高加端差相关知识
- 格式:doc
- 大小:14.00 KB
- 文档页数:1
1000MW发电机组高加端差与机组负荷的变化调节技术摘要 :介绍了1000MW机组高压加热器 (简称高加 )端差的基本原理和高加正常水位控制方法;分析了机组高加端差对经济性的影响,指出了高加水位、高加端差、机组负荷的关系;提出了该机组高加水位控制时的新控制策略 ,提高火电机组回热加热系统的运行可靠性和运行性能,直接影响整套机组的运行经济性。
关键词:高加水位;端差;差压式水位计;测量偏差;负荷引进超超临界机组技术,其高压加热器选用HP1、HP2、HP3高加(高加序列号按抽汽压力由高到低排列)、ZF(HP3高加前置冷却器)型式:卧式、U型管。
三台100%容量的卧式、U型管式高压加热器,单列布置,高压加热器采用大旁路系统。
当任一台高加故障停运时,三台高加同时从系统中退出,给水能快速切换到该列给水旁路。
机组在高加解列时仍能带额定负荷,这样可保证在高加事故状态时机组仍能满足运行要求。
1.高加端差的定义及经济性高加端差有上端差(加热器进气压力下的饱和温度与出水温度的差值称为上端差,也称传热端差)和下端差(正常疏水温度与进水温度的差值称为下端差)。
三台高加连续排汽分别接至除氧器,以提高传热效率和防止腐蚀内部零部件。
疏水采用压差逐级自流,3号高加疏水最后流入除氧器。
疏水调节装置采用疏水调节阀,根据加热器水位的变化控制疏水调节阀的开度来实现的。
加热器设有安全可靠的水位保护装置,给水系统采用大旁路,当任一加热器水位高于HHH值(+138mm)时,三台高加汽、水侧全部出系,给水走大旁路系统。
在具有疏水冷却段的高压加热器中,利用疏水液位在凝结段和疏水冷却段进口或加热器的疏水接管之间形成水封,当液位偏低时水封丧失,这就会造成蒸汽直接流入疏水管路或疏水冷却段,使过冷却的有效性降低,水封的丧失其实质是取消了疏水冷却段在加热器中的作用。
从而使加热器的疏水端差增加,疏水汽化,疏水逐级自流排挤下一级加热器的低压抽汽,产生不可逆损失,降低回热循环效果,从而影响机组的热经济性。
#2机#1高加疏水端差大原因分析一、#2机通流部分改造前后#1高加疏水温度对比由附表可知,#2机通流部分改造前,负荷580MW时,#1高加疏水温度为253℃,进水温度为241℃,则改造前#1高加疏水端差为12℃;#2机通流部分改造后相同负荷下#1高加疏水温度约258℃,进水温度为236℃,则改造后#1高加疏水端差约22℃,同比#1高加疏水端差上升约10℃。
二、加热器疏水端差大理论原因1、加热器运行水位低,导致疏水中带汽,疏水温度上升,疏水端差增大。
2、加热器运行中事故疏水动作,导致加热器水位下降,疏水温度及疏水端差上升。
3、加热器进水温度降低,本级加热器吸热量自行增大(抽汽量增加),疏水温度上升,疏水端差自行增大。
4、加热器内部汽流隔板损坏,影响蒸汽凝结,疏水段带汽,疏水温度上升,疏水端差增大。
5、疏水温度测量有误,温度指示高。
三、目前#2机#1高加疏水端差大原因分析1、#2机通流部分改造后,经与仪控就地核对#1高加水位,正常疏水定值定为700mm,就地实际水位约440mm,在正常水位线运行,说明#1高加正常运行水位控制正常。
为再次验证定值是否偏低,本月19日进行了#1高加水位试验,相关数据如下:试验中发现当水位上升至773mm 时,#1高加水位高“光字牌”报警发出,说明此时液位高开关已动作,实际水位已高,因此目前水位定值700mm比较合理。
2、#2机通流部分改造后,相同负荷下主汽压力下降约1.2MPa,三台高加的抽汽压力必然下降,抽汽量必然相应增加。
由附表可知,改造前、后#1高加抽汽压力下降约0.6MPa(改造前#2机超压运行,#1高加超压约0.4MPa),进水温度下降约5℃,温升下降约5℃,根据加热器自平衡原则,改造后#1高加的抽汽量必然增加,从而引起疏水温度上升、疏水端差增大,这也是#1高加疏水端差增大的主要原因。
同理#2四、结论及有关建议1、#2机通流部分改造后相同负荷下#2/#1高加温升分别下降2℃/5℃,给水温度下降约5℃,#3高加大修中已更换,温升未变化(因为大修前#3高加已堵管约15%)。
#2机组汽轮机高加端差异常的研究分析与治理摘要针对汽轮机#1、#2、#3高压加热器端差偏离设计值较大,通过负荷-水位试验研究,在不影响机组正常运行的情况下,从热控设备的角度提出并实施了重新标定高加水位基准零点的措施。
关键词汽轮机加热器端差研究治理引言我司#2机组高压加热器长期运行,高加上下端差长期严重偏离设计,严重影响抽气加热系统经济效率。
#2机组由300MW增容至330MW后,机组运行参数发生了较大的变化,而高加水位运行标准修正却相对滞后。
1.高压加热器原理及概况从汽轮机来的温度较高的抽汽,从加热器的蒸汽口进入,首先利用蒸汽的过热度加热加热器的给水,使给水出口温度进一步提高。
随后蒸汽进入饱和段,加热蒸汽再次释放大量的潜热并凝结成饱和疏水。
饱和疏水聚集在设备下部,并在压差的作用下靠虹吸原理进入疏冷段,饱和疏水放热加热刚进入加热器的给水,最后疏水成为过冷水经由疏水出口离开加热器。
我司#2机组高加系统由#1、#2、#3高压加热器和蒸汽冷却器组成,高压加热器疏水是按照#3#2#1的顺序逐级自流。
1.高加端差偏大原因分析在高加热器水位低到一定值时,缺失疏水冷却段水封,疏水混合蒸汽进入疏水冷却段,疏水温度偏高,经济性降低;由于疏水冷却段物理位置低于蒸汽冷却段出口,水封吹损或水位过低造成水封缺失后造成蒸汽回流,蒸汽冷却段来的高速蒸汽冲刷蒸汽凝结段、冷却段,在疏水冷却段形成水汽混合汽液两相流,冲刷疏水冷却段,管道因此强烈振动损坏。
由于加热器疏水是逐级自流,大量的水汽混合物冲入下一级加热器,大量的高温高压混合物减少了下一级加热器的抽汽量,降低了加热器的能效,使机组经济性,安全性能降低。
高压加热器低水位甚至无水运行,导致疏水端差大。
2.1高加本体材质因数高压加热器长期运行多年,管路老化严重,泄漏、堵管频繁导致加热面积越来越小,致使加热器的热传导变小,造成高压加热器上下端差偏大,但本项目从不影响机组正常运行的方面考虑,对于高加本体材质因数不做研究讨论。
一次#7高加疏水端差大处理过程分析一、#7高加疏水端差大时运行情况:6月12日,5号机开机温态开机投人高加后,发现#7高加疏水端差(即平常我们讲的加热器下端差)与开机同比偏大,当时#7高加水位设定值为670mm,水位模拟量显示680 mm左右,#7高加水位调整门开度为99%,#7高加事故放水门稍开,#6高加外置蒸冷器入口温度为200℃,而#7高加疏水温度居然也有202℃,而此时#7高加的人口温度为170℃,下端差为32℃,而且下端差有进一步增大的趋势。
这一情况的出现肯定是不正常的,监盘人员立即认真分析查找原因以进行处理。
二、疏水端差大的原因分析与调整导致#7高加下端差增大原因无非就是加热器水位低或者是相关表计显示异常,从上面#7高加运行情况看:#7高加水位调整门开度为99%,还有就是#7高加事故放水门有一定的开度,但是其水位显示正常,而加热器的下端差却偏大,只能说明加热器的水位显示与实际水位存在着一定的偏差,经就地核对一次水位计,显示#7高加无水位运行,根据这一情况及时将#将#7高加事故放水门关闭并将水位设定值增至700mm后,下端差逐渐变小,“#7高加水位OK”信号发信,此后高加工作正常。
下图为处理过程趋势图:(红线:#7高压加热器入口温度;黄线:#7高加疏水温度;绿线:#6高加外置四蒸冷器入口水温;白线:#7高压加热器水位。
)下表为#7高加投入后的相关参数:三、处理心得从这次高加的下端差偏大问题处理情况看,我们不难看出处理异常情况的方法有下面三方面:1)检查相关参数并进行核对,确定原因。
2)根据原因进行处理。
3)检查处理效果并验证分析的原因。
这次处理过程中,我们首先发现下端差大,继而分析#7高加运行的水位,疏水门的开度,就地核对等确定了真正原因,顺利的将问题处理了,高加的运行情况对机组的经济性有着举足轻重的作用,它的作用体现在两方面,其一是对锅炉运行的影响,其二是对汽轮机运行的影响。
高加退出运行,使进入锅炉的给水温度下降,如果要维持蒸发量不变,无疑要相应加强燃烧,使同比情况下锅炉的不可逆损失增加,同时排烟温度上升造成排烟损失增加;对于汽轮机而言,要严禁高加无水位和高水位运行,无水位运行不仅会造成排挤低能级抽汽,造成汽轮机效率下降,同时由于疏水管道两相流造成对加热器和管道的冲刷加剧严重影响加热器的使用寿命;高水位运行会有可能造成汽轮机进水事故的发生;因此,我们在平时的工作中要时刻关注它的运行情况,加强仪表分析和就地巡查工作,提高高加的投入率,为我厂330MW机组经济指标尽快赶上对标机组而贡献力量。
300MW机组高压加热器端差解析与经济性影响分析摘要:阐述了300MW机组高压加热器的基本原理及运行状况和存在的问题,分析高压加热器端差大的原因及端差对机组经济性的影响,提出改善高加运行状况的措施。
关键词:高压加热器端差 300MW机组异常分析经济性1 高压加热器概况高压加热器,是利用汽轮机的部分抽汽对给水进行加热的装置,其运行状况不仅影响到火电机组的经济性,还影响到机组的安全运行。
蓬莱电厂两台机组汽轮机的高压加热器采用三台单列卧式表面加热器。
1.1.高压加热器结构(1)过热蒸汽冷却段。
过热蒸汽冷却段用包壳板、套管和遮热板将该段管子封闭,内设隔板使蒸汽以一定的流速和方向流径传热面达到良好传热效果,又避免过热蒸汽与管板、壳体等直接接触,降低热应力,并使蒸汽保留有足够的过热度,以保证蒸汽离开该段时呈干燥状态,防止湿蒸汽冲蚀管子。
该段设有高加给水的出口部位。
(2)凝结段。
蒸汽凝结段是用蒸汽凝结时放出的汽化潜热加热给水,带有一定过热度的蒸汽从两侧沿整个管系向心流进整个凝结段管束。
不凝结气体由管束中心部位的排气管排出,排气管是沿整个凝结段设置,确保不凝结气体及时有效地排出高加,以防止降低传热效果。
(3)疏水冷却段。
疏水冷却段同样是用包壳板、挡板和隔板等将该段的加热管束全部密封起来。
带疏冷段的加热器,必须保持一个规定的液位,避免蒸汽漏到疏水冷却段中,造成汽水两相而冲蚀管子,并保证疏水端差满足设计要求。
1.2 高压加热器端差增大的危害如果高压加热器运行中的端差远高于设计值,以及由于内部损坏导致停运,对机组的热经济性影响很大。
另外还可能伴随着产生受热面超温、轴向推力增大,甚至汽轮机水冲击等严重危害机组安全的现象。
2 高压加热器端差异常增大原因分析2.1 高压加热器设计制造、检修维护、正常运行失误(1)高加设计、制造存在缺陷。
主要表现在:高加内部管系的管子与管板之间采用机械胀管、管口焊接的方式,胀接力与胀接长度不够,制造工艺质量较差。
高加相关知识汽轮机热力系统中的高加,是利用在汽轮机内已作过一部分功的蒸汽来加热给水,以减少排汽在凝汽器中的热损失,从而提高循环热效率。
高加能否正常投入运行,对火力发电厂的经济性和出力有很大影响,随着火力发电机组向大容量高参数发展,高加承受的给水压力和温度相应提高;在运行中还将受到机组负荷突变、给水泵故障、旁路切换等引起的压力和温度的骤变,这些都会给高加带来损害。
为此,除了在高加的设计、制造和安装时必须保证质量外,还要在运行维护等方面采取必要的措施,才能确保高加的长期安全运行。
加热器的设计特点1、过热蒸汽冷却段过热蒸汽冷却段是利用从汽轮机抽出的过热蒸汽的一部分显热来提高给水温度的;它位于给水出口流程侧,并有包壳板密闭。
采用过热蒸汽冷却段可提高离开加热器的给水温度,使它接近或略超过该抽汽压力下的饱和温度。
从进口接管进入的过热蒸汽在一组隔板的导向下以适当的线速度和质量速度均匀地流过管子,并使蒸汽保留有足够的过热度以保证蒸汽离开该段时呈干燥状态,这样,当蒸汽离开该段进入凝结段时,可防止湿蒸汽冲蚀和水蚀的损害。
2、凝结段凝结段是利用蒸汽冷凝时的潜热加热给水的。
一组隔板使蒸汽沿着加热器长度方向均匀地分布,起支撑传热管的作用。
进入该段的蒸汽,根据气(汽)体冷却原理,自动平衡,直至由饱和蒸汽冷凝成饱和的凝结水,并汇集在加热器的尾部或底部,收聚非凝结气体的排气管必须置于管束最低压力处以及壳体内容易和聚非冷凝气体处。
非冷凝气体的集聚影响了有效传热,因而降氏了效率并造成腐蚀。
3、疏水冷却段疏水冷却段是把离开凝结段的疏水的热量传给进入加热器的给水,而使疏水温度降至饱和温度以下。
疏水冷却段位于给水进口流程侧,并有包壳板密闭。
疏水温度降低后,当流向下一个压力较低的加热器时,减弱了在管道内发生汽化的趋势。
包壳板在内部与加热器壳侧的总体部分隔开,从端板和吸入口或进口端保持一定的疏水水位,使该段密闭。
疏水进入该段,由一组隔板引导流动,从疏水出口管疏出。
300MW机组高压加热器端差增大的原因及采取措施马岩昕(黑龙江华电齐齐哈尔热电有限公司)摘要:针对300MW供热发电机机组,高压加热器端差高的情况,详细分析了高压加热器端差升高的原因,并认真查找其存在的问题,进而制定了详细的改进措施。
改进措施实施后,高压加热器端差显著降低,机组的热经济性显著提高。
该方法可给同类型机组,高压加热器高问题提供参考。
关键字:高压加热器;端差高;显著降低某电厂两台机组均为哈尔滨汽轮机厂生产的C250/N300-16.7/537/537-73D型亚临界、一次中间再热、高中压合缸、双缸、双排汽、单轴、反动、凝汽式汽轮机。
八段抽汽分别供给三台高压加热器、一台除氧器、四台低压加热器作加热汽源,回热抽汽与加热器组成回热加热系统,回热加热器对锅炉给水进行逐级加热的过程,叫热力循环。
给水回热加热的意义在于采用给水回热以后,一方面,回热使汽轮机进入凝汽器的排汽量减少了,汽轮机冷源损失降低了;另一方面,加热提高了锅炉给水温度,使工质在锅炉内的平均吸热温度提高,使锅炉的传热温差降低,相应的减少了汽轮机的热耗量,提高汽轮机循环的热效率。
1 高压加热器的工作原理高压加热器的加热分三个过程:过热蒸汽冷却段:由于供给高加的蒸汽一般带有较高的过热度,热交换在过热蒸汽和给水之间进行时,给水就被加热到高于或等于蒸汽的饱和温度,这样就改进了传热效果。
过热蒸汽冷却段用包壳板、套管和遮热板将该段管子封闭,内设隔板使蒸汽以一定的流速和方向流径传热面达到良好传热效果,又避免过热蒸汽与管板、壳体等直接接触,降低热应力,并使蒸汽保留有足够的过热度,以保证蒸汽离开该段时呈干燥状态,防止湿蒸汽冲蚀管子。
该段设有高加给水的出口部位。
凝结段:由过热蒸汽冷却段来的带一定过热度的饱和蒸汽在此段和给水间进行热交换,通常该段的换热面积最大。
蒸汽凝结段是用蒸汽凝结时放出的汽化潜热加热给水,带有一定过热度的蒸汽从两侧沿整个管系向心流进整个凝结段管束。
关于高加端差经济分析
高加端差直接影响给水温度,进而影响机组的经济性运行。
影响高加端差大的直接原因为高加的水位。
水位高,虽然端差减小,但事故疏水启动调阀易全开;水位低,高加端差增大。
均影响机组经济性。
设计中,高加端差:#1高加5.0℃、#2高加5.5℃、#3高加5.6℃。
实际中,负荷在450MW时,#1高加7~8℃左右、#2高加7~8℃左右、#3高加7~16℃左右。
尤其是#3高加,正常疏水调阀调节线性不好,调节较缓慢,造成了高加水位波动较大。
在升负荷时,水位偏差较大(50mm),造成端差大或水位高。
#1、#2高加水位偏差在20mm左右。
建议:
1、#3高加远传水位计需进一步校对。
2、#3高加正常疏水调阀线性查,调节速度太慢,调节性能需加强。
高压加热器端差大原因论文【摘要】府谷电厂高加下端差大的问题主要出在:汽轮机回热系统高加的要求和高加生产厂家本身设计存在较大偏差。
基于当前给水温度基本满足设计要求的情况下,平时通过运行调整尽量维持高加较高效率运行。
同时我们还要参看其他空冷同类型机组高加运行情况,为二期设备的选型提供参考。
一、府谷电厂简介陕西省府谷电厂煤电一体一期(2×600MW)工程位于陕西省榆林市府谷县境内,规划容量(2×600MW+4×1000MW)机组,全部采用空冷机组。
二、给水回热系统存在的问题府谷电厂600MW的给水加热系统共设有3台高加、一台除氧器,3台低加,运行中我们发现,#1机的#1、2高加,端差偏大,#3高加下端差不正常的偏低;#2机组的#1、2、3高加下端差均偏大,尤其#2机#3高加一直在18℃以上。
高加端差有上端差:加热器进汽压力下的饱和温度与出水温度的差值称为上端差;下端差:正常疏水温度与进水温度的差值称为下端差。
造成高加下端差增大的原因一般有以下几个方面:1、高加长期低水位运行,使高加疏水不能充分冷却; 2、高加的水侧的水室存在短路现象;3、高加内部积聚空气使传热效率降低;4、高加入口三通旁路电动门泄漏或进口联程阀开不到位造成小旁路泄漏,表现为#1高加出口给水温度比高加后给水母管温度高;5、给水品质不合格,高加管束表面积盐,影响换热效果6、温度测点是否准确。
高加下端差过大带来的问题:加热器下端差增大、疏水温度未得到应有的冷却,致使蒸汽在本级加热器中的放热程度降低,加热用汽量增大;同时,疏水温度的提高及加热用汽量的增大又导致下一级加热器用汽量的减少,即形成高品位抽汽增加,低品位抽汽减少,带来机组经济性的降低。
三、对高加运行中存在问题的分析府谷电厂高加采用哈尔滨锅炉厂生产的型号为单列卧式U型管表面加热。
下面我们对于#1、2机高加下端差大的问题,我们逐一对原因进行分析排除:1、由于#1、2机投产以来就一直存在这种问题,且两台机大修过程中对高加进行彻底检查,均未发现异常情况,基本可以排除,高加结垢和内部损坏的原因。
高加的三个段
高加内部疏水段分为三个部分:过热蒸汽冷却段、饱和蒸汽凝结段、疏水冷却段。
过热蒸汽冷却段:过热蒸汽冷却段位于给水流动的出口端,由两组折型包壳钢板包围着给水出口侧的全部管段组成。
该段蒸汽入口处设置一块不锈钢防冲板,避免蒸汽直接冲刷管束,造成管束漏泄。
该段中配置导向隔板,使蒸汽以规定的流速均匀通过管束,传热至给水流程的最后一段,提高给水温度,降低端差。
在这一段中,蒸汽不凝结成水,只是降低了过热度,进入凝结段,也防止湿蒸汽进入凝结段对凝结段管束冲刷。
饱和蒸汽凝结段:从过热蒸汽冷却段流出的蒸汽进入蒸汽凝结段,凝结段主要是利用蒸汽冷凝时放出汽化潜热来加热给水,一组隔板使蒸汽沿着加热器长度方向均匀地分布。
加热器在凝结段中的隔板形式是一律在上部留出一定的蒸汽通道,让蒸汽均匀自上而下流动并逐渐凝结,这是因为这部分是属于工质由汽态转变成液态时的对流换热,此时工质的流速大小对换热已不是太重要,这一组隔板主要是起支承管束和防振作用。
疏水冷却段:疏水冷却段位于给水进口流程侧,采用内置式全流量虹吸式结构;具有结枃简单、紧凑可靠、只需小的静压头、凝结疏
水不浸没传热面、利用全部传热面等特点。
它由包壳板密封流程的所有管子,并用一块较厚的端板将冷凝段与疏水冷却段分隔开来。
端板的作用是当蒸汽进入到端板的管孔和管子外表面的间时,被凝结而形
成一个水密封,以阻止蒸汽泄漏到该段内。
琉水段的入口在正常水水位之下,使蒸汽无法通过。
上汽超超临界660MW机组高加端差大治理探讨发布时间:2022-07-24T06:47:49.245Z 来源:《中国电业与能源》2022年5期3月作者:路飞孙忠钢[导读] 江苏某电厂两台660MW机组自投产以来,高加端差与标准值偏差较大,路飞孙忠钢国能陈家港发电有限公司江苏省盐城市224000摘要:江苏某电厂两台660MW机组自投产以来,高加端差与标准值偏差较大,给水温度始终达不到标准值,影响机组运行效率,引起高加端差增大的原因是多方面的,本文从高加结构设计、系统管道阀门、水位控制等方面探讨造成高加端差偏离标准值的原因,有效提高给水温度,以增加机组运行效率。
关键词:660MW;超超临界机组;高加端差;机组效率1、引言高压加热器是火力发电厂重要的辅助设备之一,它运行的优劣对机组的经济性有直接的影响。
我公司2号机组3台高加在运行中观察发现,高加下端差偏离标准值较多,影响了机组的经济运行,尤其是3号高加,下端差偏离标准值最大,希望找出原因最大限度地提高机组的经济性。
2、设备概况江苏某电厂一期2*660MW超超临界机组,采用的三台高压加热器均为上海动力设备有限公司生产。
高压加热器是一种表面式加热器,由于被加热水来自给水泵出口,其高压加热器的给水压力不但比低压加热器的管侧压力要高的多,正是由于这一点,高压加热器在结构、系统、保护装置等方面比低压加热器都有更高的要求。
3、现状调查3.1目前2号机组3台高加下端差情况如下:由表中数据可以看出,2、3号高加端差明显高出标准值,尤其是3号高加,与标准值偏差较大。
3.2 2号机组1、2、3段抽汽设计参数及实际参数如下:由表中数据可以看出,2号机组1、2、3段抽汽设计参数与实际参数基本相符。
4、原因分析4.1 高加本体结构问题江苏某电厂2号机组高压加热器为上海动力设备有限公司生产,三个高压加热器均为卧式U型管管板式结构,它们的传热区段分为过热蒸汽冷却段、蒸汽凝结段、疏水冷却段三段组成,其结构基本相同。
高加端差有上端差(加热器进气压力下的饱和温度与出水温度的差值称为上端差,也称传热端差)和下端差(正常疏水温度与进水温度的差值称为下端差)
什么是高压加热器的上、下端差上端差过大、下端差过小有什么危害
(1)
上端差是指高压加热器抽汽饱和温度与给水出水温度之差;下端差是指高加疏水与高加进水的温度之差;
(2)
上端差过大,为疏水调节装置异常,导致高加水位高,或高加泄漏,减少蒸汽和钢管的接触面积,影响热效率,严重时会造成汽机进水;
(3)
下端差过小,可能为抽汽量小,说明抽汽电动门及抽汽逆止门未全开;下端差大原因或疏水水位低,部分抽汽未凝结即进入下一级,排挤下一级抽汽,影响机组运行经济性,另一方面部分抽汽直接进入下一级,导致疏水管道振动。
正常运行中,排除加热器泄漏的可能,引起加热器端差大(一般指下端差)的最大原因是加热器水位低以及内部积空气。
那么水位低将引起该高加疏水带汽,减少了抽汽的放热时间,即还未对给水充分换热就随同疏水被带走了,影响了回热热效率。
加热器中积聚过多空气同样严重影响换热,因为空气是不可凝结气体,它排挤了一部分凝结放热量,故回热效率降低。