的坐标为(0,1).故选A.)2.B(点拨:∵A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到B,∴1+2=3,-2+3=1;点B的坐标是(1,3).故选B.)3.(-2,-2)(点拨:点(2,-3)向左平移4个单位长度,横坐标为:2-4=-2,向上平移1个单位长度,纵坐标为:-3+1=-2,∴点P'(-2,-2).)4.(-7,3)(点拨:点A(-3,-2)先沿y轴向上平移5个单位长度,再沿x轴向左平移4个单位长度得到点A',∴A'的坐标是(-3-4,-2+5),即(-7,3).)5.-15(点拨:将点A向右平移2个单位长度,纵坐标不变,横坐标增加2,此时点的坐标为(3,-3),再向下平移2个单位长度,横坐标不变,纵坐标减2,此时的坐标为(3,-5),即点B坐标为(3,-5),∴a=3,b=-5,∴ab=3×(-5)=-15.)6.(1)B(2)D(3)A(点拨:先分别找到A',B'的位置,再观察它们之间的距离.)(4)D7.D(点拨:逆向思考,把点(-3,2)先向右平移5个单位长度,再向下平移3个单位长度可得到A点坐标.)8.A(点拨:将平移后各点横坐标加4,纵坐标减1,可得到平移前的点的坐标分别是:(2+4,1-1),(-1+4,3-1),(4+4,-5-1),即(6,0),(3,2),(8,-6).)9.A(点拨:由图形知点P的坐标为P(-4,-1),由平移规律得平移后P点的坐标是(-4+2,-1-3)即(-2,-4).故选A.)10.(5,4)(点拨:左眼坐标由(-4,2)到(3,4)是向右平移7个单位长度,又向上平移2个单位长度,右眼由(-2,2)作同样的平移得坐标为(5,4).)11.7(点拨:因为三角形OAB的顶点B的坐标为(4,0),所以OB=4,所以OC=OB-CB=4-1=3,因此平移的距离为3.因为把三角形OAB沿x轴向右平移得到三角形CDE,所以CE=OB=4,所以OE=OC+CE=3+4=7.)12.2(点拨:∵A,B的坐标分别为(1,0),(0,2),若将线段AB平移至A1B1,A1,B1的坐标分别为(2,a),(b,3),可知线段AB向右平移了1个单位长度,向上平移了1个单位长度,则a=0+1=1,b=0+1=1,则a+b=1+1=2.)13.可由ABCD向左平移7个单位长度,向上平移7个单位长度得到.各对应点的坐标横坐标减7,纵坐标加7.14.(4,2)(点拨:O与D是一对对应点,因此平移距离为OD=OB-DB=4-1=3,因此平行规律为向右平移3个单位长度,所以A(1,2)的对应点C的坐标为(4,2).)15.(1)A'(4,0),B'(1,3),C'(2,-2)(2)三角形ABC向右平移5个单位长度,再向下平移2个单位长度(或先下平移2个单位长度,再向右平移5个单位长度)即可得到三角形A'B'C'.(3)616.A(4,3),D(-4,-3),B(3,1),E(-3,-1),C(1,2),F(-1,-2);N(-x,-y)。
人教版七年级下第七章平面直角坐标系(用坐标表示平移)同步练习题学校:___________姓名:___________班级:___________考号:___________一、填空题1.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.2.如图,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数t ,将得到的点先向右平移a 个单位,再向上平移b 个单位(a >0,b >0),得到正方形A B C D ''''及其内部的点,其中点A ,B 的对应点分别为A ',B '. ①a =__,b =__;①已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F '与点F 重合,则点F 的坐标是 __.3.如图,平行四边形ABCD 的顶点A ,B ,C 的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D 的位置用数对表示为 ________.4.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC 的三个顶点均在格点(网格线的交点)上.以原点O 为位似中心,画出111A B C △,使它与△ABC 的相似比为2,且它与△ABC 在位似中心O 的两侧,并写出点B 的对应点1B 的坐标是______.二、单选题5.如图,平移①ABC 到①BDE 的位置,且点D 在边AB 的延长线上,连接EC ,CD ,若AB =BC ,那么在以下四个结论:①四边形ABEC 是平行四边形;①四边形BDEC 是菱形;①AC DC ⊥;①DC 平分①BDE ,正确的有( )A .1个B .2个C .3个D .4个6.将点P (﹣5,4)先向右平移4个单位长度,再向下平移2个单位长度后的坐标是( ) A .(﹣1,6)B .(﹣9,6)C .(﹣1,2)D .(﹣9,2)7.如图,将ABC 先向右平移3个单位,再绕原点O 旋转180︒,得到A B C ''',则点A 的对应点A '的坐标是( )A .(2,0)B .(2,3)--C .(1,3)--D .(3,1)--8.已知1y =4x y +的平方根为( )A B .C .2 D .±29.在平面直角坐标系中,将四边形格点的横坐标都减去2,纵坐标保持不变,所得图形与原图形相比( ) A .向右平移了2个单位 B .向左平移了2个单位 C .向上平移了2个单位D .向下平移了2个单位10.在平面直角坐标系中,将点A ()21,m 沿着y 轴的正方向向上平移()24+m 个单位后得到点B .有四个点E ()21,-m , F ()224,+m m , M ()21,3+m , N ()21,4m ,一定在线段AB 上的是( ) A .点EB .点FC .点MD .点N11.如图,在平面直角坐标系中,点M 到y 轴的距离为2,到x 轴的距离比到y 轴距离的2倍少1,则点M 的坐标为( )A .()3,2B .()3,2-C .()2,3-D .()2,3- 12.将点P (3,4)向下平移1个单位长度后,落在函数ky x=的图象上,则k 的值为( ) A .12k =B .10k =C .9k =D .8k13.A B C '''∆是由ABC ∆平移得到的,点()1,4A -的对应点为()1,7A ',点()1,1B 的对应点为()3,4B ',则点()4,1C --的对应点C '的坐标为( )A .()6,2-B .()6,4--C .()2,2-D .()2,4--三、解答题14.如图,能否通过平移、轴对称或旋转,由ABC 得到DEC ?15.阅读下列材料:问题:如图(1),已知正方形ABCD中,E、F分别是BC、CD边上的点,且①EAF=45°.解决下列问题:(1)图(1)中的线段BE、EF、FD之间的数量关系是______.(2)图(2),已知正方形ABCD的边长为8,E、F分别是BC、CD边上的点,且①EAF =45°,AG①EF于点G,求①EFC的周长.参考答案:1.(8,-4)【分析】直接利用平移中点的变化规律求解即可.【详解】解:原来点的横坐标是5,纵坐标是-2,向右平移3个单位,再向下平移2个单位得到新点的横坐标是5+3=8,纵坐标为-2-2=-4. 则点B 的坐标为(8,-4). 故答案为:(8,-4).【点睛】本题主要考查了坐标与图形变化-平移,平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加. 2.12##0.5 2 (1,4)【分析】首先根据点A 到A ',B 到B '的点的坐标可得方程组3102t a t b -+=-⎧⎨⨯+=⎩,3202t a t b +=⎧⎨⨯+=⎩,解可得t 、a 、b 的值,设F 点的坐标为(x ,y ),点F '点F 重合可列出方程组,再解可得F 点坐标.【详解】解:①由点A 到A ',可得方程组3102t a t b -+=-⎧⎨⨯+=⎩; 由B 到B ',可得方程组3202t a t b +=⎧⎨⨯+=⎩,解得12122t a b ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,故答案为:12,2①设F 点的坐标为(x ,y ),点F '点F 重合得到方程组1122122x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得14x y =⎧⎨=⎩,即F (1,4).故答案为:(1,4).【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,根据点的坐标列出方程组. 3.(8,6)【分析】根据平行四边形的性质:对边平行且相等,得出点的平移方式,解答即可. 【详解】解:∵平行四边形ABCD 的顶点A ,B ,C 的位置用数对分别表示为(4,6),(1,3),(5,3),由A ,B 坐标可得B 向右平移3个单位,向上平移3个单位,可以得到点A ①点D 可由点C 向右平移3个单位,向上平移3个单位得到, ∵点C 坐标为(5,3) 则点D 坐标为(8,6); 故答案为:(8,6).【点睛】此题考查了坐标与图形,涉及了平行四边形的性质以及点的平移,掌握平行四边形的性质以及点的平移规律是解题的关键. 4.图见解析,点1B 的坐标是(-4,-2)【分析】直接利用位似图形的性质画出三角形顶点的对应点,再顺次连接即可画出图形,根据点1B 的位置写出坐标即可.【详解】解:如图所示:111A B C △就是所要求画的,点B 的对应点1B 的坐标是(-4,-2), 故答案为:(-4,-2).【点睛】此题主要考查了位似变换,正确得出对应点位置是解题关键. 5.D【分析】利用平移的性质、平行四边形的判定、菱形的判定与性质逐项判断即可. 【详解】解:①平移①ABC 到①BDE 的位置,且点D 在边AB 的延长线上, ①AD CE AC BE ∥,∥, ①四边形ABEC 是平行四边形, 故①正确;①平移①ABC 到①BDE 的位置, ①AB =BD=CE ,BC =DE , ①AB =BC ,①AB =BD=CE =BC =DE , ①四边形BDEC 是菱形, 故①正确;①四边形BDEC 是菱形, ①BE CD ⊥, ①AC BE ,AC CD ∴⊥, 故①正确;①四边形BDEC 是菱形, ①DC 平分①BDE , 故①正确; ①正确的有4个. 故选D .【点睛】本题主要考查了平移的性质、平行四边形的判定、菱形的判定与性质. 6.C【分析】直接利用平移中点的变化规律求解即可.【详解】将点()54P ﹣,先向右平移4个单位长度,再向下平移2个单位长度后的坐标是()5442+﹣,﹣,即()12﹣,, 故选:C .【点睛】本题主要考查了坐标与图形的变化-平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同,平移点的变化规律是:横坐标右移加、左移减;纵坐标上移加、下移减. 7.C【分析】先画出平移后的图形,再利用旋转的性质画出旋转后的图形即可求解. 【详解】解:先画出①ABC 平移后的①DEF ,再利用旋转得到①A 'B 'C ', 由图像可知A '(-1,-3), 故选:C .【点睛】本题考查了图形的平移和旋转,解题关键是掌握绕原点旋转的图形的坐标特点,即对应点的横纵坐标都互为相反数. 8.B【分析】根据二次根式有意义列不等式组410140x x -≥⎧⎨-≥⎩,求出14x =与1y =,再求代数式的值,然后求平方根即可.【详解】解:410140x x -≥⎧⎨-≥⎩,解得14x =, 当14x =时,1y =, ①144124x y +=⨯+=,①4x y +的平方根为: 故选B .【点睛】本题考查二次根式有意义的条件,代数式的值,平方根,掌握二次根式有意义条件,代数式的值,平方根是解题关键.9.B【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,可得答案.【详解】解:在平面直角坐标系中,将四边形格点的横坐标都减去2,纵坐标保持不变,所得图形与原图形相比向左平移了2个单位.故选:B.【点睛】此题主要考查了坐标与图形变化﹣平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10.C【分析】根据平移的过程以及四个点的坐标进行分析比较即可判断.【详解】解:①将A(1,m2)沿着y的正方向向上平移m2+4个单位后得到B点,①B(1,2m2+4),①m2≥0,①2m2+4>0,①线段AB在第一象限,点B在点A上方,且与y轴平行,距离y轴1个单位,因为点E(1,-m2)在点A下方,当m=0时,E点可以跟A点重合,点E不一定在线段AB 上.点F(m2+4,m2)距离y轴(m2+4)个单位,不在线段AB上;点M(1,m2+3)在点A上方,且距离y轴1个单位,在线段AB上;点N(1,4m2)是将A沿着y的正方向向上平移3m2个单位后得到的,不一定在线段AB上,有可能在线段AB延长线上.所以一定在线段AB上的是M点.故选:C.【点睛】本题考查了坐标与图形的变化-平移,解决本题的关键是掌握平移的性质.11.D【分析】根据题意得出点M到x轴的距离为2×2-1=3,然后结合图象即可确定点的坐标.【详解】解:①点M到y轴的距离为2,到x轴的距离比到y轴距离的2倍少1,①点M到x轴的距离为2×2-1=3,①点M在第四象限,①M(2,-3),故选:D.【点睛】题目主要考查坐标系中点到坐标轴的距离,理解题意,结合函数图象求解是解题关键.12.C【分析】首先求出P点平移后得到的点的坐标为(3,3),再利用待定系数法把点代入反比例函数关系式,即可求得k的值.【详解】解:点P(3,4)向下平移1个单位长度后得到点(3,3),把(3,3)代入函数kyx中,得k=9,故选C.【点睛】此题主要考查了求反比例函数解析式,根据平移方式求点的坐标,正确求出P点平移后的点的坐标是解题的关键.13.C【分析】直接利用平移中点的变化规律求解即可.【详解】由点A(−1,4)的对应点为A′(1,7)知平移方式为向右平移2个单位、向上平移3个单位,①点C(−4,−1)的对应点C′的坐标为(−2,2),故选C.【点睛】此题考查坐标与图形变化-平移,解题关键在于得到平移的方式.14.左图中①ACB绕着点C顺时针旋转90°能得到①DCE.右图中①ACB绕着点C顺时针旋转90°,再沿着BC翻折,能得到①DCE.【分析】根据旋转以及轴对称的性质解答即可.【详解】解:左图中①ACB绕着点C顺时针旋转90°得到①DCE.右图中①ACB绕着点C顺时针旋转90°,再沿着BC翻折,得到①DCE.【点睛】本题考查了图形的旋转以及对称翻折,熟知旋转以及轴对称的性质是解题的关键.15.(1)EF=BE+DF(2)过程见解析【分析】对于(1),先将①DAF 绕点A 顺时针旋转90°,得到①BAH ,可得①ADF ①①ABH ,再根据全等三角形的性质得AF=AH ,①EAF=①EAH ,然后根据“SAS ”证明①F AE ①①HAE ,根据全等三角形的对应边相等得出答案;对于(2),先根据(1),得①F AE ①①HAE ,可得AG=AB=AD ,再根据“HL ”证明Rt ①AEG ①Rt ①ABE ,得EG=BE ,同理GF=DF ,可得答案.(1)EF=BE+DF .理由如下:如图,将①DAF 绕点A 顺时针旋转90°,得到①BAH ,①①ADF ①①ABH ,①①DAF=①BAH ,AF=AH ,①①EAF=①EAH=45°.①AE=AE ,①①F AE ①①HAE ,①EF=HE=BE+HB ,①EF=BE+DF ;(2)由(1),得①F AE ①①HAE ,AG ,AB 分别是①F AE 和①HAE 的高,①AG=AB=AD=8.在Rt ①AEG 和Rt ①ABE 中,AE AE AG AB =⎧⎨=⎩, ①Rt ①AEG ①Rt ①ABE (HL ),①EG=BE ,同理GF=DF ,①①EFG 的周长=EC+EF+FC=EC+EG+GF+FC=EC+BE+DF+FC=BC+CD=16.【点睛】这是一道关于正方形和旋转的综合题目,考查了旋转的性质,正方形的性质,全等三角形的判定和性质等.。
7.2.2 用坐标表示平移一、选择题1.将点P(3,-2)先向左平移4个单位长度,再向上平移3个单位长度后得到点Q,则点Q的坐标是( )A.(-1,1)B.(7,1)C.(-1,-5)D.(-1,-2)2.线段AB是由线段PQ平移得到的,点P(-1,3)的对应点为A(4,7),则点Q(-3,1)的对应点B 的坐标是( )A.(2,5)B.(-6,-1)C.(-8,-3)D.(-2,-2)3.如图,A,B的坐标分别为(1,0),(0,2),若将线段AB平移至A1B1,则a-b的值为( )A.1B.-1C.0D.24.将线段AB在坐标系中进行平移,已知A(-1,2),B(1,1),将线段AB平移后,其两个端点的坐标变为A'(-2,1),B'(0,0),则它平移的情况是( )A.向上平移了1个单位长度,向左平移了1个单位长度B.向下平移了1个单位长度,向左平移了1个单位长度C.向下平移了1个单位长度,向右平移了1个单位长度D.向上平移了1个单位长度,向右平移了1个单位长度5.如图,已知△ABC在平面直角坐标系中的位置如图所示,将△ABC先向下平移5个单位,再向左平移2个单位,则平移后C点的坐标是( )A.(5,-2)B.(1,-2)C.(2,-1)D.(2,-2)6.如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是( )A.(-1,6)B.(-9,6)C.(-1,2)D.(-9,2)7.将点P(m+2,2m+4)向右平移1个单位到P',且P'在y轴上,那么P'的坐标是( )A.(-2,0)B.(0,-2)C.(1,0)D.(0,1)二、填空题8.点M(4,3)向(填“上”“下”“左”或“右”)平移个单位后落在y轴上;向(填“上”“下”“左”或“右”)平移个单位后落在x轴上.9.(2016黑龙江哈尔滨双城期末)在同一坐标系中,图形a是由图形b向上平移3个单位长度得到的,如果图形a中点A的坐标为(4,-2),则图形b中与点A对应的点A'的坐标为.10.在平面直角坐标系中有一点A(-2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为.11.若点A(a-1,a+2)在x轴上,将点A向上平移4个单位长度得点B,则点B的坐标是.12.如图,点A、B的坐标分别为(1,2)、(4,0),将△AOB沿x轴向右平移,得到△CDE,已知DB=1,则点C的坐标为.13.三角形ABC中任意一点P(x0,y0)经平移后的对应点为P1(x0+5,y0+3),将三角形ABC作同样的平移得到三角形A1B1C1,若A(-2,3),则A1的坐标为.14.在如图所示的直角坐标系中,△AOB经过平移后得到△A1O1B1(两个三角形的顶点都在格点上),已知在AO上一点P,平移后得到A1O1上一点P1(-3.5,-2),则P点的坐标为.三、解答题15.在平面直角坐标系xOy中,点A的坐标为(0,4),线段MN的位置如图所示,其中点M的坐标为(-3,-1),点N的坐标为(3,-2).(1)将线段MN平移得到线段AB,其中点M的对应点为A,点N的对称点为B.①点M平移到点A的过程可以是:先向平移个单位长度,再向平移个单位长度;②点B的坐标为;(2)在(1)的条件下,若点C的坐标为(4,0),连接AC,BC,求△ABC的面积.16.如图,直角坐标系中,△ABC的顶点都在格点上,其中,点C的坐标为(1,2).(1)填空:点A的坐标是,点B的坐标是;(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A'B'C'.请作出△A'B'C',并写出△A'B'C'的三个顶点坐标;(3)求△ABC的面积.答案1. A2. A3. C4. B5. B6. C7. B8.左;4;下;39.(4,1)10.(1,-1)11.(-3,4)12.(4,2)13.(3,6)14.(0.5,1)15.(1)如图,①点M平移到点A的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度.②点B的坐标为(6,3).故为:右;3;上;5;(6,3).(2)如图,S △ABC =6×4-12×4×4-12×2×3-12×6×1=10.16. (1)点A 的坐标是(2,-1),点B 的坐标是(4,3).(2)如图,△A'B'C'为所求作的图形,A'(0,0),B'(2,4),C'(-1,3).(3)△ABC 的面积=3×4-12×2×4-12×3×1-12×3×1=5.。
7
知识点:
P(x ,y)向右平移a个单位,对应点P’(x+a,y)
P(x ,y)向左平移a个单位,对应点P’(x-a,y)
P(x ,y)向上平移a个单位,对应点P’(x,y+a)
P(x ,y)向下平移a个单位,对应点P’(x,y-a)
同步练习:
1.将点(-3,1)向右平移4个单位长度,再向上平移2个单位长度,能够得到对应点_______.
2.三角形ABC三个顶点的坐标分不是A(2,1),B(1,3),C(3,0),将三角形ABC•向左平移3个单位长度,再向下平移1个单位长度,则平移后三个顶点的坐标为()
A.(5,0),(4,2),(6,-1)B.(-1,0),(-2,2),(0,-1)
C.(-1,2),(-2,4),(0,1)D.(5,2),(4,4),(6,1)3.在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)•一个正数a,相应的新图形确实是把原图形向________(或向______ _)平移______个单位长度.
4.如图,菱形ABCD,四个顶点分不是A(-2,1),B(1,-3),C(4,-1),D(1,1).将菱形沿x轴负方向平移3个单位长度,各个顶点的坐标变为多少?将它沿y轴正方向平移4个单位长度呢?分不画出平移后的图形.
5.如图,梯形A′B′C′D′能够由梯形ABCD通过如何样的平移得到?•对应点的坐标有什么变化?
7.1.2《用坐标表示平移》同步练习题(2)答案:
1.(1,3)
2.B 点拨:将A、B、C三点的横坐标都减去3,纵坐标都减去1得(-1,0),(-2,2),(0,-1),故选B.
3.右;左;a
4.解:将菱形沿x轴负方向平移3个单位长度,各个顶点的坐标变为(-5,-1),(-2,-3),(1,-1),(-2,1).
将它沿y轴正方向平移4个单位长度,各个顶点的坐标变为
(-2,3),(1,1),(4,3),(1,5).图略.
5.解:梯形A′B′C′D′能够由梯形ABCD先向左平移7个单位,再向上平移7个单位得到.点A、B、C、D的横坐标都减去7,纵坐标都加7,能够得到点A′、B′、C′、D′的坐标.
A(1,-6)→A′(-6,1),B(6,-6)→B′(-1,1),C(5,-2)→C′(-2,5),D(3,-2)•→D′(-4,5).。