STM8自学笔记
- 格式:docx
- 大小:493.65 KB
- 文档页数:10
【精品博文】stm8自学笔记2016312【流水灯例程】*基本语言*1,LED1_Open(); //点亮LED2,LED2_Close(); //熄灭LED3,LED1_Toggle(); //闪烁LED4,delay(); //延迟函数*代码组成*1,定义延迟函数void delay(){int i,j;for(i=0;i<1000;i++){for(j=0;j<1000;j++);}}//如果没有定义的话会有一个警告和一个错误提示(Warning[Pe223]: function "delay" declared implicitly;Error[Li005]: no definition for "delay" )2,定义主函数int main(void){CLK_CKDIVR&= (uint8_t)(~0x18);/*时钟复位*//*设置内部高速时钟16M为主时钟*/CLK_CKDIVR|= (uint8_t)0x00;/*!<Set High speed internal clock */LED_Init();while(1231){LED1_T oggle();delay();}}//貌似while()里面的这个数字可以输入任意大于1的整数;LED_Init()的作用是初始化然后后面的状态什么的都是在它初始化的基础上弄得;3,定义头文件void LED_Init(void){PF_DDR|=0xe0; // 设置数据方向寄存器 1为输出,0为输入*/ PF_CR1|=0xe0; //设置推挽输出 */PF_CR2|=0xe0; //设置输出频率 1为10M,0为2M}//定义LED_Init函数,并且设置相关数据;void LED1_T oggle(void){PF_ODR_ODR5=!PF_ODR_ODR5;}//定义LED1_T oggle函数;*程序执行*此时LED1在不停的闪烁 LED2和LED2处于点亮状态;*代码变形*1,将while循环里面的 delay();去掉即while(1231){LED1_T oggle();}3个LED灯均处于点亮状态无闪烁现象2,在while循环里面添加多个LED1_T oggle();delay();程序运行正常闪烁频率等现象均无变化3,将while里面改成LED1_T oggle();delay();LED2_T oggle();delay();LED3_T oggle();delay();LED1闪烁频率变慢 LED2和LED3闪烁 3个LED灯依次闪烁出现传说中的流水灯现象闪烁形式为1-2-3-1-2-3-循环4,给上述代码末尾加入 LED2_Close(); 即LED1_T oggle();delay();LED2_T oggle();delay();LED3_T oggle();delay();LED2_Close();LED2闪烁频率明显变快出现新的流水灯现象闪烁形式为1-2-3-2-1-2-3-循环其中1-2-3比3-2-1“走”的快些5,给上述代码末尾加入 delay(); 即LED1_T oggle();delay();LED2_T oggle();delay();LED3_T oggle();delay();LED2_Close();delay();LED2闪烁频率比LED1和LED3快比3中代码慢依旧是上述闪烁方式但是由于频率变慢会显得有点别扭6,将上述代码 LED2_Close();-->LED2_Open(); 即LED1_T oggle();delay();LED2_T oggle();delay();LED3_T oggle();delay();LED2_Open();delay();LED2闪烁频率和4中相同程序执行时LED2和LED3先亮LED1先熄灭后点亮实现闪烁此时已无流水灯现象7,上述代码取消末尾 delay(); 即LED1_T oggle();delay();LED2_T oggle();delay();LED3_T oggle();delay();LED2_Open();3个LED灯闪烁频率均增快依旧是LED2闪烁频率最快*疑惑之处*1,怎样通过CLK_CKDIVR&= (uint8_t)(~0x18);实现时钟复位的?2,while()里面的数字含义是什么可以任意输入吗?3,怎样设置LED闪烁频率?4,delay()函数对上述实验的影响原理是什么?*温馨备注*1,上述实验现象均为肉眼观测与实际可能会有些许误差;2,本人刚开始入门stm8 有说明错误的地方欢迎大家指出;3,希望各位前辈在有幸看到此篇文章时能够多多指教不胜感激;。
STM8 低功耗模式STM8应用笔记四种STM8低功耗模式的主要特性如表12。
(表12:STM8S低功耗模式管理)1.如果外设时钟未被关闭2.包括通讯外设的中断(参见中断向量表)STM8等待(Wait)模式在运行模式下执行WFI(等待中断)指令,可进入等待模式。
此时CPU停止运行,但外设与中断控制器仍保持运行,因此功耗会有所降低。
等待模式可与PCG(外设时钟门控),降低CPU时钟频率,以及选择低功耗时钟源(LSI,HSI)相结合使用,以进一步降低系统功耗。
参见时钟控制(CLK)的说明。
在等待模式下,所有寄存器与RAM的内容保持不变,之前所定义的时钟配置也保持不变(主时钟状态寄存器CLK_CMSR)。
当一个内部或外部中断请求产生时,CPU从等待模式唤醒并恢复工作。
STM8停机(Halt)模式在该模式下主时钟停止。
即由fMASTER提供时钟的CPU及所有外设均被关闭。
因此,所有外设均没有时钟,MCU的数字部分不消耗能量。
在停机模式下,所有寄存器与RAM的内容保持不变,默认情况下时钟配置也保持不变(主时钟状态寄存器CLK_CMSR)。
MCU可通过执行HALT指令进入停机模式。
外部中断可将MCU从停机模式唤醒。
外部中断指配置为中断输入的GPIO 端口或具有触发外设中断能力的端口。
在这种模式下,为了节省功耗主电压调节器关闭。
仅低电压调节器(及掉电复位)处于工作状态。
快速时钟启动HSI RC的启动速度比HSE快(参见数据手册中电特性参数)。
因此,为了减少MCU的唤醒时间,建议在进入暂停模式前选择HSI做为fMASTER的时钟源。
在进入停机模式前可通过设置内部时钟寄存器CLK_ICKR的FHWU位选择HSI做为fMASTER的时钟源,而无需时钟切换。
参见时钟控制章节。
STM8活跃停机(Active Halt)模式活跃停机模式与停机模式类似,但它不需要外部中断唤醒。
它使用AWU,在一定的延时后产生一个内部唤醒事件,延迟时间是用户可编程的。
STM8学习笔记——时钟和GPIO说起STM8 的时钟,那还真是个杯具,用HSI 没问题,切换到HSE 也没问题,就是切LSI 怎么都不行,然后百思不得其解人,然后上论坛求教,才知道还有个选项字节(OPTION BYTE),数据手册上有这么一段描述:选项字节包括芯片硬件特性的配置和存储器的保护信息,这些字节保存在存储器中一个专用的块内。
除了ROP(读出保护)字节,每个选项字节必须被保存两次,一个是通常的格式(OPTx)和一个用来备份的互补格式(NOPTx)要使用内部低速RC 必须将LSI_EN 置1,就是这个地方让我纠结了半天,然后用IAR 将其置1,方法是:进入调试模式,在上面有个ST-LINK,点击,看到OPTION BYTE,左键点进去,右键单击上面的选项,就可更改了,然后全速运行,就写进去了。
STM8 的时钟分为HSI,HSE,LSI,最常用的是HSI,STMS105S4 内置的是16M 的RC,叫fhsi。
它可以分频输出为fhsidiv=fhsi/hsidiv,如果选择其为主时钟源,那么主时钟fmaster=fhsidiv。
CPU 时钟fcpu=fmaster/cpudiv。
可以通过外设时钟门控寄存器CLK_PCKENR1 和CLK_PCKENR2 选择是否与某个外设连接。
好了上个切换内部时钟的源代码,测试通过void CLK_Init(void){ //切换到内部LSI(!!!需要修改选项字节的LSI_EN 为1)CLK_ICKR|=0x08;//开启内部低速RC 震荡while(CLK_ICKR&0x10==0); //LSI 准备就绪CLK_SWR=0xd2; while(CLK_SWCR&0x08==0); //等待目标时钟源就绪CLK_SWCR|=0x02; //CPU 分频设置CLK_CKDIVR=0;//内部RC 输出。
#error directive: "Unsupported Compiler!" STM8编译错误解决方法STM8的库使用很方便,不过初学者下载ST官方的库可能会遇到下面的问题。
原因是因为STM8S的官方库文件发布时,IAR EWSTM8还没有出来,所以在官里面IAR未能被支持,最好是采用IAR自带的头文件,如下图所示:IAR自带的头文件目录,请以你自己的安装目录下查时钟控制STM8的钟控制器功能强大而且灵活易。
现以STM8L101xx单片机的时钟树为例,时钟树如下图所示:HSI 高速接口时钟源LSI 低速接口时钟源从时钟树来看,fCPU 的时钟来源是fMASTER 时钟;fMASTER的时钟源有三个可以选择:fHSI。
fHSI来自于内部的时钟;fHSIDIV来自于内部16MHz RC的时钟源;fLSI来自于内部38KHz RC时钟源。
TIMER2TIM时基单元,如下图所示:计数器使用内部时钟(fMA STER) ,由CK_PSC提供,并经过预分频器分频产生计数器时钟CK_CNT。
计数器时钟频率的计算公式:fCK_CNT = fCK_PSC/2(PSCR[2:0])中断向量表串口uart 学习STM8L101f3p6 有一个串口如图本历程基于库操作不讨论具体寄存器操作有兴趣的同学可以自行参考编程手册下面看一下手册的了解一下特点本人英语是个小白只可意会不可言传了内部结构了由于是基于库函数的所以不做寄存器的分析了库函数的好处就是可以在不了解单片机寄存器的前提下可以快速开发应用下面举个例子波特率 9600 8位字长停止位一位无校验串口模式为收发模式查询发送中断接收在初始化串口之前应该先初始化串口对应的IO口由手册可知串口对应的IO为PC2(USART_RX)和PC3(USART_TX)。
首先宏定义下IO 方便理解和配置#define TXD_GPIO_PORT GPIOC#define RXD_GPIO_PORT GPIOC#define TXD_GPIO_PINS GPIO_Pin_3#define RXD_GPIO_PINS GPIO_Pin_2初始化IOTxD 配置成输出上拉高速模式RxD 配置成输入上拉无中断模式GPIO_Init(TXD_GPIO_PORT, TXD_GPIO_PINS, GPIO_Mode_Out_PP_High_Fast);GPIO_Init(RXD_GPIO_PORT, RXD_GPIO_PINS, GPIO_Mode_In_PU_No_IT);接下来打开串口模块时钟(之前就是忘配置这个功能所以一直不好使)CLK_PeripheralClockConfig(CLK_Peripheral_USART, ENABLE);配置串口详细的功能USART_Init((u32)9600, USART_WordLength_8D, USART_StopBits_1, USART_Parity_No, (USART_Mode_TypeDef)(USART_Mode_Rx | USART_Mode_Tx));开启接收中断USART_ITConfig(USART_IT_RXNE, ENABLE); //开启接收中断打开串口USART_Cmd(ENABLE);最后在开启总中断就可以啦enableInterrupts(); /* 开启总中断 */发个数据UART_SendString("This is a UART Demo \r\n");哈哈好使下面是完整的功能函数/********************************************************************** ********** 名称: Uart_Init* 功能: UART2初始化操作* 形参: 无* 返回: 无* 说明: 无*************************************************************************** ***/void Uart_Init(void){GPIO_Init(TXD_GPIO_PORT, TXD_GPIO_PINS, GPIO_Mode_Out_PP_Low_Fast);GPIO_Init(RXD_GPIO_PORT, RXD_GPIO_PINS, GPIO_Mode_In_PU_No_IT);// GPIO_ExternalPullUpConfig(GPIOC,GPIO_Pin_3|GPIO_Pin_4, ENABLE);CLK_PeripheralClockConfig(CLK_Peripheral_USART, ENABLE);USART_DeInit(); /* 将寄存器的值复位 *//** 将UART2配置为:* 波特率 = 9600* 数据位 = 8* 1位停止位* 无校验位* 使能接收和发送*/USART_Init((u32)9600, USART_WordLength_8D, USART_StopBits_1, \USART_Parity_No, (USART_Mode_TypeDef)(USART_Mode_Rx |USART_Mode_Tx));USART_ITConfig(USART_IT_RXNE, ENABLE); //开启接收中断USART_Cmd(ENABLE);enableInterrupts(); /* 开启总中断 */}11。
STM8学习笔记——PWM模块首先将管脚配置为推挽输出。
下面以向上计数模式为例来讲述PWM 产生的原理:TIMx 开始向上计数,TIMx_CNT 为计数值,计数一次加1,TIMx_ARR 确定了计数的上限,达到上限后计数器从0 开始重新计数,所以一次PWM 频率就由TIMx_ARR 来确定了,即计数器时钟*(TIMx_ARR-1),频率确定了,接下来就是占空比。
占空比是由TIMx_CCRx 来确定的,PWM模式1 下当TIMx_CNT=TIMx_CCRx 时,输出OCiREF 无效电平,至于有效电平是0 还是1,要设置TIMx_CCERx,这样产生了一个PWM 波形,可以说配置非常灵活,当TIMx_CCRx 为0 时,占空比就为0,当TIMx_CCRx 大于TIMx_ARR 时,就一直输出高电平(占空比100%)。
下图是个例子:以下是我写的一个参考程序,测试通过void TIM1_Init(void){//定时器1 初始化CLK_PCKENR1|=0x80;//开启定时器1 外设时钟TIM1_EGR=0x01;//重新初始化TIM1 TIM1_EGR|=0x20;//重新初始化TIM1 TIM1_ARRH=0x00;//设定重装载值TIM1_ARRL=254; TIM1_PSCRH=0;//预分频TIM1_PSCRL=9; TIM1_CR1=0;//边沿对齐,向上计数} void TIM1_PWM_Init(){ //TIM1_CCER1=0x03;//低电平有效//TIM1_CCMR1=0x70;//PWM 模式2TIM1_CCER1=0x01;//高电平有效TIM1_CCMR1=0x60;//PWM 模式1TIM1_CCR1H=0;//占空比TIM1_CCR1L=50; TIM1_CR1|=0x01;//向上计数,无缓存,使能TIM1_BKR=0x80;//开启刹车}tips:感谢大家的阅读,本文由我司收集整编。
STM8l最白菜的入门笔记(2)——gpio篇v\:* {behavior:url(#default#VML);}o\:* {behavior:url(#default#VML);}w\:* {behavior:url(#default#VML);}.shape {behavior:url(#default#VML);}我们先来观察一下例程里是怎么操作 gpio的。
我们打开discover这个例程。
我们看到main刚开始的几句就是gpio初始化。
(因为我曾折腾过STM32,所以多少熟一点,一看到这个,我就知道,事情就在这,所以不会再看太多。
)我们截取其中几句看看。
* USER button init: GPIO set in inputinterrupt active mode */GPIO_Init( BUTTON_GPIO_PORT, USER_GPIO_PIN, GPIO_Mode_In_FL_IT);/* Green led init: GPIO set in output */GPIO_Init( LED_GREEN_PORT, LED_GREEN_PIN, GPIO_Mode_Out_PP_High_Fast);/* Blue led init: GPIO set in output */GPIO_Init( LED_BLUE_PORT, LED_BLUE_PIN, GPIO_Mode_Out_PP_High_Fast);/* Counter enable: GPIO set in output forenable the counter */GPIO_Init( CTN_GPIO_PORT, CTN_CNTEN_GPIO_PIN, GPIO_Mode_Out_OD_HiZ_Slow);/* Wake up counter: for detect end ofcounter GPIO set in input interupt active mode */GPIO_Init( WAKEUP_GPIO_PORT, ICC_WAKEUP_GPIO_PIN,GPIO_Mode_In_FL_IT);注释已经写得很明白了。
STM8S 学习笔记之三(STM8 SysClk)STM8S 系统时钟设置,对于单片机来说是非常重要的,不同的用处必须应用不同的时钟。
举个例子,做AVR 时在高稳定的串口通讯时用的时钟一般是3.6864M,主要是这个算波特率精确。
STM8S 同样重要。
STM8S 时钟源:●1-24MHz高速外部晶体振荡器(HSE) ●最大24MHz 高速外部时钟信号(HSE user-ext) ●16MHz高速内部RC 振荡器(HSI) ●128KHz低速内部RC(LSI) 各个时钟源可单独打开或关闭,从而优化功耗。
对于我这么懒得人一般都是用的内部或者外部晶振。
这个芯片时钟方面很大的一个亮点就是时钟可以自由分频。
在降低功耗方面,如果有特殊需求的时候还是考虑STM8L 系列或者430 的吧,不得不承认术业有专攻。
按照技术手册寄存器功能给寄存器赋值写成一下函数://启动时钟配置void SysClkInit(void) { // CLK_SWR=0xe1; //HSI 为主时钟源CLK_SWR=0xb4; //HSE 为主时钟源CLK_CKDIVR=0x00;//CPU 时钟0 分频,系统时钟0 分频CLK_CSSR=0x01;//时钟安全监测使能CLK_SWCR=0x02;//使能自动时钟切换}首先设置时钟源,也就是时钟是用内部还是外部,如果对时间精度要求不高,用内部也可以。
然后是时钟分频。
这个分频需要设定系统时钟和CPU时钟,这两个时钟,如果对此有特殊要求就得好好斟酌一下了,而我全部不分频。
时钟安全监测还是打开吧,如果用的外部时钟,但是外部时钟突然出现故障的话,单片机会自动启用内部时钟,内部时钟默认为8 分频也就是2M。
然后时钟自动切换,好像这个有没有都可以,去掉能不能使回头再试。
开机初始化,在不调用此函数时CPU 时钟默认开启2M,但是调用此函数后,时钟切换为16M,LED 闪烁速度明显加快、、。
STM8庫函數學習筆記之GPIO来源地址:/s/articlelist_1660746614_0_1.html【整理者】【提供者】885783详细说【明】STM8庫函數學習筆記之GPIOSTM8庫函數學習筆記之GPIO作者:BH7KQK日期:2010.12.30相關的函數:void GPIO_DeInit(GPIO_TypeDef* GPIOx); void GPIO_Init(GPIO_TypeDef* GPIOx, GPIO_Pin_TypeDef GPIO_Pin, GPIO_Mode_TypeDef GPIO_Mode); void GPIO_Write(GPIO_TypeDef* GPIOx, u8 PortVal);void GPIO_WriteHigh(GPIO_TypeDef* GPIOx, GPIO_Pin_TypeDef PortPins); void GPIO_WriteLow(GPIO_TypeDef* GPIOx, GPIO_Pin_TypeDef PortPins); void GPIO_WriteReverse(GPIO_TypeDef* GPIOx, GPIO_Pin_TypeDef PortPins); u8 GPIO_ReadInputData(GPIO_TypeDef* GPIOx);u8 GPIO_ReadOutputData(GPIO_TypeDef* GPIOx); BitStatus GPIO_ReadInputPin(GPIO_TypeDef* GPIOx, GPIO_Pin_TypeDef GPIO_Pin); void GPIO_ExternalPullUpConfig(GPIO_TypeDef* GPIOx, GPIO_Pin_TypeDef GPIO_Pin, FunctionalState NewState);//--------------------------------------------------------------------------------------- void GPIO_DeInit(GPIO_TypeDef* GPIOx);這個函數用來恢復指定端口的寄存器ODR 、DDR 、CR1及CR2值到默認0x00,即無中斷功能的浮動輸入,無返回值。
STM8 实战篇
一、参考文档《STM8单片机入门V3.0》安装软件。
建议安装在C盘(默认路径)主要看软件安装和cosmic和STVD的结合使用
二、自己建立C语言工程。
(不使用库文件)
建议先新建文件夹
添加头文件和文件路径
路径在
D:\Program Files\STMicroelectronics\st_toolset\include
Stm8s105k.h中定义了特殊寄存器。
下面开始编写程序
硬件中PE5口有一个LED。
做一个闪烁灯。
在线
使用标准库:
和上面一样建立普通的工程。
从其他以库建立的工程中复制以上文件
其中main 和stm8_interrupt_vector 为替换
添加文件:
继续添加使用模块对应的文件
根据主程序使用的配置来添加响应的东西。
可以建立如下的结构
添加文件为
编译后成功。
当然附件了又demo的程序,大家可以拷贝其中的文件,还可以直接在此文件上写程序。