MidasGen730Pushover分析
- 格式:pdf
- 大小:4.16 MB
- 文档页数:92
M i das进行P ushover分析的总结 1.1版-----完全是个人体会,有所错误在所难免一.不得不说的基本概念1.P ushover是什么和前提条件P ushover也叫推倒分析,是一种静力弹塑性分析方法,或者叫非线性静力分析方法,在特定前提下,可以近似分析结构在地震作用下的性能变化情况。
给桥梁用某种方式,比如墩顶集中力方式,施加单调增加的荷载,相应的荷载位移关系就会呈现明显的非线性特征。
这里可以认为IO是处在正常使用状态,LS为承载能力极限状态,CP是完全倒塌破坏。
从IO开始结构开始进入弹塑性状态,在LS前结构的损伤尚可修复,且结构整体是安全的,而越过LS 损伤就难以修复了,但是CP前还不至于倒塌。
设计中对于不同构件或部位,在特定地震作用下,其性能要求是不一样的。
而特定的前提很明确,就是在整个地震反应时程中,结构反应由单一振型控制,在《公路桥梁抗震细则》(以下简称《细则》)中,认为常规桥梁中的规则桥梁都满足这一条件(条文说明 6.3.4),因此E1地震可以采用简化反应谱方法,也可用一般的多振型反应谱方法,E2则用Pus hover。
2.P ushover的分析目的在E2地震作用下,《细则》要求:可见,对于规则桥梁,只需要检算墩顶位移就可以了。
对于单柱墩,容许位移可按7.4.7条推荐的公式进行计算,而双柱墩按7.4.8条要求进行Pus hover分析根据塑性铰的最大容许转角(7.4.3)得到。
而无论是7.4.3还是7.4.7都要用到Φy和Φu,对于圆形或者矩形截面可按附录B计算,而特殊的截面,可按7.4.4和7.4.5的要求计算。
计算方法可以自己编程实现,也可用现成的软件如R es ponse2000等来作为工具。
而对于在特定的E2地震作用下,墩顶的位移,都需要用P ushover的能力谱法得到。
所以Pus hover的目的一个是画出荷载位移曲线后,找到塑性铰达到最大容许转角时的曲线点,计算出墩顶容许位移,第2个目的是应用能力谱法,找到性能点,得到E2地震作用下,墩顶的位移。
基于MIDAS/GEN高层剪力墙结构push-over分析【摘要】基于性能抗震设计的基本思想是使被设计的建筑物在使用期间满足各种预定功能或性能目标要求。
本文采用MIDAS/GEN对一栋31层剪力墙结构进行静力弹塑性分析,结果表明,该方法从层间位移角、塑性铰分布等方面对结构进行量化评价,并揭示出结构在罕遇地震作用下的薄弱环节,实现了基于性能的抗震设计。
【关键词】MIDAS剪力墙push-over静力弹塑性基于性能抗震设计基于性能的抗震设计PBSD(performance based seismic design)思想是20世纪90年代初由美国学者提出,它是使设计出的结构在未来的地震灾害下能够维持所要求的性能水平。
我国一些学者也对PBSD进行了定义:基于性能的结构抗震设计是指根据建筑物的重要性和用途确定其性能目标,根据不同的性能目标提出不同的抗震设防标准,使设计的建筑在未来地震中具备预期的功能。
本文采用MIDAS/GEN对一栋31层剪力墙结构进行静力弹塑性分析和抗震性能评价,从层间位移角、塑性铰分布及变形等方面对结构进行了综合的量化评价,揭示出结构在罕遇地震作用下的薄弱环节,实现了基于性能的抗震设计。
1静力弹塑性分析方法静力弹塑性分析(PUSH-OVER ANALYSIS,以下简称POA)方法也称为推覆法,它基于美国的FEMA-273抗震评估方法和ATC-40报告[1],是一种介于弹性分析和动力弹塑性分析之间的方法,其理论核心是“目标位移法”和“承载力谱法”。
其计算过程如下[6]:(1)准备结构数据。
包括建立结构模型,构件的物理常数和恢复力模型等;(2)计算结构在竖向荷载作用下的内力(将其与水平力作用下的内力叠加,作为某一级水平力作用下构件的内力,以判断构件是否开裂或屈服);(3)在结构每一层的质心处,施加沿高度分布的某种水平荷载。
施加水平力的大小按以下原则确定:水平力产生的内力与2步所计算的内力叠加后,使一个或一批构件开裂或屈服;(4)对于开裂或屈服的构件,对其刚度进行修改后,再施加一级荷载,使得又一个或一批构件开裂或屈服;(5)不断重复3,4步,直至结构顶点位移足够大或塑性铰足够多,或达到预定的破坏极限状态;(6)绘制底部剪力¬¬¬¬¬¬—顶部位移关系曲线,即推覆分析曲线。
提要:本文首先介绍采用Midas/Gen进行Pushover分析的主要方法及使用心得,然后结合工程实例进行具体说明,其结果反映出此类结构在大震下表现的一些特点,可供类似设计参考。
关键词:Pushover 剪力墙结构超限高层 Midas/Gen静力弹塑性分析(Pushover)方法是对结构在罕遇地震作用下进行弹塑性变形分析的一种简化方法,本质上是一种静力分析方法。
具体地说,就是在结构计算模型上施加按某种规则分布的水平侧向力,单调加荷载并逐级加大;一旦有构件开裂(或屈服)即修改其刚度(或使其退出工作),进而修改结构总刚度矩阵,进行下一步计算,依次循环直到结构达到预定的状态(成为机构、位移超限或达到目标位移),得到结构能力曲线,并判断是否出现性能点,从而判断是否达到相应的抗震性能目标[1]。
Pushover方法可分为两个部分,第一步建立结构能力谱曲线,第二步评估结构的抗震性能。
对剪力墙结构体系的超限高层而言,选取Pushover计算程序的关键是程序对墙单元的设定。
SAP2000、ETABS软件没有提供剪力墙塑性铰,对框-剪结构可将剪力墙人工转换为模拟支撑框架进行分析;对剪力墙结构来说,进行转换不可行。
而Midas/Gen程序提供了剪力墙Pushover单元(类似薄壁柱单元,详见用户手册),对剪力墙能够设置轴力-弯矩铰以及剪切铰。
下面将详细介绍如何在Midas/Gen中进行Pushover分析的步骤(以Midas/Gen 6.9.1为例):一 Pushover分析步骤1. 结构建模并完成静力分析和构件设计直接在Midas/Gen中建模比较繁琐,可以用接口转换程序从SATWE(或其他程序如SAP2000)中导入。
SATWE转换程序由Midas/Gen提供,会根据PKPM的升级而更新。
转换仅需要SATWE中的Stru.sat 和Load.sat文件。
转换时需要注意的是,用转换程序导入SATWE的模型文件后,形成的是Midas/Gen的Stru.mgt文件,是模型的文本文件形式,需要在Midas/Gen中导入此文件,导入后还应该注意以下几个问题:1) 风荷载及反应谱荷载没有导进来,需要在Midas/Gen中重新定义;2) 需要定义自重、质量;3) 需要定义层信息,以及墙编号;此外,还应注意比较SATWE的质量与Midas/Gen的质量,并比较两者计算的周期结果实否一致。
问: 在MIDAS/Gen中做Pushover分析的步骤?
答: Pushover Analysis 中文又称为静力弹塑性分析或推倒分析。
在MIDAS/Gen中混凝土结构和钢结构的静力弹塑性分析的步骤不尽相同。
混凝土结构的静力弹塑性分析步骤为分析->设计->静力弹塑性分析。
钢结构的静力弹塑性分析步骤为分析分析->静力弹塑性分析。
即混凝土结构必须经过配筋设计之后才能够做静力弹塑性分析,因为塑性铰的特性与配筋有关。
设计结束后,静力弹塑性分析的步骤如下:
1. 在静力弹塑性分析控制对话框中输入迭代计算的控制数据。
2. 定义静力弹塑性分析的荷载工况。
在此对话框中可选择初始荷载、位移控制量、是否考虑重力二阶效应和大位移、荷载的分布形式(推荐使用模态形式)。
3.定义铰类型(提供标准类型,用户也可以自定义)
4.分配塑性铰。
用户可以全选以后,按"适用"键。
5. 运行静力弹塑性分析。
6. 查看分析曲线。
浅谈静力弹塑性分析(Pushover )的明白得与应用摘要:本文第一介绍采纳静力弹塑性分析(Pushover )的要紧理论基础和分析方式,以Midas/Gen 程序为例,采纳计算实例进行具体说明弹塑性分析的步骤和进程,说明Pushover 是罕遇地震作用下结构分析的有效方式。
关键词:静力弹塑性 Pushover Midas/Gen 能力谱 需求谱 性能点一、大体理论静力弹塑性分析方式,也称Pushover 分析法,是基于性能评估现有结构和设计新结构的一种静力分析方式,在必然精度范围内对结构在罕遇地震作用下进行弹塑性变形分析。
简腹地说,在结构计算模型上施加按某种规那么散布的水平侧向力或侧向位移,单调加荷载(或位移)并逐级加大;一旦有构件开裂(或屈服)即修改其刚度(或使其退出工作),进而修改结构总刚度矩阵,进行下一步计算,依次循环直到操纵点达到目标位移或建筑物倾覆为止,取得结构能力曲线,以后对照确信条件下的需求谱,并判定是不是显现性能点,从而评判结构是不是能知足目标性能要求。
Pushover 分析的大体要素是能力谱曲线和需求谱曲线,将两条曲线放在同一张图上,得出交会点的位移值,同位移允许值比较,查验是不是知足特定地震作用下的弹塑性变形要求。
能力谱曲线由能力曲线(基底剪力-极点位移曲线)转化而来(图1)。
与地震作用相应的结构基底剪力与结构加速度为正相关关系,极点位移与谱位移为正相关关系,两种曲线形状一致。
其对应关系为:1/αGV S a = roofroof d X S ,11γ∆=,图1 基底剪力-极点位移曲线转换为能力谱曲线其中1α、1γ、roof X ,1别离为第一阵型的质量系数,参与系数、极点位移。
该曲线与要紧建筑材料的本构关系曲线具有相似性,其实其物理意义亦有对应,在初始时期作使劲与变形为线性关系,随着作使劲的增大,慢慢进入弹塑性时期,变形显著增加,不论关于构件,仍是结构整体,都是那个规律。