(5)顶角⑥______的两等腰三角形类似
相等
(1)类似三角形的⑦__对__应__角__相等;对应边
成比例;
性 (2)类似三角形的对应高的比、对应中线的 质 比和对应角平分线的比都等于类似比;
(3)类似三角形的周长比等于⑧_类__似__比___, 面积比等于⑨_类__似__比__的__平__方____
∵DE=3,
∴AG= 9 ,
2
∵△ABC∽△FCD,BC=2CD,
∴
SFCD (CD)2 1 SABC BC 4
∵S△ABC=
1 2
∴S△FCD=
1 4
BC×AG= 1
2 9
S△ABC= 2 .
×8× 9
2
=18,
G
第4题解图
类型三 类似多边形的性质计算 例 3 把矩形ABCD对折,折痕为MN,
比例
顶角相等 一对底角相等 底和腰对应成比例
几 种 基 本 图 形
考点三 类似多边形及其性质 1.定义:各角对应⑩_相__等__,各边对应 11
_成__比__例__的两个多边形叫做类似多边形.类似多 边形 12_对__应__边__的比叫做类似比.
2.性质 (1)类似多边形的对应角 13__相__等__,对应边 14 _成__比__例___. (2)类似多边形的周长比等于15 _类__似__比__,面 积比等于 16__类__似__比__的__平__方___.
ab 13k5k 18k 9
针对演练
已知 abacbck,则k的值为 2或-1
c ba
_【_解__析___】. 根据比例的基本性质,三等式相加,
即可得出k值;∵
abacbck,
c ba
∴ abacbck,