三角函数与圆的专题训练题
- 格式:docx
- 大小:415.16 KB
- 文档页数:5
圆与相像三角形、解直角三角形及二次函数的综合种类一:圆与相像三角形的综合1.如图, BC 是⊙ A 的直径,△ DBE的各个极点均在⊙ A 上, BF⊥ DE于点 F.求证: BD·BE= BC·BF.2.如图,在 Rt△ ABC中,∠ ACB= 90°,以 AC为直径的⊙ O 与 AB 边交于点 D,过点 D 作⊙O 的切线,交 BC 于点 E.(1)求证:点 E 是边 BC的中点;求证:2=BD·BA;(2)BC(3)当以点 O, D, E,C 为极点的四边形是正方形时,求证:△ABC是等腰直角三角形.解:(1) 连接 OD,∵ DE为切线,∴∠ EDC+∠ ODC=90° .∵∠ ACB=90°,∴∠ ECD+∠ OCD= 90° .又∵ OD= OC,∴∠ ODC=∠ OCD,∴∠ EDC=∠ ECD,∴ ED= EC.∵AC 为直径,∴∠ADC= 90°,∴∠ BDE+∠ EDC= 90°,∠ B+∠ECD= 90°,∴∠ B=∠ BDE,∴ ED= EB,∴ EB=EC,即点 E 为边 BC的中点(2)∵ AC为直径,∴∠ ADC=∠ ACB=90° .又∵∠ B=∠ B,∴△ ABC∽△ CBD,∴ABBC= BCBD,∴B C2= BDBA(3)当四边形 ODEC为正方形时,∠ OCD= 45° .∵AC 为直径,∴∠ ADC= 90°,∴∠ CAD=90°-∠ OCD= 90°- 45°= 45°,∴ Rt△ ABC 为等腰直角三角形种类二:圆与解直角三角形的综合3.如图,在△ ABC中,以 AC 为直径作⊙ O 交 BC 于点 D,交 AB 于点 G,且 D 是 BC 的中点,DE⊥ AB,垂足为点 E,交 AC 的延伸线于点 F.(1)求证:直线EF是⊙ O 的切线;(2)已知 CF= 5, cosA=25,求 BE 的长.解: (1)连接 OD.∵ CD=DB,CO= OA,∴ OD 是△ ABC的中位线,∴OD∥ AB, AB=2OD.∵ DE⊥ AB,∴ DE⊥OD,即 OD⊥ EF,∴直线 EF是⊙ O 的切线(2)∵ OD∥ AB,∴∠ COD=∠ A,∴ cos∠ COD= cosA= 25.在 Rt△ DOF中,∵∠ ODF= 90°,∴ cos∠ FOD= ODOF= 25.设⊙ O 的半径为 r,则 rr + 5= 25,解得 r= 103,∴ AB= 2OD= AC= 203.在 Rt△ AEF中,∵∠ AEF= 90°,∴ cosA= AEAF=AE5+ 203=25,∴ AE= 143,∴ BE=AB- AE=203- 143= 24.(2015 ·资阳 )如图,在△ ABC中, BC是以 AB 为直径的⊙ O 的切线,且⊙ O 与 AC 订交于点D, E 为 BC 的中点,连接 DE.(1)求证: DE 是⊙ O 的切线;(2)连接 AE,若∠ C= 45°,求 sin∠ CAE的值.解: (1)连接 OD,BD,∵ OD= OB,∴∠ ODB=∠ OBD.∵ AB 是直径,∴∠ ADB= 90°,∴∠ CDB= 90° .∵ E为 BC的中点,∴ DE=BE,∴∠ EDB=∠ EBD,∴∠ ODB+∠ EDB=∠ OBD+∠ EBD,即∠ EDO=∠ EBO.∵ BC 是以 AB 为直径的⊙ O 的切线,∴ AB⊥ BC,∴∠ EBO=90°,∴∠ ODE= 90°,∴ DE 是⊙ O 的切线(2)过点 E 作 EF⊥ CD于点 F,设 EF= x,∵∠ C=45°,∴△ CEF,△ABC 都是等腰直角三角形,∴CF= EF= x,∴ BE= CE= 2x,∴AB= BC= 22x.在 Rt△ ABE中, AE= AB2+ BE2= 10x,∴ sin∠ CAE= EFAE= 10105.如图,△ ABC 内接于⊙ O,直径 BD 交 AC 于点 E,过点 O 作 FG⊥ AB,交 AC 于点 F,交 AB 于点 H,交⊙ O 于点 G.(1)求证: OF·DE= OE·2OH;(2)若⊙ O 的半径为12,且 OE∶OF∶ OD= 2∶3∶ 6,求暗影部分的面积. (结果保存根号 )解: (1)∵ BD 是直径,∴∠ DAB= 90° .∵ FG⊥ AB,∴ DA∥ FO,∴△FOE∽△ADE,∴FOAD=OEDE,即OFDE=OEAD.∵O 是BD 的中点, DA∥ OH,∴ AD= 2OH,∴ OFDE= OE2OH(2)∵⊙ O 的半径为12,且 OE∶ OF∶ OD=2∶ 3∶ 6,∴ OE= 4, ED=8,OF= 6,∴ OH= 6.在 Rt△OBH 中,OB= 2OH,∴∠ OBH= 30°,∴∠ BOH= 60°,∴ BH= BOsin60°= 12× 32= 63,∴ S 暗影= S 扇形 GOB-S△OHB=60×π× 122360- 12× 6×63= 24π- 183种类三:圆与二次函数的综合6.如图,在平面直角坐标系中,已知 A(- 4,0), B(1,0),且以 AB 为直径的圆交 y 轴的正半轴于点 C(0,2),过点 C作圆的切线交 x 轴于点 D.(1)求过 A,B, C 三点的抛物线的分析式;(2)求点 D 的坐标;(3)设平行于 x 轴的直线交抛物线于E,F 两点,问:能否存在以线段EF为直径的圆,恰巧与x轴相切若存在,求出该圆的半径,若不存在,请说明原因.解: (1)y=- 12x2- 32x+2(2)以 AB 为直径的圆的圆心坐标为O′ (-32,0),∴O′ C= 52, O′ O= 32.∵ CD为圆 O′的切线,∴O′ C⊥ CD,∴∠ O′CO+∠ DCO= 90° .又∵∠CO′ O+∠ O′ CO=90°,∴∠ CO′ O=∠DCO,∴△ O′ CO∽△ CDO,∴ O′ OOC= OCOD,∴322= 2OD,∴ OD= 83,∴点 D 的坐标为 (83,0)(3)存在.抛物线的对称轴为直线x=- 32,设满足条件的圆的半径为|r| ,则点 E 的坐标为 (- 32+ r, r)或 F(- 32-r , r),而点 E 在抛物线y =- 12x2- 32x+2 上,∴ r=- 12(- 32+ |r|)2 - 32(- 32+ |r|) + 2,∴ r1=- 1+ 292, r2=-1- 292(舍去 ).故存在以线段EF 为直径的圆,恰巧与x 轴相切,该圆的半径为-1+ 2927.如图,抛物线y=ax2+ bx- 3 与 x 轴交于 A, B 两点,与y 轴交于点C,经过 A,B, C 三点的圆的圆心抛物线的极点为M(1 ,m)恰幸亏此抛物线的对称轴上,E.⊙ M的半径为.设⊙ M与y 轴交于点D,(1)求 m 的值及抛物线的分析式;(2)设∠ DBC=α,∠ CBE=β,求 sin( α-β)的值;(3)研究坐标轴上能否存在点 P,使得以 P, A, C 为极点的三角形与△ BCE相像若存在,请指出点 P 的地点,并直接写出点 P 的坐标;若不存在,请说明原因.解: (1)由题意,可知 C(0,- 3),- b2a=1,∴抛物线的分析式为 y= ax2- 2ax- 3(a> 0).过点 M 作 MN ⊥y 轴于点 N,连接 CM,则 MN = 1, CM= 5,∴ CN= 2,于是 m=- 1.同理,可求得 B(3,0),∴ a× 32- 2a× 3- 3=0,解得 a= 1. ∴抛物线的分析式为 y= x2- 2x-3(2)由 (1)得, A(-1 ,0), E(1,- 4), D(0, 1),∴△ BCE为直角三角形, BC=32, CE= 2,∴OBOD=31= 3, BCCE= 322=3,∴ OBOD= BCCE,即 OBBC= ODCE,∴ Rt△BOD∽ Rt△BCE,得∠ CBE=∠ OBD=β,所以 sin(α-β )=sin(∠ DBC-∠ OBD)= sin∠ OBC= COBC= 22(3)明显 Rt△ COA∽ Rt△ BCE,此时点 O(0, 0).过点 A 作 AP2⊥ AC 交 y 轴的正半轴于点 P2,由 Rt△ CAP2∽Rt△ BCE,得 P2(0,13).过点 C 作 CP3⊥ AC交 x 轴的正半轴于点 P3,由 Rt△P3CA∽ Rt△ BCE,得 P3(9,0).故在座标轴上存在三个点 P1(0, 0),P2(0, 13),P3(9, 0),使得以 P, A, C为极点的三角形与△ BCE相像。
高中数学-单位圆与三角函数线练习题5分钟训练(预习类训练,可用于课前) 1.若单位圆的圆心与坐标原点重合,有下列结论:①单位圆上任意一点到原点的距离都是1;②单位圆与x 轴的交点为(1,0);③过点(1,0)的单位圆的切线方程为x=1;④与x 轴平行的单位圆的切线方程为y=1.以上结论正确的个数为( )A.1B.2C.3D.4 解析:单位圆与x 轴的交点为(1,0)和(-1,0);与x 轴平行的单位圆的切线方程为y=±1,所以②④错误.显然①③正确. 答案:B2.对角α的正弦线叙述错误的是( ) A.正弦线的起点为坐标原点 B.正弦线为有向线段C.正弦线的长度为不大于1的正数D.当角α的终边不在坐标轴上时,正弦线所在直线平行于y轴 解析:正弦线的长度有可能为0,所以C 答案错误. 答案:C3.如图1-1-2,PM⊥x 轴,AT⊥x 轴,则α的正弦线、余弦线、正切线分别是____________、____________、____________,其中OM=___________,MP=____________,AT=____________.图1-1-2 图1-1-3解析:根据正弦线、余弦线、正切线的定义作出. 答案:MP OM AT cosα sinα tanα4.如图1-1-3,分别作出角β的正弦线、余弦线、正切线,并比较角β的正弦值、余弦值、正切值的大小.解:根据正弦线、余弦线、正切线的定义作出下图.正弦线、余弦线、正切线分别是''P M 、'OM 、'AT ,并且sinβ>cosβ>tanβ. 10分钟训练(强化类训练,可用于课中) 1.若-43π<α<2π-,从单位圆中的三角函数线观察sinα、cosα、tanα的大小是( )图1-1-4A.sinα<tanα<cosαB.tanα<sinα<cosαC.cosα<sinα<tanαD.sinα<cosα<tanα 解析:在单位圆中,作出43π-<α<2π-内的一个角及其正弦线、余弦线、正切线,|OM |<|MP |<|AT |,考虑方向可得MP <OM <AT .答案:D2.若角α的正切线位于第一象限,则角α属于( )A.第一象限B.第一、二象限C.第三象限D.第一、三象限解析:由正切线的定义知,当角α是第一、三象限角时,正切线都在第一象限. 答案:D3.在(0,2π)内,使sinx >cosx 成立的x 的取值范围为( )A.(4π,2π)∪(π,45π) B.(4π,π)C.(4π,45π)D.(4π,π)∪(45π,23π)解析:在单位圆中画三角函数线,如图所示,要使在(0,2π)内sinx >cosx ,则x∈(4π,45π).答案:C4.如果cosα=cosβ,则角α与β的终边除可能重合外,还有可能( ) A.关于x 轴对称 B.关于y 轴对称 C.关于直线y=x 对称 D.关于原点对称 解析:利用单位圆中的余弦线即得,如图.答案:A5.利用三角函数线证明|sinα|+|cosα|≥1.证明:当角α的终边在坐标轴上时,正弦线(余弦线)变成一个点,而余弦线(正弦线)的长等于r (r=1),所以|sinα|+|cosα|=1,当角α的终边落在四个象限时,如图,利用三角形两边之和大于第三边有|sinα|+|cosα|=|MP|+|OM|>1,综上有|sinα|+|cosα|≥1.6.设43π<α<π,角α的正弦线、余弦线、正切线的数量分别为a 、b 、c ,由图比较a 、b 、c 的大小.解:如图所示,|MP|<|OM|<|AT|,而a=|MP|,b=-|OM|,c=-|AT|,∴a>b >c.30分钟训练(巩固类训练,可用于课后)1.(安徽合肥统考,1)sin4·tan7的值( )A.大于0B.小于0C.等于0D.不大于0解析:4弧度的角是第三象限角,7弧度的角是第一象限角,由单位圆中的正弦线和正切线知sin4<0,tan7>0,所以sin4·tan7<0. 答案:B 2.若θ∈(0,2π),则sinθ+cosθ的一个可能值是( ) A.32 B.72πC.224-D.1解析:由θ∈(0,2π)知sinθ+cosθ>1,A 、B 、C 、D 四个选项中仅有224->1,故选C.答案:C3.适合cosα≥21的角α的集合是( ) A.[2kπ+3π,2kπ+35π](k∈Z ) B.[2kπ+3π,2kπ+32π](k∈Z )C.[2kπ-3π,2kπ+3π](k∈Z )D.[2kπ+3π,2kπ-3π](k∈Z )解析:在单位圆中作图,如图,α的范围是2kπ-3π≤α≤2kπ+3π.答案:C4.若sinα=sinβ,则角α与β的终边除可能重合外,还有可能( ) A.关于x 轴对称 B.关于y 轴对称 C.关于直线y=x 对称 D.关于原点对称 解析:利用单位圆中的正弦线即得,如图.答案:B5.分别作出下列各角的正弦线、余弦线、正切线:(1)4π;(2)32π-.解:如图,正弦线:MP ,余弦线:OM ,正切线:AT .(1) (2)6.利用三角线,求满足sinx≤21的角x 的集合. 解:由图可知,值为21的正弦线11P M 和22P M ,易得出∠M 1OP 1=6π,∠M 2OP 2=65π,故满足sinx≤21的x 的集合为{x|2kπ+65π≤x≤2kπ+613π,k∈Z }.7.求函数y=x cos 21-的定义域. 解:如图,因为1-2cosx≥0,所以cosx≤21,所以x∈[2kπ+3π,2kπ+35π](k∈Z ).8.已知关于x 的方程(2sinα-1)x 2-4x+4sinα+2=0有两个不相等的正根,试求角α的取值范围.解:设方程的两根为x 1、x 2,这个方程有两个不相等正根必满足的条件为⎪⎩⎪⎨⎧>•>+>∆,0,0,02121x x x x 即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>-+>->+---.01sin 22sin 4,01sin 24,0)2sin 4)(1sin 2(4)4(2ααααα 化简得⎪⎪⎪⎩⎪⎪⎪⎨⎧>-<><<-.21sin 121sin ,21sin ,23sin 23αααα或故21<sinα<23.利用三角函数线,在单位圆中标出满足条件的角α的终边位置,即图中两阴影部分的交集,故2kπ+6π<α<2kπ+3π或2kπ+32π<α<2kπ+65π,k∈Z ,即α的取值范围是{α|2kπ+6π<α<2kπ+3π,k∈Z }∪{α|2kπ+32π<α<2kπ+65π,k∈Z }.9.设α是第二象限的角,作α的正弦线、余弦线、正切线,由图证明cos 2α+sin 2α=1. 证明:如图,OM =cosα,MP =sinα,在Rt△MOP 中,|OM|2+|MP|2=|OP |2=1,所以cos 2α+sin 2α=1.10.设α为任意角,求|sinα|+|cosα|的取值范围.解:由正弦线、余弦线及三角形三边关系,可知|sinα|+|cosα|的取值范围为[1,2]. 11.已知α∈(0,2),求证:sinα<α<tanα. 证明:在单位圆中,利用三角函数线的定义,有MP =sinα,AT =tanα.又由α=,显然S △OAP <S扇形OAP<S △OAT ,即21·OA ·MP <21·OA ·<21··AT .化简得<α<,所以sinα<α<tanα.。
《单位圆与三角函数线》习题1某班在布置新年联欢会会场时,需要将直角三角形彩纸裁成长度不等的矩形彩条。
如图,在Rt△ABC中,∠C=90°,AC=30cm,AB=50cm,依次裁下宽为1cm的矩形纸条a1、a2、a3,若使裁得的矩形纸条的长都不小于5cm,则每张直角三角形彩纸能裁成的矩形纸条的总数是 A.24 B.25 C.26 D.272.如图,AB是斜靠在墙壁上的长梯,梯脚B距墙1.6米,梯上点D距离墙1.4米,BD长0.55米,则梯子的长为A.3.85米 B.4.00米 C.4.40米 D.4.50米3.国际奥运会会旗上的图案是由代表五大洲的五个圆环组成(如图),每个圆环的内、外圆直径分别为8和10,图中两两相交成的小曲边四边形(黑色部分)的面积相等,已知五个圆环覆盖的面积是122.5平方单位,请你们计算出每个..小曲边四边形的面积为__________________平方单位(π取3.14)。
4.如图,是一块在电脑屏幕上出现的矩形色块图,由6个颜色不同的正方形组成,设中间最小的一个正方形边长为1,则这个矩形色块图的面积为___________.5.已知:如图2-6,C城市在B城市的正北方向,两城市相距100km,计划在两城市间修筑一条高速公路(即线段BC)。
经测量,森林保护区A在B城市的北偏东40°的方向上,又在C城市的南偏东56°的方向上,已知森林保护区A的范围是以A为圆心,半径为50km的圆。
问:计划修筑的这条高速公路会不会穿越保护区?为什么?6. 如图,有一块铁皮,拱形边缘呈抛物线状,MN=4分米,抛物线顶点处到边MN的距离是4分米,要在铁皮上截下一矩形ABCD,使矩形顶点B、C落在边MN上,A、D落在抛物线上,问这样截下的矩形铁皮的周长能否等于8分米?7.在某高新技术开发区中,相距200米的A,B两地的中点O处有一个精密仪器研究所,为保证研究所的正常工作,在其周围50米内不得有机动车辆通过。
高中三角函数专题练习题(附答案)一、填空题1.如图,点C 为某沿海城市的高速公路出入口,直线BD 为海岸线,512BAC π∠=,BD AB ⊥,BC 是以A 为圆心,半径为1km 的圆弧型小路.该市拟修建一条从C 通往海岸的观光专线CP PQ -(新建道路PQ ,对道路CP 进行翻新),其中P 为BC 上异于B C ,的一点,PQ 与AB 平行,设012PAB θθ5π⎛⎫∠=<<⎪⎝⎭,新建道路PQ 的单位成本是翻新道路CP 的单位成本的2倍.要使观光专线CP PQ -的修建总成本最低,则θ的值为____________.2.已知球O 的表面积为16π,点,,,A B C D 均在球O 的表面上,且,64ACB AB π∠=则四面体ABCD 体积的最大值为___________. 3.在ABC 中,7AB =3BC =1cos 7BAC ∠=,动点D 在ABC 所在平面内且2π3BDC ∠=.给出下列三个结论:①BCD △3②线段AD 的长度只有最小值,无最大值,且最小值为1;③动点D 的轨迹的长度为8π3.其中正确结论的序号为______.4.在长方体1111ABCD A B C D -中,13AB =,5AD =,112AA =,过点A 且与直线CD 平行的平面α将长方体分成两部分.现同时将两个球分别放入这两部分几何体内,则在平面α变化的过程中,这两个球的半径之和的最大值为___________. 5.若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________.6.设△A n B n C n 的三边长分别为a n ,b n ,c n ,n =1,2,3…,若11b c >,1112b c a +=,11,2n n n n n a c a a b +++==,12n n n a bc ++=,则n A ∠的最大值是________________.7.已知向量a 与b 的夹角为θ,sin θ=||4a b -=,向量,c a c b --的夹角为2π,||23c a -=,则a c ⋅的最大值是___________.8.已知P 是直线34130x y ++=上的动点,PA ,PB 是圆()()22111x y -+-=的切线,A ,B 是切点,C 是圆心,那么四边形PACB 面积的最小值是________.9.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b =,2B C =,则a c +的取值范围为________.10.函数ππ5sin (1510)55y x x ⎛⎫=+-≤≤ ⎪⎝⎭的图象与函数25(1)22x y x x +=++图象的所有交点的横坐标之和为___________.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6 B .-8C .-9D .-1212.设150a =,112ln sin cos 100100b ⎛⎫=+ ⎪⎝⎭,651ln 550c =,则a ,b ,c 的大小关系正确的是( ) A .a b c << B .a c b << C .b c a <<D .b a c <<13.把函数()sin y x x =∈R 的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( )A .sin 23y x π⎛⎫=- ⎪⎝⎭,x ∈RB .sin 26x y π⎛⎫=+ ⎪⎝⎭,x ∈RC .2sin 23x y π⎛⎫=+⎪⎝⎭,x ∈R D .sin 23y x π⎛⎫=+ ⎪⎝⎭,x ∈R14.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=,则a c +的取值范围是( )A .⎝B .32⎛ ⎝C .⎣D .32⎡⎢⎣15.在三棱锥A BCD -中,2AB AD BC ===,CD =AC =3BD =,则三棱锥外接球的表面积为( ) A .927πB .9πC .1847πD .18π16.已知函数()sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,66f x f x ππ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,22f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,下列四个结论:①4πϕ=②93()2k k N ω=+∈ ③02f π⎛⎫-= ⎪⎝⎭④直线3x π=-是()f x 图象的一条对称轴其中所有正确结论的编号是( ) A .①②B .①③C .②④D .③④17.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>≤ ⎪⎝⎭,已知,06π⎛⎫- ⎪⎝⎭为()f x 图象的一个对称中心,直线1312x π=为() f x 图象的一条对称轴,且() f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递减.记满足条件的所有ω的值的和为S ,则S 的值为( ) A .125 B .85C .165D .18518.函数()sin()(0)6f x x πωω=+>在区间52[,]63ππ-上单调递增,且存在唯一05[0,]6x π∈,使得0()1f x =,则ω的取值范围为( ) A .11[,]52B .21[,]52C .14[,]55D .24[,]5519.已知函数()2sin cos f x x x x =,给出下列结论:①()f x 的图象关于直线π12x =对称;②()f x 的值域为[]22-,;③()f x 在π7π,1212⎡⎤⎢⎥⎣⎦上是减函数;④0是()f x 的极大值点.其中正确的结论有( ) A .①④B .②③C .①②③D .①②④20.已知函数22sin sin ,[1,1]()22,(1,)x x a a x f x x ax a x ⎧++-∈-=⎨-+∈+∞⎩若关于x 的不等式()0f x 对任意[1,)x ∈-+∞恒成立,则实数a 的范围是( ) A .[0,2]B .(,0][2,)-∞+∞C .(,0][1,2]-∞D .[0,1][2,)⋃+∞三、解答题21.已知向量()()()3cos ,cos ,sin ,cos 0a x x b x x ωωωωω=-=>,若函数()12f x a b =⋅+的最小正周期为π. (1)求()f x 的解析式;(2)若关于x 的方程22cos 22cos 23301212a f x x f x x a ππ⎡⎤⎡⎤⎛⎫⎛⎫++-+--+= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦在04π⎡⎤⎢⎥⎣⎦,有实数解,求实数a 的取值范围.22.将函数2sin 3y x =+的图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再将所得的图象向右平移3π个单位长度后得到函数()f x 的图象. (1)写出函数()f x 的解析式;(2)若,36x ππ⎡⎤∈-⎢⎥⎣⎦时,22()2()()1g x f x mf x m =-+-,求()g x 的最小值min ()g x .23.将函数()sin 2g x x =向左平移4π个单位长度,得到函数()y f x =的图象,设函数()()()h x f x g x =+. (1)对函数()h x 的解析式;(2)若对任意,,2παβπ⎡⎤∈⎢⎥⎣⎦,不等式()()a h h b αβ≤-≤恒成立,求b a -的最小值;(3)若26x h t π⎛⎫-= ⎪⎝⎭在[)0,2π内有两个不同的解1x ,2x ,求()12cos x x -的值(用含t 的式子表示).24.已知函数2()6f x x ax =--(a 为常数,a R ∈).给你四个函数:①1()21g x x =+;②2()3xg x =;③32()log g x x =;④4()cos g x x =. (1)当5a =时,求不等式2(())0f g x ≥的解集; (2)求函数4(())y f g x =的最小值;(3)在给你的四个函数中,请选择一个函数(不需写出选择过程和理由),该函数记为()g x ,()g x 满足条件:存在实数a ,使得关于x 的不等式(())0f g x ≤的解集为[,]s t ,其中常数s ,t R ∈,且0s >.对选择的()g x 和任意[2,4]x ∈,不等式(())0f g x ≤恒成立,求实数a 的取值范围.25.函数()()sin tan f x x ω=,其中0ω≠. (1)讨论()f x 的奇偶性;(2)1ω=时,求证:()f x 的最小正周期是π;(3)()1.50,1.57ω∈,当函数()f x 的图像与()112g x x x ⎛⎫=+ ⎪⎝⎭的图像有交点时,求满足条件的ω的个数,说明理由.26.函数()()2sin f x x ωϕ=+(其中0,2πωϕ><),若函数()f x 的图象与x 轴的任意两个相邻交点间的距离为2π,且函数()f x 的图象过点()0,1. (1)求()f x 的解析式; (2)求()f x 的单调增区间:(3)求()()2sin f x x ωϕ=+在,02π⎛⎫- ⎪⎝⎭的值域. 27.已知向量33cos ,sin 22a x x ⎛⎫= ⎪⎝⎭,cos ,sin 22x x b ⎛⎫=- ⎪⎝⎭,且0,2x π⎡⎤∈⎢⎥⎣⎦(1)求a ·b 及||a b +;(2)若3()||2f x a b a b =⋅-+,求()f x 的最小值28.已知函数()()()2331?0f x cos x sin x cos x ωωωω=+-->,()12 1()3f x f x ==-,,且12min 2x x π-=.(1)求()f x 的单调递减区间; (2)若()237,,,sin 33235,25f ππβπαβαβ⎛⎫⎛⎫∈-=+=- ⎪ ⎪⎝⎭⎝⎭,求2f α⎛⎫⎪⎝⎭的值. 29.已知函数2()2cos 23sin cos f x x x x =+. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若()f x 在区间,6m π⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,求m 的取值范围.30.在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且32sin a c A = (Ⅰ)确定角C 的大小: (Ⅱ)若c =,且△ABC 的面积为,求a +b 的值.【参考答案】一、填空题1.6π23(21)+ 3.①③4.165385.4242[ 6.π3##60°7.258159.(2,310.-7二、单选题11.A 12.D 13.D 14.A 15.A 16.B 17.A 18.B 19.B 20.C 三、解答题21.(1)()sin(2)6f x x π=-;(2)1a 或732a +-. 【解析】(1)根据向量数量积的坐标运算及三角公式,化简可得()f x 的解析式; (2)先化简()sin 212f x x π+=,利用换元法,设sin 2cos2t x x =-,把目标方程转化为关于t 的方程,分离参数后进行求解.【详解】 (1)因为()()()3cos ,cos ,sin ,cos 0a x x b x x ωωωωω=-=>,所以()2111cos 213sin cos 22222x f x a b x x x x ωωωωω+=⋅+=-+=-+ sin(2)6x πω=-.因为()f x 的最小正周期为π,所以22ππω=,即1ω=,所以()sin(2)6f x x π=-. (2)由(1)可知()sin 212f x x π+=.因为2(sin 2cos 2)x x +22sin 22sin 2cos 2cos 2x x x x =++12sin 2cos2x x =+, 222(sin 2cos 2)sin 22sin 2cos 2cos 2x x x x x x -=-+12sin 2cos2x x =-,所以22(sin 2cos2)12sin 2cos211(sin 2cos2)x x x x x x ⎡⎤+=+=+--⎣⎦.令sin 2cos2t x x =-,则22(sin 2cos 2)2x x t +=-,则方程22cos 22cos 23301212a fx x f x x a ππ⎡⎤⎡⎤⎛⎫⎛⎫++-+--+= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦可化为()2222330a t t a ---+=,即22230at t a +--=.因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以2,444x πππ⎡⎤-∈-⎢⎥⎣⎦,所以sin 2cos 22[1,1]4t x x x π⎛⎫=-=-∈- ⎪⎝⎭.所以由题意可知,方程22230at t a +--=在[1,1]t ∈-时有解; 令2()223g t at t a =+--,当0a =时,()23g t t =-,由()0g t =得32t =(舍);当0a ≠时,则22230at t a +--=可化为212132t a t-=-,令22132t y t-=-,[1,1]t ∈-,设32u t =-,则1(3),[1,5]2t u u =-∈,2212(3)11(3)222u u y u u⎡⎤--⎢⎥--⎣⎦==⨯1762u u ⎛⎫=+- ⎪⎝⎭,因为7u u+≥u = 当1u =时,7u u+取到最大值8,所以3,1]y ∈,所以13,1]a ∈,解得1a 或732a +-. 所以实数a 的取值范围是1a 或732a +- 【点睛】本题主要考查三角函数的性质,利用向量的坐标运算及三角公式把目标函数化简为最简形式,是这类问题常用求解方向,方程有解问题通常利用分离参数法来解决,侧重考查数学运算的核心素养.22.(1)2()2sin 233f x x π⎛⎫=-+ ⎪⎝⎭;(2)22min21,47()1,4128(32312m m m g x m m m m m ⎧-+≤⎪⎪=-<<+⎨⎪⎪-++≥+⎩ 【解析】(1)根据函数图象的变换规律即可求得()f x 的解析式;(2)令()t fx =可求得则()[1,3f x ∈+,设22()21M t t mt m =-+-,[1,3t ∈,通过定区间讨论对称轴4mt =的三种情况()M t 的单调性,进而可确定最小值的情况. 【详解】(1)将函数2sin 3y x =+的图象上所有点的横坐标缩短到原来的12倍,可得2sin 23y x =+得图象,再向右平移3π个单位长度得2()2sin 232sin 2333f x x x ππ⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭. (2)∵,36x ππ⎡⎤∈-⎢⎥⎣⎦,242,333x πππ⎡⎤-∈--⎢⎥⎣⎦,则()[1,3f x ∈+, 令()t f x =,则设22()21M t t mt m =-+-,[1,3t ∈+, ①当14m≤,即4m ≤时,函数()M t在[1,3上单调递增, ∴22min ()(1)211M t M m m m m ==-+-=-+;②当134m<<412m <<+ 函数()M t 在1,4m ⎛⎫ ⎪⎝⎭上单调递减,在,34m ⎛ ⎝上单调递增,∴2min 7()148m M t M m ⎛⎫==- ⎪⎝⎭;③当34m≥+12m ≥+()M t在[1,3+上单调递减,∴2min ()(3(323M t M m m ==-++∴综上有22min21,47()1,4128(32312m m m g x m m m m m ⎧-+≤⎪⎪=-<<+⎨⎪⎪-++≥+⎩. 【点睛】本题考查三角函数图象的变换,考查二次函数在三角函数中的应用,考查定区间动轴的最值取值情况,难度较难.23.(1)()2sin 23h x x π⎛⎫=+ ⎪⎝⎭(2)4;(3)()212cos 12tx x -=-【解析】(1)将()g x⇒2y x =;再向左平移4π个单位长度⇒()24f x x π⎛⎫=+ ⎪⎝⎭,最后代入()h x ,得答案;(2)对()h x 在,2x ππ⎡⎤∈⎢⎥⎣⎦,由内到外求出值域,因为()()a h h b αβ≤-≤恒成立,所以max b m ≥,min a m ≤,整理得答案;(3)表示26x h π⎛⎫- ⎪⎝⎭并化简,由1x ,2x 是2sin x t =在[)0,2π内有两个不同的解,所以12x x π+=或123x x π+=,因需求()12cos x x -,所以分别表示12x x -并代入,利用诱导公式和二倍角公式化简,将式子中22sin x 换成t 得答案. 【详解】(1)将函数()sin 2g x x =得到函数2y x =的图象,再将2y x =的图象向左平移4π个单位长度得到函数()y f x =,所以()224f x x x π⎛⎫=+= ⎪⎝⎭,又()()()h x f x g x =+,所以()sin 222sin 23h x x x x π⎛⎫==+ ⎪⎝⎭;(2)当,2x ππ⎡⎤∈⎢⎥⎣⎦时,472,333x πππ⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭,所以sin 21,3x π⎡⎛⎫+∈-⎢ ⎪⎝⎭⎣⎦,所以2sin 22,3x π⎛⎫⎡+∈- ⎪⎣⎝⎭, 令()()m h h αβ=-,因为()()a h h b αβ≤-≤恒成立,所以max 2b m ≥=,min 2a m ≤=-2a -≥所以4b a -≥即b a -的最小值为4;(3)法一:因为2sin 22sin 26263x x h x πππ⎡⎤⎛⎫⎛⎫-=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以1x ,2x 是2sin x t =在[)0,2π内有两个不同的解, 所以12x x π+=或123x x π+=, 所以1222x x x π-=-或12232x x x π-=-所以()()22212221cos 2sin 12sin 1122t x x x x -=-=-=-;法二:①当t >0时,不妨设12x x <,则有1202x x ππ<<<<,所以1cos x =2cos x = ②当0t <时,不妨设12x x <,则有1232x x πππ<<<<2,所以1cos x2cos x =③当0=t 时,显然有10x =,2x π=,所以()2121212cos cos cos sin sin 12t x x x x x x -=+=-.【点睛】本题考查了由三角函数图像的伸缩平移变换表示解析式,给定定义域求三角函数值域,不等式恒成立问题,还考查了函数零点问题,充分体现了数学中转化与划归思想,属于难题.24.(1)[31log 2,)++∞;(2)2min–5,26,2245,2a a ay a a a -≥⎧⎪⎪=---<<⎨⎪-≤-⎪⎩;(3)1a ≥-. 【解析】(1)令()2u g x =,则()0f u ≥的解为1u ≤-或6u ≥,由后者可得2(())0f g x ≥的解. (2)令()4t g x =,则[1,1]t ∈-,分类讨论后可求26y t at =--,[1,1]t ∈-的最小值,该最小值即为原来函数的最小值.(3)取()32()log g x g x x ==,可以证明()g x 满足条件,再利用换元法考虑任意[2,4]x ∈,不等式(())0f g x ≤恒成立可得实数a 的取值范围. 【详解】(1)当5a =时,()256f x x x =--.令()2u g x =,因为2560u u --≥的解为1u ≤-或6u ≥, 所以31x ≤-(舍)或36x ≥,故31log 2x ≥+, 所以2(())0f g x ≥的解集为[31log 2,)++∞. (2)令()4cos ,t g x x x R ==∈,则[1,1]t ∈-,函数4(())y f g x =的最小值即为()26h t t at =--,[1,1]t ∈-的最小值.当()1,12a ∈-即22a -<<时, ()2min 64a h t =--. 当12a≤-即2a ≤-时,()min 5h t a =-; 当12a>即2a >时, ()min –5h t a =-. 故2min–5,26,2245,2a a ay a a a -≥⎧⎪⎪=---<<⎨⎪-≤-⎪⎩. (3)取()32()log g x g x x ==,令2log u x =,设260u au --≤的解集为闭区间[]12,u u ,由12u u u ≤≤得1222u u x ≤≤,故(())0f g x ≤的解集为122,2u u ⎡⎤⎣⎦,取12u s =,则0s >,故()g x 满足条件.当[2,4]x ∈时,2[]1,u ∈,故()0f u ≤在[1,2]上恒成立,故2211602260a a ⎧-⨯-≤⎨--≤⎩,解得1a ≥-, 所以实数a 的取值范围是1a ≥-.【点睛】本题考查复合函数的性质及复合函数对应的不等式的解与恒成立问题,此类问题可通过换元法把复合函数问题转化为二次函数的最值问题或恒成立问题,本题有一定综合性,是难题.25.(1)奇函数;(2)见解析;(3)ω的个数为198个,见解析. 【解析】(1)根据奇偶函数的定义进行判断即可;(2)根据最小正周期公式进行验证即可;(3)利用函数的图象和不等式的性质可以求出满足条件的ω的个数.【详解】(1)()sin[tan()]sin(tan )sin(tan )()f x x x x f x ωωω-=-=-=-=-,所以函数()f x 是奇函数;(2)()sin[tan()]sin(tan )()f x x x f x ππ+=+==,所以()f x 的最小正周期是π;(3)因为当0x >时,()11112122g x x x x x ⎛⎫=+≥⨯⋅= ⎪⎝⎭,(当且仅当1x =时取等号),所以当函数()f x 的图像与()112g x x x ⎛⎫=+ ⎪⎝⎭的图像有交点时,只能()sin tan 1x ω=,即tan 22k πωπ=+,因为(1.50, 1.57)ω∈,所以2(tan1.50,tan1.57)2k ππ+∈,因此1.99199.6k <<,2,3,4,,199k =⋯,因此满足条件的ω的个数为198个,当0x >时,也是一样的,因为两个函数是奇函数都关于原点对称,所以当函数()f x 的图像与()112g x x x ⎛⎫=+ ⎪⎝⎭的图像有交点时,满足条件的ω的个数为198. 【点睛】本题考查了函数奇偶性和周期性,考查了三角奇函数的性质,考查了基本不等式的应用,考查了数学运算能力.26.(1)2sin(2)6y x π=+;(2),,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(3)[)2,1- 【解析】【分析】(1)依据题意可得函数周期为π,利用周期公式算出ω,又函数过定点()0,1,即可求出ϕ,进而得出解析式;(2)利用正弦函数的单调性代换即可求出函数()f x 的单调区间;(3)利用换元法,设26t x π=+,结合2sin y t =在5,66t ππ⎛⎫∈- ⎪⎝⎭上的图象即可求出函数()()2sin f x x ωϕ=+在,02π⎛⎫- ⎪⎝⎭的值域 【详解】(1)因为函数()f x 的图象与x 轴的任意两个相邻交点间的距离为2π,所以函数()f x 的周期为π,由2T ππω==,得2ω=,又函数()f x 的图象过点()0,1,所以(0)1f =,即2sin 1=ϕ,而,所以6π=ϕ, 故()f x 的解析式为2sin(2)6y x π=+. (2)由sin y x =的单调增区间是2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦可得222262k x k πππππ-+≤+≤+,解得36k x k ππππ-+≤≤+故故函数()f x 的单调递增区间是,,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. (3)设 26t x π=+,,02x π⎛⎫∈- ⎪⎝⎭,则5,66t ππ⎛⎫∈- ⎪⎝⎭ ,由2sin y t =在5,66t ππ⎛⎫∈- ⎪⎝⎭上的图象知,当2t π=- 时,min 2f =- 当t 趋于6π时,函数值趋于1,故()()2sin f x x ωϕ=+在,02π⎛⎫- ⎪⎝⎭的值域为[)2,1- . 【点睛】本题主要考查正弦型函数解析式的求法,正弦函数性质的应用,以及利用换元法结合图象解决给定范围下的三角函数的范围问题,意在考查学生数学建模以及数学运算能力. 27.(1)见解析;(2)178-. 【解析】【分析】(1)运用向量数量积的坐标表示,求出a ·b ;运用平面向量的坐标运算公式求出a b +,然后求出模.(2)根据上(1)求出函数()f x 的解析式,配方,利用二次函数的性质求出最小值.【详解】(1)33cos cos sin sin cos22222x x a b x x x ⋅=⋅-⋅=cos a b ⎛+= ⎝=∵0,2x π⎡⎤∈⎢⎥⎣⎦∴cos 0x ∴2cos a b x += (2)()cos23cos f x x x =- 223172cos 13cos 2cos 48x x x ⎛⎫=--=-- ⎪⎝⎭ ∵0,2x π⎡⎤∈⎢⎥⎣⎦∴0cos 1x ∴()min 317cos 48x f x ==- 【点睛】本题考查了平面向量数量积的坐标表示,以及平面向量的坐标加法运算公式.重点是二次函数求最小值问题.28.(1) 单调递减区间为7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2) 15. 【解析】【分析】(1)根据题意求出函数()f x 的解析式,然后可求出它的单调递减区间.(2)结合条件求出()424sin ,cos 3525πβαβ⎛⎫-=+=- ⎪⎝⎭,然后由()2sin 12sin 1233f αππααββ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦可得结果. 【详解】(1)()2()1f x cos x sin x x ωωω=221sin xcos x x ωωω=+221)1sin x cos x ωω=--221sin x x ωω=-2(2)13sin x πω=+-. ∵1(2)13sin x πω-≤+≤, ∴32(2)113sin x πω-≤+-≤, ∴()f x 的最大值为1,最小值为3-.又()()121,3f x f x ==-,且12min 2x x π-=, ∴函数()f x 的最小正周期为22ππ⨯=,∴1ω=, ∴()2(2)13f x sin x π=+-. 由3222,232k x k k Z πππππ+≤+≤+∈, 得7,1212k x k k Z ππππ+≤≤+∈, ∴()f x 的单调递减区间为7[,],1212k k k Z ππππ++∈. (2)由(1)得3212335f sin βππβ⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭, ∴4sin 35πβ⎛⎫-= ⎪⎝⎭. ∵2,33ππβ⎛⎫∈ ⎪⎝⎭, ∴0,33ππβ⎛⎫-∈ ⎪⎝⎭,∴3cos 35πβ⎛⎫- ⎪⎝⎭. ∵()7sin 25αβ+=-且2,,33ππαβ⎛⎫∈ ⎪⎝⎭,∴24,33ππαβ⎛⎫+∈ ⎪⎝⎭,∴()24cos 25αβ+==-. ∴()2sin 12sin 1233f αππααββ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ()()2sin cos cos sin 133ππαββαββ⎡⎤⎛⎫⎛⎫=+--+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 7324421255255⎡⎤⎛⎫=⨯-⨯--⨯- ⎪⎢⎥⎝⎭⎣⎦15=. 【点睛】(1)解答有关三角函数性质的有关问题时,首项把函数解析式化为(x)Asin(x )f ωϕ=+的形式,然后再结合正弦函数的相关性质求解,解题时注意系数,A ω对结果的影响. (2)对于三角变换中的“给值求值”问题,在求解过程中注意角的变换,通过角的“拆”、“拼”等手段转化为能应用条件中所给角的形式,然后再利用整体思想求解. 29.(Ⅰ) (),,36ππππ⎡⎤-+∈⎢⎥⎣⎦k k k Z (Ⅱ) 62ππ≤≤m 【解析】【分析】 (Ⅰ)利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数()f x 化为π2sin 216x ⎛⎫++ ⎪⎝⎭,利用正弦函数的单调性解不等式,可得到函数()f x 的递增区间; (Ⅱ) 要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,,可得7 2266m πππ≤+≤,从而可得结果. 【详解】(Ⅰ)()22f x cos x =+πcos212sin 216x x x ⎛⎫=+=++ ⎪⎝⎭, 由()222,262k x k k Z πππππ-≤+≤+∈得(),36k x k k Z ππππ-≤≤+∈ 所以,()f x 的单调递增区间是(),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (Ⅱ)由(Ⅰ)知()π2sin 216f x x ⎛⎫=++ ⎪⎝⎭. 因为π,6x m ⎡⎤∈-⎢⎥⎣⎦,所以π2,2666x m ππ⎡⎤+∈-+⎢⎥⎣⎦.要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,. 所以72266m πππ≤+≤,即62m ππ≤≤. 【点睛】本题主要考查二倍角公式、辅助角公式的应用以及三角函数的单调性、三角函数的值域,属于中档题. 函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,2222k x k πππωϕπ-+≤+≤+求得增区间.30.(Ⅰ) 3π(Ⅱ)5 【解析】【详解】试题分析:(12sin sin A C A =即可得sin C =60C =︒(2)∵1sin 2S ab C ==a b + 试题解析:解:(12sin sin A C A =,∵,A C 是锐角,∴sin C =60C =︒.(2)∵1sin 2S ab C ==6ab = 由余弦定理得222222cos ()3()187c a b ab C a b ab a b =+-=+-=+-=∴5a b +=点睛:在解三角形问题时多注意正余弦定理的结合运用,正弦定理主要用在角化边和边化角上,而余弦定理通常用来求解边长。
高中数学三角函数专项练习题(含答案)一、填空题1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,1a =,34A π=,若b c λ+有最大值,则实数λ的取值范围是_____.2.已知函数()()4sin 03πf x x ωω⎛⎫=+> ⎪⎝⎭,圆C 的方程为()22525x y -+=,若在圆C 内部恰好包含了函数()f x 的三个极值点,则ω的取值范围是______.3.已知()()()cos sin 0f x x x x ωωωω=>,如果存在实数0x ,使得对任意的实数x ,都有()()()002016f x f x f x π≤≤+成立,则ω的最小值为___________.4.在ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,D 为边BC 上的一点,若6c =,b =sin BAD ∠=,cos BAC ∠=,则AD =__________. 5.△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是________ .6.关于函数())cos sin f x x x x =+①其表达式可写成()cos 26f x x π⎛⎫=+ ⎪⎝⎭;②直线12x π=-是曲线()y f x =的一条对称轴;③()f x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增;④存在0,2πα⎛⎫∈ ⎪⎝⎭使()()3f x f x αα+=+恒成立.其中正确的是______(填写正确的番号).7.已知正四棱柱1111ABCD A B C D -中,2AB =,1AA =若M 是侧面11BCC B 内的动点,且AM MC ⊥,则1A M 的最小值为__________.8.设△A n B n C n 的三边长分别为a n ,b n ,c n ,n =1,2,3…,若11b c >,1112b c a +=,11,2n n n n n a c a a b +++==,12n n n a bc ++=,则n A ∠的最大值是________________. 9.已知O 为△ABC 外接圆的圆心,D 为BC 边的中点,且4BC =,6AO AD ⋅=,则△ABC 面积的最大值为___________.10.已知P 是直线34130x y ++=上的动点,PA ,PB 是圆()()22111x y -+-=的切线,A ,B 是切点,C 是圆心,那么四边形PACB 面积的最小值是________.二、单选题11.若方程x 2 +2x +m 2 +3m = m cos(x +1) + 7有且仅有1个实数根,则实数m 的值为( ) A .2B .-2C .4D .-412.已知双曲线2221(0)y x b b -=>的左、右焦点分别为1F ,2F ,过点2F 作直线l 交双曲线的右支于A ,B 两点.若11||::3:3:2AB AF BF =,则双曲线的离心率为( )A B C .113D .1113.若函数sin 2y x =与()sin 2y x ϕ=+在0,4π⎛⎫⎪⎝⎭上的图象没有交点,其中()0,2ϕπ∈,则ϕ的取值范围是( )A .[),2ππB .,2ππ⎡⎤⎢⎥⎣⎦C .(),2ππD .,214.在ABC 中,,E F 分别是,AC AB 的中点,且32AB AC =,若BEt CF <恒成立,则t 的最小值为( ) A .34B .78C .1D .5415.已知双曲线22413y x -=的左右焦点分别为1F ,2F ,点M 是双曲线右支上一点,满足120MF MF →→⋅=,点N 是线段12F F 上一点,满足112F N F F λ→→=.现将12MF F △沿MN 折成直二面角12F MN F --,若使折叠后点1F ,2F 距离最小,则λ=( )A .15B .25C .35D .4516.在ABC 中,60BAC ∠=,3BC =,且有2CD DB =,则线段AD 长的最大值为( )A B .2 C 1 D .17.设点()11,P x y 在椭圆22182x y +=上,点()22,Q x y 在直线280x y +-=上,则2121x x y y -+-的最小值是( )A.1B C .1D .218.已知函数22sin sin ,[1,1]()22,(1,)x x a a x f x x ax a x ⎧++-∈-=⎨-+∈+∞⎩若关于x 的不等式()0f x 对任意[1,)x ∈-+∞恒成立,则实数a 的范围是( )A .[0,2]B .(,0][2,)-∞+∞C .(,0][1,2]-∞D .[0,1][2,)⋃+∞19.已知1sin ,sin ,sin ,222a x x b x ωωω⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,其中0>ω,若函数1()2f x a b =⋅-在区间(,2)ππ内有零点,则实数ω的取值可能是( )A .18B .14C .12D .3420.在ABC 中,2AB =,,D E 分别是边AB ,AC 的中点,CD 与BE 交于点O ,若OC =,则ABC 面积的最大值为( )AB .C .D .三、解答题21.已知1l ,2l ,3l 是同一平面内自上而下的三条不重合的平行直线.(1)如图1,如果1l 与2l 间的距离是1,2l 与3l 间的距离也是1,可以把一个正三角形ABC 的三顶点分别放在1l ,2l ,3l 上,求这个正三角形ABC 的边长.(2)如图2,如果1l 与2l 间的距离是1,2l 与3l 间的距离是2,能否把一个正三角形ABC 的三顶点分别放在1l ,2l ,3l 上,如果能放,求BC 和3l 夹角θ的正切值并求该正三角形边长;如果不能,试说明理由.(3)如果边长为2的正三角形ABC 的三顶点分别在1l ,2l ,3l 上,设1l 与2l 间的距离为1d ,2l 与3l 间的距离为2d ,求12d d ⋅的取值范围.22.如图,四边形ABCD 是某市中心一边长为4百米的正方形地块的平面示意图. 现计划在该地块上划分四个完全相同的直角三角形(即Rt ,Rt ,Rt ABF BCG CDH 和Rt DAE ),且在这四个直角三角形区域内进行绿化,中间的小正方形修建成市民健身广场,为了方便市民到达健身广场,拟修建4条路,AE ,BF ,CG DH . 已知在直角三角形内进行绿化每1万平方米的费用为10a 元,中间小正方形修建广场每1万平方米的费用为13a 元,修路每1百米的费用为a 元,其中a 为正常数.设FAB θ∠=,0,4πθ⎛⎫∈ ⎪⎝⎭.(1)用θ表示该工程的总造价S ;(2)当cos θ为何值时,该工程的总造价最低?23.已知函数 f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1,a ∈R . (1)写出函数 f (x )的最小正周期(不必写出过程); (2)求函数 f (x )的最大值;(3)当a =1时,若函数 f (x )在区间(0,k π)(k ∈N*)上恰有2015个零点,求k 的值.24.已知()3,sin a x ω=,1,2cos 3b x πω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,其中0>ω,()f x a b =⋅,且函数()f x 在12x π=处取得最大值.(1)求ω的最小值,并求出此时函数()f x 的解析式和最小正周期; (2)在(1)的条件下,先将()y f x =的图像上的所有点向右平移4π个单位,再把所得图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),然后将所得图像上所有的点向下平移y g x 的图像.若在区间5,33ππ⎡⎤⎢⎥⎣⎦上,方程()210g x a +-=有两个不相等的实数根,求实数a 的取值范围;(3)在(1)的条件下,已知点P 是函数()y h x =图像上的任意一点,点Q 为函数()y f x =图像上的一点,点,6A π⎛ ⎝⎭,且满足12OP OQ OA =+,求()104h x +≥的解集. 25.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知3sin cos 022A a B ππ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,且2sin 6sin sin A B C =⋅. (1)求A ;(2)若()b c a R λλ+=∈,求λ的值.26.已知函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移2π个单位长度后与函数()()cos 22g x x πϕϕ⎛⎫=+< ⎪⎝⎭图象重合.(1)求ω和ϕ的值;(2)若函数()88h x f x g x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,求函数()h x 的单调递减区间及图象的对称轴方程.27.已知函数()2212cos f x x x =+-. (1)求()f x 的对称轴; (2)将()f x 的图象向左平移12π个单位后得到函数()g x 的图象,当0,3x π⎡⎤∈⎢⎥⎣⎦时,求()g x 的值域.28.函数211()sin 2sin cos cos sin 222f x x x πϕϕϕ⎛⎫=⋅+⋅-+ ⎪⎝⎭,22ππϕ⎛⎫-<< ⎪⎝⎭其图像过定点1,64π⎛⎫⎪⎝⎭(1)求ϕ值;(2)将()y f x =的图像左移8π个单位后得到()y g x =,求()g x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最大和最小值及此时对应的x 的取值是多少?29.已知向量 2(2,22()),(,2a x b ωϕ=+=,其中0,02πωϕ><<.函数()f x a b =⋅的图象过点()1,2B ,点B 与其相邻的最高点的距离为4.(Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)计算()()()12...2017f f f +++的值;(Ⅲ)设函数()()1g x f x m =--,试讨论函数()g x 在区间 [0,3] 上的零点个数.30.已知函数())2cos cos 1f x xx x =+-.(1)求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值;(2)若()85f x =-,2,3x ππ⎡⎤∈⎢⎥⎣⎦,求cos2x 的值;(3)若函数()()0y f x ωω=>在区间,62ππ⎡⎤⎢⎥⎣⎦上是单调递增函数,求正数ω的取值范围.【参考答案】一、填空题1.2⎝2.1925731,,48481248ππππ⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦ 3.140324.456.②③78.π3##60°9.10二、单选题 11.A12.A 13.A 14.B 15.C 16.C 17.D 18.C 19.D 20.C 三、解答题21.(1)2 ;(2)能放,tan θ=;(3)(]0,1 【解析】 【分析】(1)根据,A C 到直线2l 的距离相等,可得2l 过AC 的中点M ,2l AC ⊥,从而求得边长2AC AM =的值.(2)假设能放,设边长为a ,BC 与3l 的夹角θ,不妨设060θ<≤,可得sin 2a θ=,()sin 601a θ-=,两式相比化简可得sin θa 的值,从而得出结论. (3)利用两角和差的正弦、余弦公式化简()124sin 60sin d d θθ⋅=-为()2sin 2301θ+-,再根据正弦函数的定义和值域求出12d d ⋅的取值范围. 【详解】 (1),A C 到直线2l 的距离相等,∴2l 过AC 的中点M , ∴2l AC ⊥, ∴边长22AC AM ==(2)假设能放,设边长为a ,BC 与3l 的夹角θ, 由对称性,不妨设060θ<≤, ∴sin 2a θ=,()sin 601a θ-=,两式相比可得:()sin 2sin 60θθ=-,即sin sin θθθ-,2sin θθ∴=,tan θ∴=,sin θ∴=,故边长3a==,综上可得,能放.(3)()1214sin60sin4sin sin2d dθθθθθ⎫⋅=-=-⎪⎪⎝⎭()1cos2222sin23012θθθ⎫+=-=+-⎪⎪⎝⎭.060θ<≤,30230150θ∴<+≤,()1sin23012θ≤+≤,所以()02sin23011θ≤+-≤,又10d>,2d>,所以(]120,1d d⋅∈.【点睛】本题是一道考查三角函数应用的题目,解题的关键是掌握等边三角形的性质以及三角函数的恒等变换,属于中档题.22.(1)()16(13sin6sin cos)S aθθθθ=+-,0,4πθ⎛⎫∈ ⎪⎝⎭;(2)当3cos4θ=时,()16()S afθθ=取得最小值【解析】(1)根据题意可知4sinBFθ=,4cosAFθ=,进而求得Rt ABFS与EFGHS正方形再求得总造价S即可. (2)由(1)有()16(13sin6sin cos)S aθθθθ=+-,再求导分析函数的单调性与最值即可.【详解】(1)在Rt ABF中,FABθ∠=,4AB=,所以4sinBFθ=,4cosAFθ=.由于Rt,Rt,RtABF BCG CDH和Rt DAE是四个完全相同的直角三角形,所以4sinAE BF CG DHθ====,4(cos sin)EF FG GH HEθθ====-,所以Rt114cos4sin8sin cos22ABFS AF BFθθθθ=⋅⋅=⨯⨯=,2224(cos sin)16(12sin cos)EFGHS EFθθθθ==-=-正方形.所以()48sin cos1016(12sin cos)1344sinS a a aθθθθθθ=⨯⨯+-⨯+⨯⨯16[20sin cos(12sin cos)13sin]aθθθθθ=+-⨯+16(13sin6sin cos)aθθθ=+-,0,4πθ⎛⎫∈ ⎪⎝⎭.(2)由(1)记()13sin6sin cosfθθθθ=+-,0,4πθ⎛⎫∈ ⎪⎝⎭.则22232()cos6(cos sin)12cos cos612(cos)(cos)43fθθθθθθθθ'=--=-++=--+.令()0fθ'=,因为0,4πθ⎛⎫∈ ⎪⎝⎭,所以3cos4θ=或2cos3θ=-(舍).记3cos4θ=,所以当(0,)θθ∈时,()0fθ'<,()fθ单调递减;当0(,)4πθθ∈时,()0f θ'>,()f θ单调递增. 所以当3cos 4θ=时,()f θ取得极小值,也是最小值, 又0a >,所以当3cos 4θ=时,()16()S af θθ=取得最小值. 【点睛】本题主要考查了三角函数在几何中的运用,同时也考查了求导分析函数最值的方法,属于难题. 23.(1)最小正周期为π.(2)见解析(3)k =1008. 【解析】(1)由题意结合周期函数的定义直接求解即可;(2)令t ,t ∈[1,则当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()2f x t at t μ==-,当,2x π⎛⎤∈π ⎥⎝⎦时,()()22f x v t t at ==+-,易知()()t v t μ≤,分类比较()1v 、v的大小即可得解;(3)转化条件得当且仅当sin2x =0时,f (x )=0,则x ∈(0,π]时,f (x )有且仅有两个零点,结合函数的周期即可得解. 【详解】(1)函数 f (x )的最小正周期为π. (2)∵f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1=sin2x ﹣1=(sin2x +1),令t =t ∈[1],当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()(21f x t at t t μ==-≤≤,当,2x π⎛⎤∈π ⎥⎝⎦时,()()(221f x v t t at t ==+-≤≤,∵()()()2222220t v t at t t at t μ-=--+-=-+≤即()()t v t μ≤.∴()()(){}max max max 1,f x v t v v ==,∵()11v a =-,v,∴当1a ≤-()f x 最大值为1a -;当1a >-()f x .(3)当a =1时,f (x )sin 21x -,若f (x )=0sin 21x =+即22sin 22sin 2sin x x x =+,∴当且仅当sin2x =0时,f (x )=0,∴x ∈(0,π]时,f (x )有且仅有两个零点分别为2π,π, ∴2015=2×1007+1, ∴k =1008. 【点睛】本题考查了三角函数的综合问题,考查了分类讨论思想和转化化归思想,属于难题.24.(1)ω的最小值为1,()sin 23f x x π⎛⎫=+ ⎪⎝⎭,T π=,(2)104a <≤(3)原不等式的解集为3,22428k k xx k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【解析】 【分析】(1)先将()f x 化成正弦型,然后利用()f x 在12x π=处取得最大值求出ω,然后即可得到()f x 的解析式和周期(2)先根据图象的变换得到()sin 6x y g x π⎛⎫-= ⎝=⎪⎭,然后画出()g x 在区间5,33ππ⎡⎤⎢⎥⎣⎦上的图象,条件转化为()g x 的图象与直线12y a =-有两个交点即可(3)利用坐标的对应关系式,求出()h x 的函数的关系式,进一步利用三角不等式的应用求出结果. 【详解】 (1)因为()3,sin a x ω=,1,2cos 3b x πω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭所以()32sin cos 3f x a b x x πωω⎛⎫=⋅=++ ⎪⎝⎭212sin cos sin cos 2x x x x x x ωωωωωω⎛⎫== ⎪ ⎪⎝⎭11cos 21sin 2sin 22222x x x x ωωωω-=+=+sin 23x πω⎛⎫=+ ⎪⎝⎭因为()f x 在12x π=处取得最大值.所以22,1232k k Z πππωπ⨯+=+∈,即121,k k Z ω=+∈当0k =时ω的最小值为1此时()sin 23f x x π⎛⎫=+ ⎪⎝⎭,T π=(2)将()y f x =的图像上的所有的点向右平移4π个单位得到的函数为sin 2sin 2436y x x πππ⎛⎫⎛⎫⎛⎫=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再把所得图像上所有的点的横坐标伸长为原来的2倍(纵坐标不变)得到的函数为sin 6y x π⎛⎫=- ⎪⎝⎭,然后将所得图像上所有的点向下平移32个单位,得到函数()sin 6x y g x π⎛⎫-= ⎝=⎪⎭()sin 6g x x π⎛⎫=- ⎪⎝⎭在区间5,33ππ⎡⎤⎢⎥⎣⎦上的图象为:方程()210g x a +-=有两个不相等的实数根等价于()g x 的图象 与直线12y a =-有两个交点 所以11212a ≤-<,解得104a <≤(3)设(),P x y ,()00,Q x y因为点3,6A π⎛ ⎝⎭,且满足12OP OQ OA =+ 所以00126132x x y y π⎧=+⎪⎪⎨⎪=⎪⎩002332x x y y π⎧=-⎪⎪⎨⎪=⎪⎩因为点()00,Q x y 为函数()y f x =图像上的一点 所以332sin 2233y x ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭即1()sin 423y h x x π⎛⎫==- ⎪⎝⎭因为()104h x +≥,所以1sin 432x π⎛⎫-≥- ⎪⎝⎭所以7242,636k x k k Z πππππ-≤-≤+∈ 所以3,22428k k x k Z ππππ+≤≤+∈ 所以原不等式的解集为3,22428k k xx k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【点睛】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,平面向量的数量积的应用,三角不等式的解法及应用,主要考查学生的运算能力和转换能力,属于中档题.25.(1)3A π=;(2)λ=. 【解析】【分析】(1)根据诱导公式、正弦定理、同角三角函数基本关系式,结合已知等式,化简tan A =(0,)A π∈,可得A 的值; (2)由已知根据余弦定理可得2223a a bc λ+=,利用正弦定理可得26a bc =,联立即可解得λ的值.【详解】(13sin cos 022A a B ππ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭cos sin 0A a B ⇒+=,cos sin sin 0B A A B ⇒+=(0,)sin 0B B π∈∴≠,tan (0,)3A A A ππ∴=∈∴=;(2)22sin 6sin sin 6A B C a ac =⋅⇒=,2222222cos )(3a b c bc B b c b bc bc c +⋅=++=--=-,而()b c a R λλ+=∈,22()3a a bc λ=-,而26a ac =,所以有2302λλλλ=⇒=>∴= 【点睛】本题考查了诱导公式、正弦定理、同角三角函数基本关系式、余弦定理,考查了数学运算能力.26.(1)2ω=,3πϕ=;(2)减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,对称轴方程为()212k x k Z ππ=+∈ 【解析】【分析】(1)先根据平移后周期不变求得2ω=,再根据三角函数的平移方法求得3πϕ=即可.(2)根据(1)中()sin 26f x x π⎛⎫=- ⎪⎝⎭,()cos 23g x x π⎛⎫=+ ⎪⎝⎭代入可得()h x ,利用辅助角公式求得()23h x x π⎛⎫=+ ⎪⎝⎭,再代入调递减区间及图象的对称轴方程求解即可. 【详解】(1)因为函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移2π个单位长度后与函数()()cos 22g x x πϕϕ⎛⎫=+< ⎪⎝⎭图象重合, 所以2ω=.5sin 2sin 2cos 222663f x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 所以()cos 2cos 23x x πϕ⎛⎫+=+ ⎪⎝⎭, 因为2πϕ<,所以3πϕ=.(2)由(1)()sin 26f x x π⎛⎫=- ⎪⎝⎭,()cos 23g x x π⎛⎫=+ ⎪⎝⎭, 所以()88h x f x g x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 2212123x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 令()3222232k x k k Z πππππ+≤+≤+∈,解得()71212k x k k Z ππππ+≤≤+∈ 所以函数的单调递减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 令()232x k k Z πππ+=+∈,可得图象的对称轴方程为()212k x k Z ππ=+∈. 【点睛】本题主要考查了三角函数的平移运用以及辅助角公式.同时也考查了根据三角函数的解析式求解单调区间以及对称轴等方法.属于中档题.27.(1)23k x ππ=+(k Z ∈)(2)[]0,2 【解析】(1)利用三角恒等变换,化简函数解析式为标准型,再求对称轴;(2)先求平移后的函数解析式,再求值域.【详解】(1)()222cos 1f x x x =-+2cos 2x x =-2sin 26x π⎛⎫=- ⎪⎝⎭ 令:262x k πππ-=+,得23k x ππ=+, 所以()f x 的对称轴为23k x ππ=+(k Z ∈). (2)将()f x 的图象向左平移12π个单位后得到函数()g x ,所以()12g x f x π⎛⎫=+ ⎪⎝⎭2sin 22sin 2126x x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦当0,3x π⎡⎤∈⎢⎥⎣⎦时,有220,3x π⎡⎤∈⎢⎥⎣⎦,故[]sin 20,1x ∈, ()g x ∴的值域为[]0,2.【点睛】本题考查利用三角恒等变换化简函数解析式,求解函数性质,同时涉及三角函数图象的平移,以及值域的求解问题.属三角函数综合基础题.28.(1)0ϕ=(2)当4x π=时,min ()g x =;当8x π=-时,max 1()2g x = 【解析】【分析】 (1)先将函数表达式结合降幂公式化简可得()1cos(2)2f x x ϕ=-,结合函数过点1,64π⎛⎫ ⎪⎝⎭和,22ππϕ⎛⎫∈- ⎪⎝⎭即可求解具体ϕ值; (2)根据函数图像平移法则先求得1()cos 224g x x π⎛⎫=+ ⎪⎝⎭,由,44x ππ⎡⎤∈-⎢⎥⎣⎦求得32,444x πππ⎡⎤+∈-⎢⎥⎣⎦,再结合余弦函数性质即可求解 【详解】(1)11cos 21()sin 2sin cos cos 222x f x x ϕϕϕ+=⋅+⋅- 11sin 2sin cos 2cos 22x x ϕϕ=⋅+⋅ 1cos(2)2x ϕ=- 又图像过点1,64π⎛⎫ ⎪⎝⎭,11cos 423πϕ⎛⎫∴=- ⎪⎝⎭ 233k ππϕπ∴-=+或2()3k k Z ππ-+∈ 又,22ππϕ⎛⎫∈- ⎪⎝⎭,0ϕ∴= (2)由(1)知1()cos 22f x x =, 11()cos 2cos 22824g x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭ 32,444x πππ⎡⎤+∈-⎢⎥⎣⎦当3244x ππ+=时,即4x π=时,min ()g x =当204x π+=时,即8x π=-时,max 1()2g x =【点睛】本题考查三角函数表达式的化简求值,降幂公式的使用,两角差的余弦公式的逆用,在具体区间函数最值的求解,属于中档题29.(Ⅰ)[41,43]k k ++,k Z ∈;(Ⅱ)2018;(Ⅲ)详见解析.【解析】【分析】(Ⅰ)由数量积的坐标运算可得f (x ),由题意求得ω4π=,再由函数f (x )的图象过点B (1,2)列式求得φ.则函数解析式可求,由复合函数的单调性求得f (x )的单调递增区间;(Ⅱ)由(Ⅰ)知,f (x )=1+sin 2x π,可得f (x )是周期为4的周期函数,且f (1)=2,f (2)=1,f (3)=0,f (4)=1.得到f (1)+f (2)+f (3)+f (4)=4. 进一步可得结论;(Ⅲ)g (x )=f (x )﹣m ﹣12sinx m π=-,函数g (x )在[0,3]上的零点个数,即为函数y =sin 2x π的图象与直线y =m 在[0,3]上的交点个数.数形结合得答案.【详解】(Ⅰ)∵a =cos2(ωx +φ)),b =∴f (x )222a b =⋅=⨯(ωx +φ)=1﹣cos2(ωx +φ)), ∴f (x )max =2,则点B (1,2)为函数f (x )的图象的一个最高点. ∵点B 与其相邻的最高点的距离为4,∴242πω=,得ω4π=. ∵函数f (x )的图象过点B (1,2),∴1222cos πϕ⎛⎫-+= ⎪⎝⎭,即sin2φ=1. ∵0<φ2π<,∴φ4π=.∴f (x )=1﹣cos2(44x ππ+)=1+sin 2x π, 由322222k x k πππππ+≤≤+,得4143k x k +≤≤+,k Z ∈. ()f x ∴的单调递减区间是[41,43]k k ++,k Z ∈.(Ⅱ)由(Ⅰ)知,f (x )=1+sin 2x π,∴f (x )是周期为4的周期函数,且f (1)=2,f (2)=1,f (3)=0,f (4)=1. ∴f (1)+f (2)+f (3)+f (4)=4.而2017=4×504+1,∴f (1)+f (2)+…+f (2017)=4×504+2=2018;(Ⅲ)g (x )=f (x )﹣m ﹣12sin x m π=-,函数g (x )在[0,3]上的零点个数, 即为函数y =sin 2x π的图象与直线y =m 在[0,3]上的交点个数.在同一直角坐标系内作出两个函数的图象如图:①当m >1或m <﹣1时,两函数的图象在[0,3]内无公共点;②当﹣1≤m <0或m =1时,两函数的图象在[0,3]内有一个共点;③当0≤m <1时,两函数的图象在[0,3]内有两个共点.综上,当m >1或m <﹣1时,函数g (x )在[0,3]上无零点;②当﹣1≤m <0或m =1时,函数g (x )在[0,3]内有1个零点;③当0≤m <1时,函数g (x )在[0,3]内有2个零点.【点睛】本题考查三角函数中的恒等变换应用,考查数量积的坐标运算,体现了数形结合的解题思想方法,是中档题.30.(I )1-;(II 334-;(III )10,3⎛⎤ ⎥⎝⎦ 【解析】 【分析】 将()f x 整理为2sin 26x π⎛⎫+ ⎪⎝⎭;(I )利用x 的范围求得26x π+的范围,结合sin x 的图象可求得最值;(II )利用()85f x =-可求得sin 26x ;结合角的范围和同角三角函数关系可求得cos 26x π⎛⎫+ ⎪⎝⎭;根据cos 2cos 266x x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,利用两角和差余弦公式可求得结果;(III )利用x 的范围求得26x πω+的范围,从而根据sin x 单调递增区间构造出关于ω的不等式组,解不等式组再结合0>ω即可得到结果.【详解】()23cos 2cos 132cos 22sin 26f x x x x x x x π⎛⎫=+-=+=+ ⎪⎝⎭ (I )0,2x π⎡⎤∈⎢⎥⎣⎦ 72,666x πππ⎡⎤∴+∈⎢⎥⎣⎦[]2sin 21,26x π⎛⎫∴+∈- ⎪⎝⎭ ()f x ∴在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为:1- (II )由题意得:82sin 265x π⎛⎫+=- ⎪⎝⎭ 4sin 265x π⎛⎫∴+=- ⎪⎝⎭ 2,3x ππ⎡⎤∈⎢⎥⎣⎦ 3132,626x πππ⎡⎤∴+∈⎢⎥⎣⎦ 3cos 265x π⎛⎫∴+= ⎪⎝⎭ cos 2cos 2cos 2cos sin 2sin 666666x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫∴=+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦341552=⨯(III )()2sin 26f x x πωω⎛⎫=+ ⎪⎝⎭ ,62x ππ⎡⎤∈⎢⎥⎣⎦时,2,6366x πωπππωωπ⎡⎤+∈++⎢⎥⎣⎦ 2622362k k ππωππωππππ⎧+≤+⎪⎪∴⎨⎪+≥-⎪⎩,k Z ∈,解得:12362k k ωω⎧≤+⎪⎨⎪≥-⎩,k Z ∈ 0ω>,可知当0k =时满足题意,即103ω<≤ω∴的取值范围为:10,3⎛⎤ ⎥⎝⎦【点睛】本题考查正弦型函数的值域求解、单调性应用、三角恒等变换公式应用、同角三角函数关系等问题.关键是能够利用二倍角公式和辅助角公式将函数化为()sin A x ωϕ+的形式,从而通过整体对应的方式来研究函数的值域和性质.。
圆与三角函数1.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE 与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,sinA=,求BH的长.2.如图,已知AB是⊙O的直径,C是⊙O上任一点(不与A,B重合),AB⊥CD于E,BF为⊙O的切线,OF∥AC,连结AF,FC,AF与CD交于点G,与⊙O交于点H,连结CH.(1)求证:FC是⊙O的切线;(2)求证:GC=GE;(3)若cos∠AOC=,⊙O的半径为r,求CH的长.3.已知⊙O是以AB为直径的△ABC的外接圆,OD∥BC交⊙O于点D,交AC于点E,连接AD、BD,BD交AC于点F.(1)求证:BD平分∠ABC;(2)延长AC到点P,使PF=PB,求证:PB是⊙O的切线;(3)如果AB=10,cos∠ABC=,求AD.4.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=,BC=2,求⊙O的半径.5.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.6.AB,CD是⊙O的两条弦,直线AB,CD互相垂直,垂足为点E,连接AD,过点B作BF⊥AD,垂足为点F,直线BF交直线CD于点G.(1)如图1,当点E在⊙O外时,连接BC,求证:BE平分∠GBC;(2)如图2,当点E在⊙O内时,连接AC,AG,求证:AC=AG;(3)如图3,在(2)条件下,连接BO并延长交AD于点H,若BH平分∠ABF,AG=4,tan ∠D=,求线段AH的长.7.如图,已知AB是⊙O的直径,BP是⊙O的弦,弦CD⊥AB于点F,交BP于点G,E在CD的延长线上,EP=EG,(1)求证:直线EP为⊙O的切线;(2)点P在劣弧AC上运动,其他条件不变,若BG2=BF•BO.试证明BG=PG;(3)在满足(2)的条件下,已知⊙O的半径为3,sinB=.求弦CD的长.8.如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.(1)求证:AB是⊙O的切线.(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=,求的值.(3)在(2)的条件下,设⊙O的半径为3,求AB的长.9.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=2DE,求tan∠ABD的值.10.如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD 是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.11.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O于点E.(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)12.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB于点M,若H是AC的中点,连接MH.(1)求证:MH为⊙O的切线.(2)若MH=,tan∠ABC=,求⊙O的半径.(3)在(2)的条件下分别过点A、B作⊙O的切线,两切线交于点D,AD与⊙O相切于N 点,过N点作NQ⊥BC,垂足为E,且交⊙O于Q点,求线段NQ的长度.13.如图,⊙O的半径r=25,四边形ABCD内接于圆⊙O,AC⊥BD于点H,P为CA延长线上的一点,且∠PDA=∠ABD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若tan∠ADB=,PA=AH,求BD的长;(3)在(2)的条件下,求四边形ABCD的面积.14.如图,PA为⊙O的切线,A为切点,直线PO交⊙O与点E,F过点A作PO的垂线AB垂足为D,交⊙O与点B,延长BO与⊙O交与点C,连接AC,BF.(1)求证:PB与⊙O相切;(2)试探究线段EF,OD,OP之间的数量关系,并加以证明;(3)若AC=12,tan∠F=,求cos∠ACB的值.15.如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;(2)若tan∠F=,CD=a,请用a表示⊙O的半径;(3)求证:GF2﹣GB2=DF•GF.16.如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.(1)求证:CF是⊙O的切线;(2)求证:△ACM∽△DCN;(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC=,求BN的长.17.如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.(1)求证:∠B=∠ACD.(2)已知点E在AB上,且BC2=AB•BE.(i)若tan∠ACD=,BC=10,求CE的长;(ii)试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.18.如图,AB为⊙O的直径,直线CD切⊙O于点M,BE⊥CD于点E.(1)求证:∠BME=∠MAB;(2)求证:BM2=BE•AB;(3)若BE=,sin∠BAM=,求线段AM的长.19.如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF 的值.20.已知AB、CD是⊙O的两条弦,直线AB、CD互相垂直,垂足为E,连接AC,过点B作BF⊥AC,垂足为F,直线BF交直线CD于点M.(1)如图1,当点E在⊙O内时,连接AD,AM,BD,求证:AD=AM;(2)如图2,当点E在⊙O外时,连接AD,AM,求证:AD=AM;(3)如图3,当点E在⊙O外时,∠ABF的平分线与AC交于点H,若tan∠C=,求tan∠ABH 的值.2018年01月10日金博初数2的初中数学组卷参考答案与试题解析一.解答题(共25小题)1.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE 与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,sinA=,求BH的长.【分析】(1)由圆周角定理和已知条件证出∠ODB=∠ABC,再证出∠ABC+∠DBF=90°,即∠OBD=90°,即可得出BD是⊙O的切线;(2)连接AC,由垂径定理得出,得出∠CAE=∠ECB,再由公共角∠CEA=∠HEC,证明△CEH∽△AEC,得出对应边成比例,即可得出结论;(3)连接BE,由圆周角定理得出∠AEB=90°,由三角函数求出BE,再根据勾股定理求出EA,得出BE=CE=6,由(2)的结论求出EH,然后根据勾股定理求出BH即可.【解答】(1)证明:∵∠ODB=∠AEC,∠AEC=∠ABC,∴∠ODB=∠ABC,∵OF⊥BC,∴∠BFD=90°,∴∠ODB+∠DBF=90°,∴∠ABC+∠DBF=90°,即∠OBD=90°,∴BD⊥OB,∴BD是⊙O的切线;(2)证明:连接AC,如图1所示:∵OF⊥BC,∴,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EH•EA;(3)解:连接BE,如图2所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为5,sin∠BAE=,∴AB=10,BE=AB•sin∠BAE=10×=6,∴EA===8,∵,∴BE=CE=6,∵CE2=EH•EA,∴EH==,在Rt△BEH中,BH===.【点评】本题是圆的综合题目,考查了切线的判定、圆周角定理、圆心角、弧、弦之间的关系定理、勾股定理、三角函数、相似三角形的判定与性质等知识;本题难度较大,综合性强,特别是(2)(3)中,需要通过作辅助线证明三角形相似和运用三角函数、勾股定理才能得出结果.2.如图,已知AB是⊙O的直径,C是⊙O上任一点(不与A,B重合),AB⊥CD于E,BF为⊙O的切线,OF∥AC,连结AF,FC,AF与CD交于点G,与⊙O交于点H,连结CH.(1)求证:FC是⊙O的切线;(2)求证:GC=GE;(3)若cos∠AOC=,⊙O的半径为r,求CH的长.【分析】(1)首先根据OF∥AC,OA=OC,判断出∠BOF=∠COF;然后根据全等三角形判定的方法,判断出△BOF≌△COF,推得∠OCF=∠OBF=90°,再根据点C在⊙O上,即可判断出FC 是⊙O的切线.(2)延长AC、BF交点为M.由△BOF≌△COF可知:BF=CF然后再证明:FM=CF,从而得到BF=MF,因为DC∥BM,所以△AEG∽△ABF,△AGC∽△AFM,然后依据相似三角形的性质可证GC=GE;(3)因为cos∠AOC=,OE=,AE=.由勾股定理可求得EC=.AC=.因为EG=GC,所以EG=.由(2)可知△AEG∽△ABF,可求得CF=BF=.在Rt△ABF中,由勾股定理可求得AF=3r.然后再证明△CFH∽△AFC,由相似三角形的性质可求得CH的长.【解答】(1)证明:∵OF∥AC,∴∠BOF=∠OAC,∠COF=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠BOF=∠COF,在△BOF和△COF中,,∴△BOF≌△COF,∴∠OCF=∠OBF=90°,又∵点C在⊙O上,∴FC是⊙O的切线.(2)如下图:延长AC、BF交点为M.由(1)可知:△BOF≌△COF,∴∠OFB=∠CFO,BF=CF.∵AC∥OF,∴∠M=∠OFB,∠MCF=∠CFO.∴∠M=∠MCF.∴CF=MF.∴BF=FM.∵DC∥BM,∴△AEG∽△ABF,△AGC∽△AFM.∴,.∴又∵BF=FM,∴EG=GC.(3)如下图所示:∵cos∠AOC=,∴OE=,AE=.在Rt△EOC中,EC==.在Rt△AEC中,AC==.∵EG=GC,∴EG=.∵△AEG∽△ABF,∴,即.∴BF=.∴CF=.在Rt△ABF中,AF===3r.∵CF是⊙O的切线,AC为弦,∴∠HCF=∠HAC.又∵∠CFH=∠AFC,∴△CFH∽△AFC.∴,即:.∴CH=.【点评】本题主要考查的是圆的综合应用,同时还涉及了勾股定理,锐角三角形函数,相似三角形的性质和判定,全等三角形的性质和判定,证得BF=FM是解答本题的关键.3.已知:⊙O上两个定点A,B和两个动点C,D,AC与BD交于点E.(1)如图1,求证:EA•EC=EB•ED;(2)如图2,若=,AD是⊙O的直径,求证:AD•AC=2BD•BC;(3)如图3,若AC⊥BD,点O到AD的距离为2,求BC的长.【分析】(1)根据同弧所对的圆周角相等得到角相等,从而证得三角形相似,于是得到结论;(2)如图2,连接CD,OB交AC于点F由B是弧AC的中点得到∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.证得△CBF∽△ABD.即可得到结论;(3)如图3,连接AO并延长交⊙O于F,连接DF得到AF为⊙O的直径于是得到∠ADF=90°,过O作OH⊥AD于H,根据三角形的中位线定理得到DF=2OH=4,通过△ABE∽△ADF,得到1=∠2,于是结论可得.【解答】(1)证明:∵∠EAD=∠EBC,∠BCE=∠ADE,∴△AED∽△BEC,∴,∴EA•EC=EB•ED;(2)证明:如图2,连接CD,OB交AC于点F∵B是弧AC的中点,∴∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.又∵AD为⊙O直径,∴∠ABD=90°,又∠CFB=90°.∴△CBF∽△DAB.∴,故CF•AD=BD•BC.∴AC•AD=2BD•BC;(3)解:如图3,连接AO并延长交⊙O于F,连接DF,∴AF为⊙O的直径,∴∠ADF=90°,过O作OH⊥AD于H,∴AH=DH,OH∥DF,∵AO=OF,∴DF=2OH=4,∵AC⊥BD,∴∠AEB=∠ADF=90°,∵∠ABD=∠F,∴△ABE∽△ADF,∴∠1=∠2,∴,∴BC=DF=4.【点评】本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,三角形的中位线的性质,正确作出辅助线是解题的关键.4.已知⊙O是以AB为直径的△ABC的外接圆,OD∥BC交⊙O于点D,交AC于点E,连接AD、BD,BD交AC于点F.(1)求证:BD平分∠ABC;(2)延长AC到点P,使PF=PB,求证:PB是⊙O的切线;(3)如果AB=10,cos∠ABC=,求AD.【分析】(1)先由OD∥BC,根据两直线平行内错角相等得出∠D=∠CBD,由OB=OD,根据等边对等角得出∠D=∠OBD,等量代换得到∠CBD=∠OBD,即BD平分∠ABC;(2)先由圆周角定理得出∠ACB=90°,根据直角三角形两锐角互余得到∠CFB+∠CBF=90°.再由PF=PB,根据等边对等角得出∠PBF=∠CFB,而由(1)知∠OBD=∠CBF,等量代换得到∠PBF+∠OBD=90°,即∠OBP=90°,根据切线的判定定理得出PB是⊙O的切线;(3)连结AD.在Rt△ABC中,由cos∠ABC===,求出BC=6,根据勾股定理得到AC==8.再由OD∥BC,得出△AOE∽△ABC,∠AED=∠OEC=180°﹣∠ACB=90°,根据相似三角形对应边成比例求出AE=4,OE=3,那么DE=OD﹣OE=2,然后在Rt△ADE中根据勾股定理求出AD==2.【解答】(1)证明:∵OD∥BC,∴∠D=∠CBD,∵OB=OD,∴∠D=∠OBD,∴∠CBD=∠OBD,∴BD平分∠ABC;(2)证明:∵⊙O是以AB为直径的△ABC的外接圆,∴∠ACB=90°,∴∠CFB+∠CBF=90°.∵PF=PB,∴∠PBF=∠CFB,由(1)知∠OBD=∠CBF,∴∠PBF+∠OBD=90°,∴∠OBP=90°,∴PB是⊙O的切线;(3)解:连结AD.∵在Rt△ABC中,∠ACB=90°,AB=10,∴cos∠ABC===,∴BC=6,AC==8.∵OD∥BC,∴△AOE∽△ABC,∠AED=∠OEC=180°﹣∠ACB=90°,∴==,==,∴AE=4,OE=3,∴DE=OD﹣OE=5﹣3=2,∴AD===2.【点评】本题是圆的综合题,其中涉及到平行线的性质、等腰三角形的性质、圆周角定理、直角三角形两锐角互余的性质、切线的判定定理、锐角三角函数的定义、勾股定理、相似三角形的判定和性质等知识,综合性较强,难度适中.本题中第(2)问要证某线是圆的切线,当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线是常用的方法,需熟练掌握.5.如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=2.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=,求图中阴影部分的面积;(3)若=,DF+BF=8,如图2,求BF的长.【分析】(1)连结OD,如图1,由角平分线定义得∠BAD=∠CAD,则根据圆周角定理得到=,再根据垂径定理得OD⊥BC,由于BC∥EF,则OD⊥DF,于是根据切线的判定定理即可判断DF为⊙O的切线;(2)连结OB,OD交BC于P,作BH⊥DF于H,如图1,先证明△OBD为等边三角形得到∠ODB=60°,OB=BD=2,易得∠BDF=∠DBP=30°,根据含30度的直角三角形三边的关系,在Rt △DBP 中得到PD=BD=,PB=PD=3,接着在Rt △DEP 中利用勾股定理计算出PE=2,由于OP ⊥BC ,则BP=CP=3,所以CE=1,然后利用△BDE ∽△ACE ,通过相似比可得到AE=,再证明△ABE ∽△AFD ,利用相似比可得DF=12,最后根据扇形面积公式,利用S阴影部分=S △BDF ﹣S 弓形BD =S △BDF ﹣(S 扇形BOD ﹣S △BOD )进行计算;(3)连结CD ,如图2,由=可设AB=4x ,AC=3x ,设BF=y ,由=得到CD=BD=2,先证明△BFD ∽△CDA ,利用相似比得到xy=4,再证明△FDB ∽△FAD ,利用相似比得到16﹣4y=xy ,则16﹣4y=4,然后解方程易得BF=3.【解答】证明:(1)连结OD ,如图1,∵AD 平分∠BAC 交⊙O 于D ,∴∠BAD=∠CAD ,∴=,∴OD ⊥BC ,∵BC ∥EF ,∴OD ⊥DF ,∴DF 为⊙O 的切线;(2)连结OB ,连结OD 交BC 于P ,作BH ⊥DF 于H ,如图1,∵∠BAC=60°,AD 平分∠BAC ,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD 为等边三角形,∴∠ODB=60°,OB=BD=2,∴∠BDF=30°,∵BC ∥DF ,∴∠DBP=30°,在Rt △DBP 中,PD=BD=,PB=PD=3,在Rt △DEP 中,∵PD=,DE=,∴PE==2,∵OP ⊥BC ,∴BP=CP=3, ∴CE=3﹣2=1,易证得△BDE ∽△ACE ,∴AE :BE=CE :DE ,即AE :5=1:,∴AE=∵BE ∥DF ,∴△ABE ∽△AFD ,∴=,即=,解得DF=12,在Rt △BDH 中,BH=BD=,∴S 阴影部分=S △BDF ﹣S 弓形BD=S △BDF ﹣(S 扇形BOD ﹣S △BOD )=•12•﹣+•(2)2=9﹣2π;(3)连结CD,如图2,由=可设AB=4x,AC=3x,设BF=y,∵=,∴CD=BD=2,∵∠F=∠ABC=∠ADC,∵∠FDB=∠DBC=∠DAC,∴△BFD∽△CDA,∴=,即=,∴xy=4,∵∠FDB=∠DBC=∠DAC=∠FAD,而∠DFB=∠AFD,∴△FDB∽△FAD,∴=,即=,整理得16﹣4y=xy,∴16﹣4y=4,解得y=3,即BF的长为3.【点评】本题考查了圆的综合题:熟练掌握垂径定理、圆周角定理和切线的判定定理;会计算不规则几何图形的面积;会灵活运用相似三角形的判定与性质计算线段的长.6.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=,BC=2,求⊙O的半径.【分析】(1)连接OE.欲证直线CE与⊙O相切,只需证明∠CEO=90°,即OE⊥CE即可;(2)在直角三角形ABC中,根据三角函数的定义可以求得AB=,然后根据勾股定理求得AC=,同理知DE=1;方法一、在Rt△COE中,利用勾股定理可以求得CO2=OE2+CE2,即=r2+3,从而易得r的值;方法二、过点O作OM⊥AE于点M,在Rt△AMO中,根据三角函数的定义可以求得r的值.【解答】解:(1)直线CE与⊙O相切.…(1分)理由如下:∵四边形ABCD是矩形,∴BC∥AD,∠ACB=∠DAC;又∵∠ACB=∠DCE,∴∠DAC=∠DCE;连接OE,则∠DAC=∠AEO=∠DCE;∵∠DCE+∠DEC=90°∴∠AE0+∠DEC=90°∴∠OEC=90°,即OE⊥CE.又OE是⊙O的半径,∴直线CE与⊙O相切.…(5分)(2)∵tan∠ACB==,BC=2,∴AB=BC•tan∠ACB=,∴AC=;又∵∠ACB=∠DCE,∴tan∠DCE=tan∠ACB=,∴DE=DC•tan∠DCE=1;方法一:在Rt△CDE中,CE==,连接OE,设⊙O的半径为r,则在Rt△COE中,CO2=OE2+CE2,即=r2+3解得:r=方法二:AE=AD﹣DE=1,过点O作OM⊥AE于点M,则AM=AE=在Rt△AMO中,OA==÷=…(9分)【点评】本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.7.如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相较于点D,E,F,且BF=BC,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH.(1)求证:△ABC≌△EBF;(2)试判断BD与⊙O的位置关系,并说明理由;(3)若AB=1,求HG•HB的值.【分析】(1)由垂直的定义可得∠EBF=∠ADF=90°,于是得到∠C=∠BFE,从而证得△ABC≌△EBF;(2)BD与⊙O相切,如图1,连接OB证得∠DBO=90°,即可得到BD与⊙O相切;(3)如图2,连接CF,HE,有等腰直角三角形的性质得到CF=BF,由于DF垂直平分AC,得到AF=CF=AB+BF=1+BF=BF,求得BF=,有勾股定理解出EF=,推出△EHF是等腰直角三角形,求得HF=EF=,通过△BHF∽△FHG,列比例式即可得到结论.【解答】(1)证明:∵∠ABC=90°,∴∠EBF=90°,∵DF⊥AC,∴∠ADF=90°,∴∠C+∠A=∠A+∠AFD=90°,∴∠C=∠BFE,在△ABC与△EBF中,,∴△ABC≌△EBF;(2)BD与⊙O相切,如图1,连接OB证明如下:∵OB=OF,∴∠OBF=∠OFB,∵∠ABC=90°,AD=CD,∴BD=CD,∴∠C=∠DBC,∵∠C=∠BFE,∴∠DBC=∠OBF,∵∠CBO+∠OBF=90°,∴∠DBC+∠CBO=90°,∴∠DBO=90°,∴BD与⊙O相切;(3)解:如图2,连接CF,HE,∵∠CBF=90°,BC=BF,∴CF=BF,∵DF垂直平分AC,∴AF=CF=AB+BF=1+BF=BF,∴BF=,∵△ABC≌△EBF,∴BE=AB=1,∴EF==,∵BH平分∠CBF,∴,∴EH=FH,∴△EHF是等腰直角三角形,∴HF=EF=,∵∠EFH=∠HBF=45°,∠BHF=∠BHF,∴△BHF∽△FHG,∴,∴HG•HB=HF2=2+.【点评】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,圆周角定理,勾股定理,线段的垂直平分线的性质,直角三角形的性质,等腰直角三角形的判定和性质,熟练掌握这些定理是解题的关键.8.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.【分析】(1)直接利用圆周角定理得出AD⊥BC,再利用线段垂直平分线的性质得出AB=AC,即可得出∠E=∠C;(2)利用圆内接四边形的性质得出∠AFD=180°﹣∠E,进而得出∠BDF=∠C+∠CFD,即可得出答案;(3)根据cosB=,得出AB的长,即可求出AE的长,再判断△AEG∽△DEA,求出EG•ED 的值.【解答】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,又∵∠B=∠E,∴∠E=∠C;(2)解:∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°﹣∠E,又∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=55°,又∵∠E=∠C=55°,∴∠BDF=∠C+∠CFD=110°;(3)解:连接OE,∵∠CFD=∠E=∠C,∴FD=CD=BD=4,在Rt△ABD中,cosB=,BD=4,∴AB=6,∵E是的中点,AB是⊙O的直径,∴∠AOE=90°,∵AO=OE=3,∴AE=3,∵E是的中点,∴∠ADE=∠EAB,∴△AEG∽△DEA,∴=,即EG•ED=AE2=18.【点评】此题主要考查了圆的综合题、圆周角定理以及相似三角形的判定与性质以及圆内接四边形的性质等知识,根据题意得出AE,AB的长是解题关键.9.AB,CD是⊙O的两条弦,直线AB,CD互相垂直,垂足为点E,连接AD,过点B作BF⊥AD,垂足为点F,直线BF交直线CD于点G.(1)如图1,当点E在⊙O外时,连接BC,求证:BE平分∠GBC;(2)如图2,当点E在⊙O内时,连接AC,AG,求证:AC=AG;(3)如图3,在(2)条件下,连接BO并延长交AD于点H,若BH平分∠ABF,AG=4,tan ∠D=,求线段AH的长.【分析】(1)利用圆内接四边形的性质得出∠D=∠EBC,进而利用互余的关系得出∠GBE=∠EBC,进而求出即可;(2)首先得出∠D=∠ABG,进而利用全等三角形的判定与性质得出△BCE≌△BGE(ASA),则CE=EG,再利用等腰三角形的性质求出即可;(3)首先求出CO的长,再求出tan∠ABH===,利用OP2+PB2=OB2,得出a的值进而求出答案.【解答】(1)证明:如图1,∵四边形ABCD内接于⊙O,∴∠D+∠ABC=180°,∵∠ABC+∠EBC=180°,∴∠D=∠EBC,∵GF⊥AD,AE⊥DG,∴∠A+∠ABF=90°,∠A+∠D=90°,∴∠ABF=∠D,∵∠ABF=∠GBE,∴∠GBE=∠EBC,即BE平分∠GBC;(2)证明:如图2,连接CB,∵AB⊥CD,BF⊥AD,∴∠D+∠BAD=90°,∠ABG+∠BAD=90°,∴∠D=∠ABG,∵∠D=∠ABC,∴∠ABC=∠ABG,∵AB⊥CD,∴∠CEB=∠GEB=90°,在△BCE和△BGE中,∴△BCE≌△BGE(ASA),∴CE=EG,∵AE⊥CG,∴AC=AG;(3)解:如图3,连接CO并延长交⊙O于M,连接AM,∵CM是⊙O的直径,∴∠MAC=90°,∵∠M=∠D,tanD=,∴tanM=,∴=,∵AG=4,AC=AG,∴AC=4,AM=3,∴MC==5,∴CO=,过点H作HN⊥AB,垂足为点N,∵tanD=,AE⊥DE,∴tan∠BAD=,∴=,设NH=3a,则AN=4a,∴AH==5a,∵HB平分∠ABF,NH⊥AB,HF⊥BF,∴HF=NH=3a,∴AF=8a,cos∠BAF===,∴AB==10a,∴NB=6a,∴tan∠ABH===,过点O作OP⊥AB垂足为点P,∴PB=AB=5a,tan∠ABH==,∴OP=a,∵OB=OC=,OP2+PB2=OB2,∴25a2+a2=,∴解得:a=,∴AH=5a=.【点评】此题主要考查了圆的综合以及勾股定理和锐角三角函数关系等、全等三角形的判定与性质知识,正确作出辅助线得出tan∠ABH==是解题关键.10.如图,已知AB是⊙O的直径,BP是⊙O的弦,弦CD⊥AB于点F,交BP于点G,E在CD的延长线上,EP=EG,(1)求证:直线EP为⊙O的切线;(2)点P在劣弧AC上运动,其他条件不变,若BG2=BF•BO.试证明BG=PG;(3)在满足(2)的条件下,已知⊙O的半径为3,sinB=.求弦CD的长.【分析】(1)连结OP,先由EP=EG,证出∠EPG=∠BGF,再由∠BFG=∠BGF+∠OBP=90°,推出∠EPG+∠OPB=90°来求证.(2)连结OG,由BG2=BF•BO,得出△BFG∽△BGO,得出∠BGO=∠BFG=90°,根据垂径定理可得出结论.(3)连结AC、BC、OG,由sinB=,求出OG,由(2)得出∠B=∠OGF,求出OF,再求出BF,FA,利用直角三角形来求斜边上的高,再乘以2得出CD长度.【解答】(1)证明:连结OP,∵EP=EG,∴∠EPG=∠EGP,又∵∠EGP=∠BGF,∴∠EPG=∠BGF,∵OP=OB,∴∠OPB=∠OBP,∵CD⊥AB,∴∠BFG=∠BGF+∠OBP=90°,∴∠EPG+∠OPB=90°,∴直线EP为⊙O的切线;(2)证明:如图,连结OG,OP,∵BG2=BF•BO,∴=,∴△BFG∽△BGO,∴∠BGO=∠BFG=90°,由垂径定理知:BG=PG;(3)解:如图,连结AC、BC、OG、OP,∵sinB=,∴=,∵OB=r=3,∴OG=,由(2)得∠EPG+∠OPB=90°,∠B+∠BGF=∠OGF+∠BGF=90°,∴∠B=∠OGF,∴sin∠OGF==∴OF=1,∴BF=BO﹣OF=3﹣1=2,FA=OF+OA=1+3=4,在Rt△BCA中,CF2=BF•FA,∴CF===2.∴CD=2CF=4.【点评】本题主要考查了圆的综合题,解题的关键是通过作辅助线,找准角之间的关系,灵活运用直角三角形中的正弦值.11.如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.(1)求证:AB是⊙O的切线.(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=,求的值.(3)在(2)的条件下,设⊙O的半径为3,求AB的长.【分析】(1)由于题目没有说明直线AB与⊙O有交点,所以过点O作OF⊥AB于点F,然后证明OC=OF即可;(2)连接CE,先求证∠ACE=∠ODC,然后可知△ACE∽△ADC,所以,而tan∠D==;(3)由(2)可知,AC2=AE•AD,所以可求出AE和AC的长度,由(1)可知,△OFB∽△ABC,所以,然后利用勾股定理即可求得AB的长度.【解答】(1)如图,过点O作OF⊥AB于点F,∵AO平分∠CAB,OC⊥AC,OF⊥AB,∴OC=OF,∴AB是⊙O的切线;(2)如图,连接CE,∵ED是⊙O的直径,∴∠ECD=90°,∴∠ECO+∠OCD=90°,∵∠ACB=90°,∴∠ACE+∠ECO=90°,∴∠ACE=∠OCD,∵OC=OD,∴∠OCD=∠ODC,∴∠ACE=∠ODC,∵∠CAE=∠CAE,∴△ACE∽△ADC,∴,∵tan∠D=,∴=,∴=;(3)由(2)可知:=,∴设AE=x,AC=2x,∵△ACE∽△ADC,∴,∴AC2=AE•AD,∴(2x)2=x(x+6),解得:x=2或x=0(不合题意,舍去),∴AE=2,AC=4,由(1)可知:AC=AF=4,∠OFB=∠ACB=90°,∵∠B=∠B,∴△OFB∽△ACB,∴=,设BF=a,∴BC=,∴BO=BC﹣OC=﹣3,在Rt△BOF中,BO2=OF2+BF2,∴(﹣3)2=32+a2,∴解得:a=或a=0(不合题意,舍去),∴AB=AF+BF=.【点评】本题考查圆的综合问题,解题的关键是证明△ACE∽△ADC.本题涉及勾股定理,解方程,圆的切线判定知识,内容比较综合,需要学生构造辅助线才能解决问题,对学生综合能力要求较高.12.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=2DE,求tan∠ABD的值.【分析】(1)直接利用圆周角定理得出∠CDE的度数;(2)直接利用直角三角形的性质结合等腰三角形的性质得出∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,进而得出答案;(3)利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan ∠ABD的值.【解答】(1)解:∵对角线AC为⊙O的直径,∴∠ADC=90°,∴∠EDC=90°;(2)证明:连接DO,∵∠EDC=90°,F是EC的中点,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF是⊙O的切线;(3)解:方法一:设DE=1,则AC=2,由AC2=AD×AE∴20=AD(AD+1)∴AD=4或﹣5(舍去)∵DC2=AC2﹣AD2∴DC=2,∴tan∠ABD=tan∠ACD==2;方法二:如图所示:可得∠ABD=∠ACD,∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,∴∠DCA=∠E,又∵∠ADC=∠CDE=90°,∴△CDE∽△ADC,∴=,∴DC2=AD•DE∵AC=2DE,∴设DE=x,则AC=2x,则AC2﹣AD2=AD•DE,期(2x)2﹣AD2=AD•x,整理得:AD2+AD•x﹣20x2=0,解得:AD=4x或﹣5x(负数舍去),则DC==2x,故tan∠ABD=tan∠ACD===2.【点评】此题主要考查了圆的综合以及切线的判定、相似三角形的判定与性质、勾股定理等知识,根据题意表示出AD,DC的长是解题关键.。
高中三角函数专题练习题(及答案)一、填空题1.赵爽是我国古代数学家,大约在公元222年,他为《周髀算经》一书作序时,介绍了"勾股圆方图",亦称"赵爽弦图"(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成).类比"赵爽弦图",可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,设 ,AD AB AC λμ=+若4AD AF =,则λ-μ的值为___________2.已知函数()()4sin 03πf x x ωω⎛⎫=+> ⎪⎝⎭,圆C 的方程为()22525x y -+=,若在圆C 内部恰好包含了函数()f x 的三个极值点,则ω的取值范围是______.3.三棱锥P ABC -中,PA ⊥平面ABC ,直线PB 与平面ABC 所成角的大小为30,23AB =60ACB ∠=︒,则三棱锥P ABC -的外接球的表面积为________.4.已知函数()[)[]243,0,3,92sin ,3,156x x y f x x x π⎧⎛⎫-∈⎪ ⎪⎪⎝⎭==⎨⎪∈⎪⎩若存在实数a 、b 、c 、d 满足()()()()f a f b f c f d ===(其中a b c d <<<),则()()a b cd +⋅的取值范围是______.5.在ABC 中,AB BC ≠,O 为ABC 的外心,且有23AB BC AC +=,sin (cos 3)cos sin 0C A A A +=,若AO x AB y AC =+,,x y R ∈,则2x y -=________.6.已知函数()()sin 3cos 0f x x x ωωω=>,若函数()f x 的图象在区间[]0,2π上的最高点和最低点共有6个,下列说法正确的是___________. ①()f x 在[]0,2π上有且仅有5个零点; ②()f x 在[]0,2π上有且仅有3个极大值点; ③ω的取值范围是3137,1212⎡⎫⎪⎢⎣⎭;④()f x 在06,π⎡⎤⎢⎥⎣⎦上为单递增函数.7.已知函数()sin cos f x x x =+,()sin cos g x x x =:①函数()f x 的图象关于点(,0)4π对称;②函数|()|g x 的最小正周期是2π;③把函数f (2x )图象上所有点向右平移8π个单位长度得到的函数图象的对称轴与函数y=()g x 图象的对称轴完全相同;④函数1()()y f x g x =--在R 上的最大值为2.则以上结论正确的序号为_______________8.已知函数()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 的图象关于直线3x π=对称,且在3,164ππ⎛⎫⎪⎝⎭上单调,则ω的最大值是______. 9.若向量x y ,满足2212x y +=,则21||2x x y ++的最大值是___________.10.已知1OB →=,,A C 是以O 为圆心,0BA BC →→⋅=,设平面向量OA →与OB →的夹角为θ(π04θ≤≤),则平面向量OA →在BC →方向上的投影的取值范围是_____.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-1212.已知函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在π,π3⎡⎤⎢⎥⎣⎦上恰有3个零点,则ω的取值范围是( )A .81114,4,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭B .111417,4,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭C .111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭D .141720,5,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭13.已知函数()21ln e 1xf x x -⎛⎫=+ ⎪+⎝⎭,a ,b ,c 分别为ABC 的内角A ,B ,C 所对的边,且222446,a b c ab +-=则下列不等式一定成立的是( ) A .()()sin cos f A f B ≤ B .f (cos A )≤f (cos B ) C .f (sin A )≥f (sin B ) D .f (sin A )≥f (cos B )14.已知点P 是曲线y =α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .0,6π⎛⎤ ⎥⎝⎦B .,62ππ⎡⎫⎪⎢⎣⎭C .,63ππ⎡⎤⎢⎥⎣⎦D .0,3π⎛⎤ ⎥⎝⎦15.已知O 是三角形ABC 的外心,若()22AC ABAB AO AC AO m AO AB AC⋅+⋅=,且sin sin B C +=,则实数m 的最大值为( )A .3B .35C .75D .3216.在三棱锥A BCD -中,2AB AD BC ===,CD =AC =3BD =,则三棱锥外接球的表面积为( ) A .927πB .9πC .1847πD .18π17.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>≤ ⎪⎝⎭,已知,06π⎛⎫- ⎪⎝⎭为()f x 图象的一个对称中心,直线1312x π=为() f x 图象的一条对称轴,且() f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递减.记满足条件的所有ω的值的和为S ,则S 的值为( ) A .125 B .85C .165D .18518.已知函数2()sin f x x x =⋅各项均不相等的数列{}n x 满足||(1,2,3,,)2i x i n π≤=.令*1212()([()()()())]n n F n x x x f x f x f x n N =+++⋅+++∈.给出下列三个命题:(1)存在不少于3项的数列{},n x 使得()0F n =;(2)若数列{}n x 的通项公式为*1()()2n n x n N =-∈,则(2)0F k >对k *∈N 恒成立;(3)若数列{}n x 是等差数列,则()0F n ≥对n *∈N 恒成立,其中真命题的序号是( )A .(1)(2)B .(1)(3)C .(2)(3)D .(1)(2)(3)19.已知函数22sin sin ,[1,1]()22,(1,)x x a a x f x x ax a x ⎧++-∈-=⎨-+∈+∞⎩若关于x 的不等式()0f x 对任意[1,)x ∈-+∞恒成立,则实数a 的范围是( )A .[0,2]B .(,0][2,)-∞+∞C .(,0][1,2]-∞D .[0,1][2,)⋃+∞20.设函数()xf x mπ,函数()f x 的对称轴为0x x =,若存在0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围为( )A .(,6)(6,)-∞-+∞B .(,4)(4,)-∞-⋃+∞C .(,2)(2,)-∞-+∞D .(,1)(1,)-∞-+∞三、解答题21.已知函数 f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1,a ∈R . (1)写出函数 f (x )的最小正周期(不必写出过程); (2)求函数 f (x )的最大值;(3)当a =1时,若函数 f (x )在区间(0,k π)(k ∈N*)上恰有2015个零点,求k 的值.22.如图所示,在平面四边形ABCD 中,1,2,AB BC ACD ==∆为正三角形.(1)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若sin(2)3sin A C C +=,求角B 的大小; (2)求BCD ∆面积的最大值.23.如图,在ABC ∆中,90,3,1ABC AB BC ︒∠===,P 为ABC ∆内一点,90BPC ︒∠=.(1)若3PC =,求PA ; (2)若120APB ︒∠=,求ABP ∆的面积S .24.已知函数 2()sin 2cos 1f x x m x =--- [0,]2x π∈()1若()f x 的最小值为 - 3,求m 的值; ()2当2m =时,若对任意 12,[0,]2x x π∈ 都有()()12124f x f x a -≤-恒成立,求实数a 的取值范围.25.已知函数()sin 24a a x x b f π⎛⎫=+++ ⎪⎝⎭,当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 的值域是2,2⎡⎤-⎣⎦. (1)求常数a ,b 的值;(2)当0a <时,设()2g x f x π⎛⎫=+ ⎪⎝⎭,判断函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调性.26.已知函数()2cos (sin cos )f x x x x =+,x ∈R . (1)求函数()f x 的最小正周期;(2)求函数()f x 在区间ππ,44⎡⎤-⎢⎥⎣⎦上的最小值和最大值,并求出取得最值时的x 的值.27.函数()()2sin f x x ωϕ=+(其中0,2πωϕ><),若函数()f x 的图象与x 轴的任意两个相邻交点间的距离为2π,且函数()f x 的图象过点()0,1. (1)求()f x 的解析式; (2)求()f x 的单调增区间:(3)求()()2sin f x x ωϕ=+在,02π⎛⎫- ⎪⎝⎭的值域. 28.已知函数()()22sin cos 2sin f x x x x =+-(1)求()f x 的最小正周期; (2)求()f x 的单调增区间; (3)若0,2x π⎡⎤∈⎢⎥⎣⎦求函数的值域.29.已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足sin()n n b a =,集合*{|,}n S x x b n ==∈N .(1)若10a =,23d π=,求集合S ; (2)若12a π=,求d 使得集合S 恰有两个元素;(3)若集合S 恰有三个元素,n T n b b +=,T 是不超过5的正整数,求T 的所有可能值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S .30.函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图象相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式;(2)设π(0,)2α∈,则()22f α=,求α的值【参考答案】一、填空题1.472.1925731,,48481248ππππ⎛⎤⎡⎤⋃⎥⎢⎥⎝⎦⎣⎦3.20π 4.()135,216 5.4333-6.②③ 7.②③④ 8.13910.⎡⎢⎣⎦二、单选题 11.A 12.C 13.D 14.A 15.D 16.A 17.A 18.D 19.C 20.C 三、解答题21.(1)最小正周期为π.(2)见解析(3)k =1008. 【解析】(1)由题意结合周期函数的定义直接求解即可;(2)令t ,t ∈[1,则当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()2f x t at t μ==-,当,2x π⎛⎤∈π ⎥⎝⎦时,()()22f x v t t at ==+-,易知()()t v t μ≤,分类比较()1v 、v的大小即可得解;(3)转化条件得当且仅当sin2x =0时,f (x )=0,则x ∈(0,π]时,f (x )有且仅有两个零点,结合函数的周期即可得解. 【详解】(1)函数 f (x )的最小正周期为π. (2)∵f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1=sin2x ﹣1=(sin2x +1),令t =t ∈[1],当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()(21f x t at t t μ==-≤≤,当,2x π⎛⎤∈π ⎥⎝⎦时,()()(221f x v t t at t ==+-≤≤,∵()()()2222220t v t at t t at t μ-=--+-=-+≤即()()t v t μ≤.∴()()(){}max max max 1,f x v t v v ==,∵()11v a =-,v,∴当1a ≤-()f x 最大值为1a -;当1a >-()f x .(3)当a =1时,f (x )sin 21x -,若f (x )=0sin 21x =+即22sin 22sin 2sin x x x =+,∴当且仅当sin2x =0时,f (x )=0,∴x ∈(0,π]时,f (x )有且仅有两个零点分别为2π,π, ∴2015=2×1007+1, ∴k =1008. 【点睛】本题考查了三角函数的综合问题,考查了分类讨论思想和转化化归思想,属于难题.22.(1)23B π=;(21. 【解析】 【分析】(1)由正弦和角公式,化简三角函数表达式,结合正弦定理即可求得角B 的大小;(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理及正弦定理用,αβ表示出CD .再根据三角形面积公式表示出∆BCD S ,即可结合正弦函数的图像与性质求得最大值. 【详解】 (1)由题意可得:sin2cos cos2sin 3sin A C A C C +=∴()22sin cos cos 12sin sin 3sin A A C A C C +-=整理得sin (cos cos sin sin )sin A A C A C C -= ∴sin cos()sin A A C C += ∴sin cos sin A B C -= ∴sin 1cos sin 2C c B A a =-=-=- 又(0,)B π∈ ∴23B π=(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理得:22212212cos 54cos AC αα=+-⨯⨯=-, ∵ACD ∆为正三角形, ∴2254cos CD C A α=-=, 在ABC ∆中,由正弦定理得:1sin sin ACβα=, ∴sin sin AC βα=, ∴sin sin CD βα=,∵()222222(cos )1sin sin 54cos sin CD CD CD ββααα=-=-=--2(2cos )α=-,∵BAC β<∠,∴β为锐角,cos 2cos CD βα=-, 12sin sin 233BCD S CD CD ππββ∆⎛⎫⎛⎫=⨯⨯⨯+=+ ⎪ ⎪⎝⎭⎝⎭1cos sin 2CD ββ=+,1cos )sin sin 23πααα⎛⎫=-+=- ⎪⎝⎭, ∵(0,)απ∈∴当56πα=时,()max 1BCD S ∆=. 【点睛】本题考查了三角函数式的化简变形,正弦定理与余弦定理在解三角形中的应用,三角形面积的表示方法,正弦函数的图像与性质的综合应用,属于中档题.23.(12 【解析】 【分析】(1)求出12BP ==,,36CBP ABP ππ∠=∠=,ABP ∆中由余弦定理即可求得PA ;(2)设PBA α∠=,利用正弦定理表示出()sin120sin 60AB PB =︒︒-α,求得tan α=,利用面积公式即可得解. 【详解】(1)在ABC ∆中,90,1ABC AB BC ︒∠===,2AC =P 为ABC ∆内一点,90BPC ︒∠=,PC =,所以12BP =,CBP ∆中,由余弦定理得:2221cos 22BP BC PC CBP BP BC +-∠==⋅所以,36CBP ABP ππ∠=∠=ABP ∆中,由余弦定理得:AP==; (2)120APB ︒∠=,设0,,90,602PBA PBC PAB π⎛⎫∠=α∈∠=︒-α∠=︒-α ⎪⎝⎭,在Rt PBC ∆中,sin sin PB BC =⋅α=α,在PBA ∆中,由正弦定理()sin120sin 60AB PB=︒︒-α,即()sin 2sin 60α=︒-α,sin sin α=α-α,所以tan α=sin PB α==ABP ∆的面积11sin 22S AB PB α=⋅==. 【点睛】此题考查解三角形,对正余弦定理的综合使用,涉及两角差的正弦公式以及同角三角函数关系的使用,综合性较强. 24.(1)1m =;(2)13[,)8a ∈+∞【解析】 【分析】(1)将函数化为2()cos 2cos 2f x x m x =--,设cos [0,1]t x =∈,将函数转化为二次函数,利用二次函数在给定的闭区间上的最值问题的解法求解.(2) 对任意 12,[0,]2x x π∈ 都有()()12124f x f x a -≤-恒成立, 等价于12max1()()24f x f x a -≤-,然后求出函数()f x 的最值即可解决.【详解】(1)2()cos 2cos 2f x x m x =--,[0,]2x π∈令 cos [0,1]t x =∈, 设222()22()2g t t mt t m m =--=---, ①0m <,则min g(0)2()3g t ==-≠-,②01m ≤≤,则2min )3(2t m g =--=-,∴1m =± ∴1m =③1m ,则min g(1)21()3g m t ==--=-,∴1m =.(舍) 综上所述:1m =.(2)对任意12,[0,]2x x π∈都有()()12124f x f x a -≤-恒成立,等价于12max1()()24f x f x a -≤-,2m =,∴2g()(2)6t t =--,[0,1]t ∈max ()g(0)2f x ==-,min ()g(1)5f x ==-12max ()(25)()3f x f x =---=- ∴ 1234a -≥,∴ 138a ≥, 综上所述:13[,)8a ∈+∞.【点睛】本题考查三角函数中的二次“型”的最值问题,和双参恒成立问题,属于中档题. 25.(1)2a =,2b =-或2a =-,4b =函数()g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递增.函数()g x 在,82ππ⎡⎤⎢⎥⎣⎦上单调递减. 【解析】 【分析】(1)先求得sin 24x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,再讨论0a >和0a <的情况,进而求解即可; (2)由(1)()2sin 224f x x π⎛⎫=-++ ⎪⎝⎭则()2sin 224g x x π⎛⎫=++ ⎪⎝⎭进而判断单调性即可 【详解】解:(1)当0,2x π⎡⎤∈⎢⎥⎣⎦时,52,444x πππ⎡⎤+∈⎢⎥⎣⎦,所以sin 24x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦, ①当0a >时,由题意可得12a ab a a b ⎧⎛⨯++=⎪ ⎨⎝⎭⎪⨯++=⎩即222a b a b ⎧++=⎪⎨⎪+=⎩解得2a =,2b =-; ②当0a <时,由题意可得21a a b a a b ⎧⎛⨯++=⎪ ⎨⎝⎭⎪⨯++=⎩,即22a b a b ⎧++=⎪⎨⎪+=⎩,解得2a =-,4b =(2)由(1)当0a <时,2a =-,4b =所以()2sin 224f x x π⎛⎫=-++ ⎪⎝⎭所以()2sin 22224f x x g x πππ⎡⎤⎛⎫⎛⎫=+=-+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2sin 224x π⎛⎫=++ ⎪⎝⎭令222242k x k πππππ-+≤+≤+,k Z ∈,解得388k x k ππππ-+≤≤+,k Z ∈, 当0k =时,388x ππ-≤≤,则3,0,0,8828ππππ⎡⎤⎡⎤⎡⎤-⋂=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以函数()g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递增,同理,函数()g x 在,82ππ⎡⎤⎢⎥⎣⎦上单调递减【点睛】本题考查由三角函数性质求解析式,考查正弦型函数的单调区间,考查运算能力26.(1)π;(2)()()min max ππ,0,,148x f x x f x =-===.【解析】(1) 函数()f x 解析式去括号后利用二倍角的正弦、余弦公式化简,整理后再利用两角和与差的正弦函数公式化为一个角的正弦函数,找出w 的值,代入周期公式即可求出最小正周期;(2)根据x 的范围求出这个角的范围,利用正弦函数的值域即可确定出()f x 的值域,进而求出()f x 的最小值与最大值.. 【详解】(1)()()π2cos sin cos sin2cos21214f x x x x x x x ⎛⎫=+=++=++ ⎪⎝⎭,因此,函数()f x 的最小正周期πT =. (2) 因为ππ44x -≤≤ 所以ππ3π2444x -≤+≤,sin 24x π⎡⎤⎛⎫∴+∈⎢⎥ ⎪⎝⎭⎣⎦,即()1f x ⎡⎤∈⎣⎦, 所以当244x ππ+=-,即4x π=-时,()min 0f x =,当242x ππ+=,即8x π=时,()max 1f x =.所以4x π=-时,()min 0f x =,8x π=时,()max 1f x .【点睛】此题考查了两角和与差的正弦函数公式,二倍角的正弦、余弦函数公式,正弦函数的定义域与值域,熟练掌握公式是解本题的关键,是中档题.27.(1)2sin(2)6y x π=+;(2),,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(3)[)2,1-【解析】 【分析】(1)依据题意可得函数周期为π,利用周期公式算出ω,又函数过定点()0,1,即可求出ϕ,进而得出解析式;(2)利用正弦函数的单调性代换即可求出函数()f x 的单调区间;(3)利用换元法,设26t x π=+,结合2sin y t =在5,66t ππ⎛⎫∈- ⎪⎝⎭上的图象即可求出函数()()2sin f x x ωϕ=+在,02π⎛⎫- ⎪⎝⎭的值域【详解】(1)因为函数()f x 的图象与x 轴的任意两个相邻交点间的距离为2π,所以函数()f x 的周期为π,由2T ππω==,得2ω=,又函数()f x 的图象过点()0,1,所以(0)1f =,即2sin 1=ϕ,而,所以6π=ϕ, 故()f x 的解析式为2sin(2)6y x π=+.(2)由sin y x =的单调增区间是2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦可得222262k x k πππππ-+≤+≤+,解得36k x k ππππ-+≤≤+故故函数()f x 的单调递增区间是,,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(3)设 26t x π=+,,02x π⎛⎫∈- ⎪⎝⎭,则5,66t ππ⎛⎫∈-⎪⎝⎭ ,由2sin y t =在5,66t ππ⎛⎫∈- ⎪⎝⎭上的图象知,当2t π=-时,min 2f =- 当t 趋于6π时,函数值趋于1,故()()2sin f x x ωϕ=+在,02π⎛⎫- ⎪⎝⎭的值域为[)2,1- . 【点睛】本题主要考查正弦型函数解析式的求法,正弦函数性质的应用,以及利用换元法结合图象解决给定范围下的三角函数的范围问题,意在考查学生数学建模以及数学运算能力. 28.(1)π;(2)3[],88k k k Z ππππ-+∈,;(3)[2]-.【解析】 【分析】(1)先化简函数f(x)的解析式,再求函数的最小正周期;(2)解不等式222,242k x k k Z πππππ-≤+≤+∈,即得函数的增区间;(3)根据三角函数的性质求函数的值域. 【详解】(1)由题得1cos2()1sin 22sin 2cos22)24x f x x x x x π-=+-⋅=++, 所以函数的最小正周期为2=2ππ. (2)令222,242k x k k Z πππππ-≤+≤+∈,所以3,88k x k k Z ππππ-≤≤+∈,所以函数的单调增区间为3[],88k k k Z ππππ-+∈,.(3)50,02,2,2444x x x πππππ≤≤∴≤≤∴≤+≤sin(2)1,1)44x x ππ≤+≤∴-≤+≤所以函数的值域为[-. 【点睛】本题主要考查三角恒等变换,考查三角函数的图像和性质,考查三角函数的值域,意在考查学生对这些知识的理解掌握水平,属于基础题.29.(1)⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭;(2)23π或π;(3)3T =或4,3T =时,23n a n π=,S ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭;4T =时,2n a n π=,{}0,1,1S =-【解析】 【分析】(1)根据等差数列的通项公式写出n a ,进而求出n b ,再根据周期性求解;(2)由集合S 的元素个数,分析数列{}n b 的周期,进而可求得答案;(3)分别令1T =,2,3,4,5进行验证,判断T 的可能取值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S 【详解】(1)等差数列{}n a 的公差(0d ∈,]π,数列{}n b 满足sin()n n b a =, 集合{}*|,n S x x b n N ==∈. ∴当120,3a d π==,所以集合{S =0. (2)12a π=,数列{}n b 满足sin()n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=, ②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=, 综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合1{S b =,2b ,3}b ,符合题意. 与之相应的一个等差数列{}n a 的通项公式为23n a n π=,此时33,,022S ⎧⎫⎪⎪=-⎨⎬⎪⎪⎩⎭. ②当4T =时,4n n b b +=,sin(4)sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0d ∈,]π,故42n n a d a k π+=+,2k d π=,又1k ∴=,2 当1k =时满足条件,此时{0S =,1,1}-. 与之相应的一个等差数列{}n a 的通项公式为2n a n π=,此时{}0,1,1S =-【点睛】本题考查等差数列的通项公式、集合元素的性质以及三角函数的周期性,是一道综合题.30.(1)()2sin(2) 1.6f x x π=-+;(2)3π.【解析】 【详解】(1)由三角函数性质得,最大值为A+1=3,∴A=2, 周期2222πππωω⨯==⇒=,∴f (x )=2sin (2x-6π)+1(2)π(0,)2α∈,f (2α)=2∴2sin (22α⨯-6π)+1=2,得sin (α-6π)=12,α=3π。
中考专题训练—-圆综合部分例1.AB为圆的直径,AD为∠BAC的平分线,DE⊥AC。
(1)求证:DE是圆O的切线。
(2)若35ACAB=,求AFDF的值。
例2.已知:Rt△ABC,AC为直径,OE∥AB,(1) 求证:DE是圆O的切线。
(2)若圆O的半径为3,ED=4,求△ADF的面积。
例3.已知:等腰△ABC中,AC=BC=10,AB=12,BC为直径,DF⊥AC。
(1)求证:EF是圆O的切线。
(2)求sin∠E。
(一)圆的有关性质1、如图,已知圆O的直径AB垂直于弦CD,垂足为E点,过C点作CG∥AD,交AB的延长线于点G连OD,且OD恰好平分∠ADC。
(1)试问:CG是圆O的切线吗?请说明理由.(2)请证明:E是OB的中点:(3)若AB=8,求CD的长。
2、如图,△ABC内接于圆O,过点A的直线交圆O于点P,交BC的延长线于点D,AB2=AP·AD。
(1)求证:AB=AC(2)如果∠ABC=60°,圆O的半径为l,且P为弧AC的中点,求线段AD的长。
3、如图,在Rt△ABC中,∠ABC=90°,D是AC的中点,圆O经过A、B、D三点,CB的延长线交圆O于E。
(1)求证:AE=CE;(2)EF与圆O相切于点E,交AC的延长线于点F,若CD=CF=2cm。
求圆O的直径。
4、如图,已知圆O的直径AB=2,直线m与圆O相切于点A,P为圆O上一动点(与点A、点B 不重合),PO的延长线与圆O相交于点C,过点C的切线与直线m相交于点D。
(1)求证:△APC~△COD。
(2)设AP=x,OD=y,试用含x的代数式表示y。
(3)试探究x为何值时,△ACD是一个等边三角形。
5、如图,在半径为4的圆O中,AB、CD是两条直径,M为0B的中点,CM的延长线交圆O于点E,且EM>MC,连结DE,DE=15;(1)求证:AM·MB=EM·MC(2)求EM的长(3)求sin∠EOB的值6、如图,AB为圆O的一条直径,D为弧AB的中点,点C在直径AB的另一半圆弧上,弦CD交∠BAC的角平分线于O。
2020-2021学年中考数学培优训练讲义(七)《圆与相似三角形、三角函数综合题》专题训练班级姓名座号成绩1.如图,过正方形ABCD顶点B,C的⊙O与AD相切于点P,与AB,CD分别相交于点E、F,连接PF.若tan∠FBC=,DF=,则PF的长为.2.如图AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且=,CE的延长线交DB的延长线于F,AF交⊙O于点H,当OB=2时,则BH的长为.(第1题图)(第2题图)(第3题图)3.如图,PA是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC、PB,若cos∠PAB=,BC=1,则PO的长.4.已知:在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,交BC于点E.(1)如下左图,过点D作弦DF⊥AB垂足为H,连接EF交AB于G,求证:EF∥AC;(2)如下右图,在(1)的条件下,过点G作GN⊥BC垂足为N,若OG=3,EN=4,求线段DH的长.5.如图,AB是⊙O的直径,弦CD⊥AB于H,G为⊙O上一点,连接AG交CD于K,在CD的延长线上取一点E,使EG=EK,EG的延长线交AB的延长线于F.(1)求证:EF是⊙O的切线;(2)连接DG,若AC∥EF时.①求证:KG2=KD•KE;②若cos C=,AK=,求BF的长.作业思考:1. 如图,四边形ABCD内接于⊙O,且对角线AC⊥BD,垂足为点E,过点C作CF⊥AB于点F,交BD于点G.(1)如图①,连接EF,若EF平分∠AFG,求证:AE=GE;(2)如图②,连接CO并延长交AB于点H,若CH为∠ACF的平分线,AD=3,且tan∠FBG=,求线段AH长.参考答案:1.如图,过正方形ABCD顶点B,C的⊙O与AD相切于点P,与AB,CD分别相交于点E、F,连接EF.(1)求证:PF平分∠BFD.(2)若tan∠FBC=,DF=,求EF的长.【分析】(1)根据切线的性质得到OE⊥AD,由四边形ABCD的正方形,得到CD⊥AD,推出OE∥CD,根据平行线的性质得到∠EFD=∠OEF,由等腰三角形的性质得到∠OEF=∠OFE,根据角平分线的定义即可得到结论;(2)连接PF,由BF是⊙O的直径,得到∠BPF=90°,推出四边形BCFP是矩形,根据tan∠FBC =,设CF=3x,BC=4x,于是得到3x+=4x,x=,求得AD=BC=4,推出DF∥OE ∥AB于是得到DE:AE=OF:OB=1:1即可得到结论.【解答】解:(1)连接OE,BF,PF,∵∠C=90°,∴BF是⊙O的直径,∵⊙O与AD相切于点E,∴OE⊥AD,∵四边形ABCD的正方形,∴CD⊥AD,∴OE∥CD,∴∠EFD=∠OEF,∵OE=OF,∴∠OEF=∠OFE,∴∠OFE=∠EFD,∴EF平分∠BFD;(2)连接PF,∵BF是⊙O的直径,∴∠BPF=90°,∴四边形BCFP是矩形,∴PF=BC,∵tan∠FBC=,设CF=3x,BC=4x,∴3x+=4x,x=,∴AD=BC=4,∵点E是切点,∴OE⊥AD∴DF∥OE∥AB∴DE:AE=OF:OB=1:1∴DE=AD=2,∴EF==10.【点评】本题考查了切线的性质,正方形的性质,圆周角定理,等腰三角形的性质,平行线的性质,切割线定理,正确的作出辅助线是解题的关键.2.如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且=,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【解答】证明:(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;解:(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【点评】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.3.如图,PA是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.(1)求证:PB是⊙O的切线;(2)求证:E为△PAB的内心;(3)若cos∠PAB=,BC=1,求PO的长.【分析】(1)连接OB,根据圆周角定理得到∠ABC=90°,证明△AOP≌△BOP,得到∠OBP=∠OAP,根据切线的判定定理证明;(2)连接AE,根据切线的性质定理得到∠PAE+∠OAE=90°,证明EA平分∠PAD,根据三角形的内心的概念证明即可;(3)根据余弦的定义求出OA,证明△PAO∽△ABC,根据相似三角形的性质列出比例式,计算即可.【解答】(1)证明:连接OB,∵AC为⊙O的直径,∴∠ABC=90°,∵AB⊥PO,∴PO∥BC∴∠AOP=∠C,∠POB=∠OBC,OB=OC,∴∠OBC=∠C,∴∠AOP=∠POB,在△AOP和△BOP中,,∴△AOP≌△BOP(SAS),∴∠OBP=∠OAP,∵PA为⊙O的切线,∴∠OAP=90°,∴∠OBP=90°,∴PB是⊙O的切线;(2)证明:连接AE,∵PA为⊙O的切线,∴∠PAE+∠OAE=90°,∵AD⊥ED,∴∠EAD+∠AED=90°,∵OE=OA,∴∠OAE=∠AED,∴∠PAE=∠DAE,即EA平分∠PAD,∵PA、PB为⊙O的切线,∴PD平分∠APB∴E为△PAB的内心;(3)解:∵∠PAB+∠BAC=90°,∠C+∠BAC=90°,∴∠PAB=∠C,∴cos∠C=cos∠PAB=,在Rt△ABC中,cos∠C===,∴AC=,AO=,∵△PAO∽△ABC,∴,∴PO===5.【点评】本题考查的是三角形的内切圆和内心、相似三角形的判定和性质、切线的判定,掌握切线的判定定理、相似三角形的判定定理和性质定理是解题的关键.4.已知:在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,交BC于点E.(1)如图1,求证:AD=CD;(2)如图2,过点D作弦DF⊥AB垂足为H,连接EF交AB于G,求证:EF∥AC;(3)如图3,在(2)的条件下,过点G作GN⊥BC垂足为N,若OG=3,EN=4,求线段DH的长.【分析】(1)如图1中,连接BD,利用等腰三角形的三线合一的性质证明即可.(2)如图2中,连接BD,想办法证明∠ADF=∠DFE即可.(3)连接AE.设OA=OB=r,则AB=BC=2r,BG=3+r,利用平行线分线段成比例定理,构建方程求出r,即可解决问题.【解答】(1)证明:如图1中,连接BD.∵AB是直径,∴∠ADB=90°,∴BD⊥AC,∵BA=BC,∴AD=CD.(2)证明:如图2中,连接BD.∵AB⊥DF,∴=,∴∠ADF=∠ABD,∵∠DFE=∠ABD,∴∠ADF=∠DFE,∴EF∥AC.(3)解:如图3中,连接AE.设OA=OB=r,则AB=BC=2r,BG=3+r,∵EG∥AC,∴=,∵BC=BA,∴BE=BG=3+r,∴BN=3+r﹣4=r﹣1,∵AB是直径,GN⊥BC∴∠AEB=∠GNB=90°,∴GN∥AE,∴=,∴=,解得r=9或﹣1(舍弃),∴BG=12,BN=8,∴NG===4,∴EG===2,∵GN∥AE,∴=,∴=,∴AE=6,∵∠C=∠DAH,∠AEC=∠AHD=90°,∴△AEC∽△DHA,∴==2,∴DH=3.【点评】本题属于圆综合题,考查了垂径定理,解直角三角形,平行线分线段成比例定理,等腰三角形的判定和性质等知识,教育的关键是学会添加常用辅助线,属于中考压轴题.5.如图,AB是⊙O的直径,弦CD⊥AB于H,G为⊙O上一点,连接AG交CD于K,在CD的延长线上取一点E,使EG=EK,EG的延长线交AB的延长线于F.(1)求证:EF是⊙O的切线;(2)连接DG,若AC∥EF时.①求证:△KGD∽△KEG;②若cos C=,AK=,求BF的长.【分析】(1)连接OG,由EG=EK知∠KGE=∠GKE=∠AKH,结合OA=OG知∠OGA=∠OAG,根据CD⊥AB得∠AKH+∠OAG=90°,从而得出∠KGE+∠OGA=90°,据此即可得证;(2)①由AC∥EF知∠E=∠C=∠AGD,结合∠DKG=∠CKE即可证得△KGD∽△KGE;②连接OG,由设CH=4k,AC=5k,可得AH=3k,CK=AC=5k,HK=CK﹣CH=k.利用AH2+HK2=AK2得k=1,即可知CH=4,AC=5,AH=3,再设⊙O半径为R,由OH2+CH2=OC2可求得,根据知,从而得出答案.【解答】解:(1)如图,连接OG.∵EG=EK,∴∠KGE=∠GKE=∠AKH,又OA=OG,∴∠OGA=∠OAG,∵CD⊥AB,∴∠AKH+∠OAG=90°,∴∠KGE+∠OGA=90°,∴EF是⊙O的切线.(2)①∵AC∥EF,∴∠E=∠C,又∠C=∠AGD,∴∠E=∠AGD,又∠DKG=∠GKE,∴△KGD∽△KEG;②连接OG,∵,AK=,设,∴CH=4k,AC=5k,则AH=3k∵KE=GE,AC∥EF,∴CK=AC=5k,∴HK=CK﹣CH=k.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即,解得k=1,∴CH=4,AC=5,则AH=3,设⊙O半径为R,在Rt△OCH中,OC=R,OH=R﹣3k,CH=4k,由勾股定理得:OH2+CH2=OC2,即(R﹣3)2+42=R2,∴,在Rt△OGF中,,∴,∴.【点评】本题是圆的综合问题,解题的关键是掌握等腰三角形的性质、平行线的性质,圆周角定理、相似三角形的判定与性质及切线的判定等知识点.作业思考:1.如图,四边形ABCD内接于⊙O,且对角线AC⊥BD,垂足为点E,过点C作CF⊥AB于点F,交BD于点G.(1)如图①,连接EF,若EF平分∠AFG,求证:AE=GE;(2)如图②,连接CO并延长交AB于点H,若CH为∠ACF的平分线,AD=3,且tan∠FBG=,求线段AH长.【分析】(1)由垂直的定义,角平分线的定义,角的和差证明EF=EI,同角的余角相等得∠AEF=∠GEI,四边形的内角和,邻补角的性质得∠FAE=∠IGE,最后根据角角边证明△AEF≌△GEI,其性质得AE=GE;(2)由圆周角定理,等角的三角函数值相等求出⊙O的半径为,根据平行线的性质,勾股定理,角平分线的性质定理,三角形相似的判定与性质,一元二次方程求出t的值为,最后求线段AH的长为.【解答】证明:(1)过点E作EI⊥EF交CF于点I,如图①所示:∵CF⊥AB,∴∠AFG=90°,又∵EF平分∠AFG,∴∠EFA=∠EFI=45°,又∵EF⊥EI,∴∠FEI=90°,又∵∠EFI+∠EIF=90°,∴∠EIF=45°,∴EF=EI,又∵∠EAF+∠AFG+∠FGE+∠GEA=360°,∠AFG=∠AEG=90°,∴∠EGF+∠FAE=180°,又∵∠EGF+∠EGI=180°,∴∠EGI=∠FAE,又∵∠AEB=∠AEF+∠FEG,∠FEI=∠GEI+∠FEG,∴∠AEF=∠GEI,在△AEF和△GEI中,,∴△AEF≌△GEI(AAS),∴AE=GE;(2)连接DO并延长,交⊙O于点P,连接AP,如图②甲所示:∵∠ABD与∠P是⊙O上弧AD所对的圆周角,∴∠ABD=∠P,又∵DP为⊙O的直径,∴∠PAD=90°,又∵tan∠FBG=,∴tan∠P==,又∵AD=3,∴AP=4,PD=5,∴OD=,过点H作HJ⊥AC于点J,过点O作OK⊥AC于点K,设AJ=3t,CF=x,如图②乙所示,∵HJ⊥AC,BD⊥AC,∴HJ∥BD,∴∠ABD=∠AHJ,又∵tan∠ABD=∴tan∠AHJ=,又∵AJ=3t,∴HJ=4t,在Rt△AHJ中,由勾股定理得:AH===5t,又∵CH是∠ACF的平分线,且HF⊥CF,HJ⊥AC,∴HF=HJ=4t,∴AF=AH+HF=9t,又∵CF=x,∴CJ=x,又∵∠BFG=∠GEC,∠FGB=∠EGC,∴△FBG∽△ECG,∴∠FBG=∠ECG,∴tan∠FCJ===,解得:x=12t,∴CF=CJ=12t,∴AC=15t,∴CK=t,又∵OK∥HJ,∴=,∴OK===t,∴在Rt△OCK中,由勾股定理得:OK2+KC2=OC2,即(t)2+(t)2=()2,解得:t=,或t=﹣(舍去),∴AH=5t=.【点评】本题综合考查了垂线的定义,平行线的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,解直角三角形,一元二次方程等相关知识,重点掌握相似三角形的判定与性质,难点是辅助线构建全等三角形,圆周角和相似三角形.。
专题三角函数与圆——圆中三角函数的综合运用
1、如图,P A为⊙O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交⊙O于点B,延长BO与⊙O交于点D,与P A的延长线交于点E.
(1)求证:PB为⊙O的切线;
(2)若tan∠ABE=1
2
,求sin∠E的值.
2、在锐角三角形ABC中,BC=5,sin A=4
5
,
(1)如图1,求三角形ABC外接圆的直径;
(2)如图2,点I为三角形ABC的内心,BA=BC,求AI的长.
3、在⊙O中,AB为直径,PC为弦,且P A=PC
(1)如图1,求证:OP∥BC
(2)如图2,DE切⊙O于点C,DE∥AB,求tan∠A的值.
4、如图,已知CD为⊙O的直径,点A为DC延长线上一点,B为⊙O上一点,且∠ABC =∠D.
(1)求证:AB为⊙O的切线;
(2)若tan D=1
2
,求sin A的值.
5、已知:如图PT是⊙O的切线,T为切点,P AB是经过圆心O的割线. (1)求证:∠PTA=∠BTO;
(2)若PT=4,P A=2,求sin B的值.
6、如图,△ABC中,以BC为直径的圆交AB于点D,∠ACD=∠AB C.(1)求证:CA是圆的切线;
(2)若点E是BC上一点,已知BE=6,tan∠ABC=2
3
,tan∠AEC=
5
3
,求圆的直径.
7、如图,AB为⊙O的直径,CE⊥AD于E,连BE,CD CB
. (1)求证:CE为⊙O的切线;
(2)若AE=6,⊙O的半径为5,求tan∠BEC的值.。
高中数学-单位圆与三角函数线练习(限时:10分钟)1.已知α(0<α<2π)的正弦线和余弦线相等,且符号相同,那么α的值为( ) A.3π4或π4 B.5π4或7π4 C.π4或5π4 D.π4或7π4答案:C2.已知角α的正弦线和余弦线是符号相反、长度相等的有向线段,则α的终边在( ) A .第一象限的角平分线上 B .第四象限的角平分线上 C .第二、四象限的角平分线上 D .第一、三象限的角平分线上解析:由条件知sin α=-cos α,α的终边应在第二、四象限的角平分线上. 答案:C3.若α是第一象限角,则sin α+cos α的值与1的大小关系是( ) A .sin α+cos α>1 B .sin α+cos α=1 C .sin α+cos α<1 D .不能确定解析:作出α的正弦线和余弦线,由三角形“任意两边之和大于第三边”的性质可知sin α+cos α>1.答案:A4.若π4<θ<π2,则下列不等式成立的是( )A .sin θ>cos θ>tan θB .cos θ>tan θ>sin θC .sin θ>tan θ>cos θD .tan θ>sin θ>cos θ解析:如图,由三角函数线可知,AT >PM >OP ,即tan θ>sin θ>cos θ答案:D5.已知π4<x <π2,a =21-sin x ,b =2cos x ,c =2tan x,试比较a 、b 、c 的大小.解析:如图所示,在单位圆中MP 、OM 、AT 分别是x 的正弦线、余弦线、正切线.在△OMP 中,OM >OP -MP 即cos x >1-sin x 又∵AT >OA ,∴tan x >1 ∴tan x >cos x >1-sin x , ∴2tan x>2cos x>21-sin x∴c >b >a(限时:30分钟)1.在[0,2π]上满足sin x ≥12的x 的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π6B.⎣⎢⎡⎦⎥⎤π6,5π6C.⎣⎢⎡⎦⎥⎤π6,2π3D.⎣⎢⎡⎦⎥⎤5π6,π解析:可以直接用特殊角来验证.取x =π6,则sin x =12≥12成立,故排除D ;再取x =π2,则sin x =1≥12成立,排除A ;再取x =5π6,则sin x =sin 5π6=12≥12成立,故选B.答案:B2.设a =sin(-1),b =cos(-1),c =tan(-1),则有( ) A .a <b <c B .b <a <c C .c <a <b D .a <c <b解析:如图作出角α=-1 rad 的正弦线、余弦线及正切线,显然b =cos(-1)=OM >0,c =tan(-1)<a =sin(-1)<0,即c <a <b .答案:C3.在(0,2π)内,使sin x >cos x 成立的x 的取值范围是( ) A.⎝⎛⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫π,54π B.⎝ ⎛⎭⎪⎫π4,π C.⎝ ⎛⎭⎪⎫π4,54π D.⎝ ⎛⎭⎪⎫π4,π∪⎝⎛⎭⎪⎫54π,32π解析:如图,当π4<α<5π4时,sin α>cos α,故选C.答案:C4.cos1,sin1,tan1的大小关系是( ) A .sin1<cos1<tan1 B .tan1<sin1<cos1 C .cos1<tan1<sin1 D .cos1<sin1<tan1解析:如图,有OM <MP <AT ,即cos1<sin1<tan1. 答案:D5.下列关系中正确的是( ) A .sin11°<cos10°<sin12° B .sin12°<sin11°<cos10° C .sin11°<sin 12°<cos10°D .sin12°<cos10°<sin11°解析:在单位圆中画出角12°,11°的相应正弦线,10°的相应余弦线,直接观察可知选C.答案:C6.在(0,2π)内使cos x >sin x >tan x 成立的x 的取值范围是( ) A.⎝⎛⎭⎪⎫π4,3π4 B.⎝ ⎛⎭⎪⎫5π4,3π2 C.⎝ ⎛⎭⎪⎫3π2,2π D.⎣⎢⎡⎦⎥⎤3π2,7π4解析:在同一个单位圆中分别作出正弦线、余弦线、正切线,即可看出. 答案:C7.若α、β为第二象限角,且sin α>sin β,则cos α与cos β的大小关系为__________. 解析:如图,显然有cos α>cos β. 答案:cos α>cos β 8.若θ∈⎝⎛⎭⎪⎫3π4,π,则下列各式错误的是________.①sin θ+cos θ<0; ②sin θ-cos θ>0; ③|sin θ|<|cos θ|; ④sin θ+cos θ>0.解析:若θ∈⎝ ⎛⎭⎪⎫3π4,π,则sin θ>0,cos θ<0,sin θ<|cos θ|,所以sin θ+cos θ<0.答案:④9.函数y =sin x +cos x -12的定义域是________.解析:由题意得⎩⎪⎨⎪⎧sin x ≥0,cos x ≥12,利用单位圆中的三角函数线得⎩⎪⎨⎪⎧2k π≤x ≤2k π+πk ∈Z ,2k π-π3≤x ≤2k π+π3k ∈Z .解得⎩⎨⎧x ⎪⎪⎪⎭⎬⎫2k π≤x ≤2k π+π3,k ∈Z .答案:⎩⎨⎧x ⎪⎪⎪⎭⎬⎫2k π≤x ≤2k π+π3,k ∈Z10.求函数y =log 2sin x 的定义域.解析:要使函数有意义,x 的取值满足sin x >0. 如图所示,MP →是角x 的正弦线,则有sin x =MP >0, ∴MP 的方向向上,∴角x 的终边在x 轴的上方, ∴2k π<x <2k π+π(k ∈Z ),即函数y =log 2sin x 的定义域是(2k π,2k π+π),k ∈Z .11.利用单位圆中的三角函数线,求满足⎩⎪⎨⎪⎧sin x ≥0,2cos x -1>0的x 的取值范围.解析:由⎩⎪⎨⎪⎧sin x ≥0,2cos x -1>0,得⎩⎪⎨⎪⎧sin x ≥0,cos x >12.如图所示,由三角函数线可得⎩⎪⎨⎪⎧2k π≤x ≤2k π+πk ∈Z ,2k π-π3<x <2k π+π3k ∈Z .此交集为图形中的阴影重叠部分, 即2k π≤x <2k π+π3(k ∈Z ).故x 的取值范围为{x |2k π≤x <2k π+π3,k ∈Z }.12.已知α∈⎝⎛⎭⎪⎫0,π2,求证:1<sin α+cos α<π2.证明:如图所示,设角α的终边与单位圆交于点P (x ,y ),过P 作PM ⊥Ox 、PN ⊥Oy ,M 、N 分别为垂足.∴|MP |=y =sin α,|OM |=x =cos α, 在△OMP 中,|OM |+|MP |>|OP |, ∴sin α+cos α>1.∵S △OAP =12|OA |·|MP |=12y =12sin α,S △OBP =12|OB |·|NP |=12x =12cos α, S 扇形OAB =14π×12=π4,又∵S △OAP +S △OBP <S 扇形OAB ,∴12sin α+12cos α<π4,即sin α+cos α<π2,∴1<sin α+cos α<π2.。
2023年中考数学专题——锐角三角函数与圆的综合一、综合题1.如图,△ABC内接于⊙O,直径DE⊥AB于点F,交BC于点 M,DE的延长线与AC的延长线交于点N,连接AM.(1)求证:AM=BM;(2)若AM⊥BM,DE=8,∠N=15°,求BC的长.2.如图,D、E是以AB为直径的⊙O上两点,且∠AED=45°.(1)过点D作DC∥AB,求证:直线CD与⊙O相切;(2)若⊙O的半径为12,sin∠ADE=34,求AE的长.3.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,点A为BD的中点,切线AE交CB的延长线于点E。
(1)求证:AE∥BD。
(2)若⊙O的半径为2.5,CD=4,求AE的长。
4.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作CE⊥AC交AD的延长线于点E,F 为CE的中点,连结DB,DF.(1)求∠CDE的度数.(2)求证:DF是⊙O的切线.(3)若tan∠ABD=3时,求ACDE的值.5.如图,在⊙O中,C,D分别为半径OB,弦AB的中点,连接CD并延长,交过点A的切线于点E.(1)求证:AE⊥CE.(2)若AE=2,sin∠ADE=13,求⊙O半径的长.6.如图,以△ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接BD、DE.(1)求DE是⊙O的切线;(2)设△CDE的面积为S1,四边形ABED的面积为S2,若S2=5S1,求tan∠BAC的值;(3)在(2)的条件下,连接AE,若⊙O的半径为2,求AE的长.7.如图,O是ABC∆的外接圆,连接OC,过点A作AD OC交BC的延长线于点D,45ABC∠= .(1)求证:AD是O的切线;(2)若3sin5CAB∠=,O的半径为,求AB的长.8.如图,AB是⊙O的直径, BC交⊙O于点D,E是BD的中点,连接AE交BC于点F,∠ACB =2∠EAB.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)若3cos4C=,8AC=,求BF的长.9.如图,以AB为直径的⊙O交△ABC的边AC于D、BC于E,过D作⊙O的切线交BC于F,交BA延长线于G,且DF⊥BC.(1)求证:BA=BC;(2)若AG=2,cosB=35,求DE的长.10.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于E,过点A作AF⊥AC于F交⊙O于D,连接DE,BE,BD(1)求证:∠C=∠BED;(2)若AB=12,tan∠BED=34,求CF的长.11.如图,AB为O的直径,BC为O的切线,AD OC‖,交O于点D,E为弧AB的中点,连接DE,交AB于点F.(1)求证:CD为O的切线;(2)求证:22AD OC OA⋅=;(3)若3cos5A=,求tan E .12.如图,在△ABC中,AB=AC,以AC边为直径作 O交BC边于点D,过点D作DE⊥AB于点E,ED、AC的延长线交于点F.(1)求证:EF是 O的切线;(2)若EB=6,且sin∠CFD= 35,求 O的半径.13.如图,在Rt△ABC中,点在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD。
高中三角函数专题练习题(及答案)一、填空题1.设函数()sin f x x π=,()21g x x x =-+,有以下四个结论.①函数()()y f x g x =+是周期函数: ②函数()()y f x g x =-的图像是轴对称图形: ③函数()() y f x g x =⋅的图像关于坐标原点对称: ④函数()()f x yg x =存在最大值 其中,所有正确结论的序号是___________.2.已知球O 的表面积为16π,点,,,A B C D 均在球O 的表面上,且,4ACB AB π∠=则四面体ABCD 体积的最大值为___________.3.已知在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且6a =,点O 为其外接圆的圆心.已知·15BO AC =,则当角C 取到最大值时ABC 的面积为______4.已知函数()()4sin 03πf x x ωω⎛⎫=+> ⎪⎝⎭,圆C 的方程为()22525x y -+=,若在圆C 内部恰好包含了函数()f x 的三个极值点,则ω的取值范围是______.5.已知点A 为直线:3l y x =上一点,且A 位于第一象限,点()10,0B ,以AB 为直径的圆与l 交于点C (异于A ),若60CBA ∠≥,则点A 的横坐标的取值范围为___________.6.在ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,D 为边BC 上的一点,若6c =,b =sin BAD ∠=,cos 4BAC ∠=,则AD =__________. 7.若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________.8.已知函数()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 的图象关于直线3x π=对称,且在3,164ππ⎛⎫⎪⎝⎭上单调,则ω的最大值是______. 9.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b =,2B C =,则a c +的取值范围为________.10.函数ππ5sin (1510)55y x x ⎛⎫=+-≤≤ ⎪⎝⎭的图象与函数25(1)22x y x x +=++图象的所有交点的横坐标之和为___________.二、单选题11.已知1F ,2F 分别是椭圆2222:1(0)x yE a b a b+=>>的左、右焦点,若在椭圆E 上存在点M ,使得12MF F △的面积等于2122sin b F MF ∠,则椭圆E 的离心率e 的取值范围为( )A .⎫⎪⎪⎣⎭B .⎛ ⎝⎦C .12⎛ ⎝⎦D .⎫⎪⎪⎣⎭12.已知ABC 的内角分别为,,A B C ,2cos 12A A =,且ABC 的内切圆面积为π,则AB AC ⋅的最小值为( ) A .6B .8C .10D .1213.已知(){}|sin ,A y y n n Z ωϕ==+∈,若存在ϕ使得集合A 中恰有3个元素,则ω的取值不可能是( ) A .27πB .25πC .2π D .23π14.已知点1F ,2F 分别为椭圆()2222:10x yC a b a b+=>>的左、右焦点,点M 在直线:l x a =-上运动,若12F MF ∠的最大值为60︒,则椭圆C 的离心率是( )A .13B .12C D 15.已知函数()()sin f x x ωφ=+π0,02ωφ⎛⎫><< ⎪⎝⎭在π5π,88⎛⎫ ⎪⎝⎭上单调,且π3π088f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,则π2f ⎛⎫⎪⎝⎭的值为( )A B .1 C .1- D .16.在ABC ∆中,已知3sin sin ,2A C +=设2sin sin ,t A C =则( )A .1B C D .9817.如图,在正方体ABCD EFGH -中,P 在棱BC 上,BP x =,平行于BD 的直线l 在正方形EFGH 内,点E 到直线l 的距离记为d ,记二面角为A l P --为θ,已知初始状态下0x =,0d =,则( )A .当x 增大时,θ先增大后减小B .当x 增大时,θ先减小后增大C .当d 增大时,θ先增大后减小D .当d 增大时,θ先减小后增大18.已知函数()()3log 911x f x x+=-,下列说法正确的是( )A .()f x 既不是奇函数也不是偶函数B .()f x 的图象与sin y x =有无数个交点C .()f x 的图象与2y =只有一个交点D .()()21f f -<-19.已知三棱锥A BCD -中,4AB BC BD CD AD =====,二面角A BD C --的余弦值为13,点E 在棱AB 上,且3BE AE =,过E 作三棱锥A BCD -外接球的截面,则所作截面面积的最小值为( ) A .103πB .3πC .3π D 320.高斯是世界四大数学家之一,一生成就极为丰硕,以他的名字“高斯”命名的成果达110个,属数学家中之最.对于高斯函数[]y x =,[]x 表示不超过实数x 的最大整数,如[]1.71=,[]1.22-=-,{}x 表示x 的非负纯小数,即{}[]x x x =-.若函数{}1log a y x x=-+(0a >且1a ≠)有且仅有3个零点,则实数a 的取值范围为( ) A .(]3,4B .()3,4C .[)3,4D .[]3,4三、解答题21.如图,湖中有一个半径为1千米的圆形小岛,岸边点A 与小岛圆心C 相距3千米,为方便游人到小岛观光,从点A 向小岛建三段栈道AB ,BD ,BE ,湖面上的点B 在线段AC 上,且BD ,BE 均与圆C 相切,切点分别为D ,E ,其中栈道AB ,BD ,BE 和小岛在同一个平面上.沿圆C 的优弧(圆C 上实线部分)上再修建栈道DE .记CBD ∠为θ.()1用θ表示栈道的总长度()f θ,并确定sin θ的取值范围;()2求当θ为何值时,栈道总长度最短.22.已知函数()()()()223cos +2cos 02f x x x x πϕϕϕϕ⎛⎫=+++<< ⎪⎝⎭.(1)求()f x 的最小正周期;(2)若13f π⎛⎫= ⎪⎝⎭,求当()2f x =时自变量x 的取值集合.23.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的最大值是2,函数()f x 的图象的一条对称轴是3x π=,且与该对称轴相邻的一个对称中心是7,012π⎛⎫⎪⎝⎭. (1)求()f x 的解析式;(2)已知DBC △是锐角三角形,向量,,,2124233B B m f f n f f B ππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+=++ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,且3,sin 5m n C ⊥=,求cos D . 24.某公司欲生产一款迎春工艺品回馈消费者,工艺品的平面设计如图所示,该工艺品由直角ΔABC 和以BC 为直径的半圆拼接而成,点P 为半圈上一点(异于B ,C ),点H 在线段BC 上,且满足CH AB ⊥.已知90ACB ∠=︒,1dm AB =,设ABC θ∠=.(1)为了使工艺礼品达到最佳观赏效果,需满足ABC PCB ∠=∠,且CA CP +达到最大.当θ为何值时,工艺礼品达到最佳观赏效果;(2)为了工艺礼品达到最佳稳定性便于收藏,需满足60PBA ∠=︒,且CH CP +达到最大.当θ为何值时,CH CP +取得最大值,并求该最大值.25.对于函数()f x ,若存在定义域中的实数a ,b 满足0b a >>且()()2()02a bf a f b f +==≠,则称函数()f x 为“M 类” 函数. (1)试判断()sin f x x =,x ∈R 是否是“M 类” 函数,并说明理由;(2)若函数()2|log 1|f x x =-,()0,x n ∈,*n N ∈为“M 类” 函数,求n 的最小值. 26.已知函数2()6f x x ax =--(a 为常数,a R ∈).给你四个函数:①1()21g x x =+;②2()3xg x =;③32()log g x x =;④4()cos g x x =. (1)当5a =时,求不等式2(())0f g x ≥的解集; (2)求函数4(())y f g x =的最小值;(3)在给你的四个函数中,请选择一个函数(不需写出选择过程和理由),该函数记为()g x ,()g x 满足条件:存在实数a ,使得关于x 的不等式(())0f g x ≤的解集为[,]s t ,其中常数s ,t R ∈,且0s >.对选择的()g x 和任意[2,4]x ∈,不等式(())0f g x ≤恒成立,求实数a 的取值范围.27.已知函数22()cos sin 3sin cos 3f x a x a x x x =-+-,其中a R ∈. (Ⅰ)当1a =时,求函数()f x 的对称中心;(Ⅱ)若函数()f x 的最小值为4-,求实数a 的值.28.将函数()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭的图象向左平移02πϕϕ⎛⎫<≤ ⎪⎝⎭个单位长度后得到()f x 的图象.(1)若()f x 为偶函数,求ϕ; (2)若()f x 在7,6ππ⎛⎫⎪⎝⎭上是单调函数,求ϕ的取值范围.29.已知向量33cos ,sin 22a x x ⎛⎫= ⎪⎝⎭,cos ,sin 22x x b ⎛⎫=- ⎪⎝⎭,且0,2x π⎡⎤∈⎢⎥⎣⎦(1)求a ·b 及||a b +;(2)若3()||2f x a b a b =⋅-+,求()f x 的最小值30.函数f (x )=A sin (2ωx +φ)(A >0,ω>0,|φ|<2π)的部分图象如图所示 (1)求A ,ω,φ的值;(2)求图中a ,b 的值及函数f (x )的递增区间; (3)若α∈[0,π],且f (α)=2,求α的值.【参考答案】一、填空题1.②④2.3(21)23.354.1925731,,48481248ππππ⎛⎤⎡⎤⋃⎥⎢⎥⎝⎦⎣⎦5.)133,⎡++∞⎣6.47.4242[ 8.139.(2,310.-7二、单选题 11.A12.A 13.A 14.C 15.D 16.B 17.C 18.C 19.B 20.C 三、解答题21.()1()1232sin tan f θπθθθ=-+++,1sin ,13θ⎡⎫∈⎪⎢⎣⎭;()2当3πθ=时,栈道总长度最短.【解析】()1连CD ,CE ,由切线长定理知:1tan tan CD BE BD θθ===,1sin sin CD BC θθ==,130sin AB AC BC θ=-=-≥,1sin 3θ≥,即01sin 3θ=,00,2πθ⎛⎫∈ ⎪⎝⎭, 则()1232sin tan f θπθθθ=-+++,0,2πθθ⎡⎫∈⎪⎢⎣⎭,进而确定sin θ的取值范围; ()2根据()12cos 23sin f θθθπθ-=-++求导得()()2cos 2cos 1sin f θθθθ--'=,利用增减性算出()min 533f πθ=+,进而求θ得取值. 【详解】解:()1连CD ,CE ,由切线长定理知:1tan tan CD BE BD θθ===,1sin sin CD BC θθ==, CBE CBD θ∠=∠=,又CD BD ⊥,CE BE ⊥,故2DCE πθ∠=-,则劣弧DE 的长为2πθ-,因此,优弧DE 的长为2πθ+, 又3AC =,故130sin AB AC BC θ=-=-≥,1sin 3θ≥,即01sin 3θ=,00,2πθ⎛⎫∈ ⎪⎝⎭, 所以,()1232sin tan f θπθθθ=-+++,0,2πθθ⎡⎫∈⎪⎢⎣⎭,则1sin ,13θ⎡⎫∈⎪⎢⎣⎭; ()2()12cos 23sin f θθθπθ-=-++,0,2πθθ⎡⎫∈⎪⎢⎣⎭,其中01sin 3θ=,00,2πθ⎛⎫∈ ⎪⎝⎭,()()2cos 2cos 1sin f θθθθ--'=故3θ=时,()min 33f θ=+ 所以当3πθ=时,栈道总长度最短.【点睛】本题主要考查导数在函数当中的应用,属于中档题.22.(1)π;(2)12x x k ππ⎧=-+⎨⎩或()4x k k Z ππ⎫=+∈⎬⎭【解析】 【分析】(1)由辅助角公式可得()f x 2sin 2216x πϕ⎛⎫=+++ ⎪⎝⎭,再求周期即可;(2)由13f π⎛⎫= ⎪⎝⎭求出12πϕ=,再解方程2sin 2123x π⎛⎫++= ⎪⎝⎭即可.【详解】解:(1)()()()()2cos 2cos f x x x x ϕϕϕ=++++()()2cos21x x ϕϕ=++++2sin 2216x πϕ⎛⎫=+++ ⎪⎝⎭,则()f x 的最小正周期为2T ππω==.(2)因为13f π⎛⎫= ⎪⎝⎭,所以2sin 221136ππϕ⎛⎫⨯+++= ⎪⎝⎭,即()526k k Z πϕπ+=∈, 解得()5212k k Z ππϕ=-∈. 因为02πϕ<<,所以12πϕ=.因为()2f x =,所以2sin 2123x π⎛⎫++= ⎪⎝⎭,即1sin 232x π⎛⎫+= ⎪⎝⎭,则2236x k πππ+=+或()52236x k k Z πππ+=+∈, 解得12x k ππ=-+或()4x k k Z ππ=+∈.故当()2f x =时,自变量x 的取值集合为12x x k ππ⎧=-+⎨⎩或()4x k k Z ππ⎫=+∈⎬⎭.【点睛】本题考查了三角恒等变换,重点考查了解三角方程,属中档题.23.(1)()2sin 26f x x π⎛⎫=- ⎪⎝⎭;(2【解析】(1)根据函数的最值、周期、对称轴待定系数即可求解;(2)由(1)所求,可化简向量坐标,根据向量垂直得到角B ,再利用()cos cosD A B =-+求解. 【详解】(1)设()f x 的最小正周期为T , 依题意得71234T ππ-=,∴T π=,∴22πωπ==. ∵()f x 图象的一条对称轴是3x π=,∴2,32k k Z ππϕπ+=+∈, ∴,6k k Z πϕπ=-+∈.∵||2ϕπ<,∴6πϕ=-. 又∵()f x 的最大值是2,∴2A =,从而()2sin 26f x x π⎛⎫=- ⎪⎝⎭.(2)∵()(),2sin ,3,2cos ,2cos 2m n m B n B B ⊥==,∴4sin cos 22sin 22m n B B B B B ⋅=⋅+=+4sin 203B π⎛⎫=+= ⎪⎝⎭∴2,3B k k Z ππ+=∈,∴:,62kB k Z ππ=-+∈, 又∵B 是锐角,∴3B π=.∵3sin 5C =,∴4cos 5C =,∴cos cos()(cos cos sin sin )D B C B C B C =-+=--=.即cosD =. 【点睛】本题考查三角函数解析式的求解,涉及向量垂直的转换,余弦函数的和角公式.属综合基础题.24.(1)π6θ=(2)当π12θ=,CH CP +【解析】(1)设ABC PCB θ∠=∠=,则在直角ΔABC 中,sin AC θ=,cos BC θ=,计算得到2sin sin 1AC CP θθ+=-++,计算最值得到答案.(2)计算sin cos CH θθ=⋅,得到πsin 23CH CP θ⎛⎫+=+ ⎪⎝⎭.【详解】(1)设ABC PCB θ∠=∠=,则在直角ΔABC 中,sin AC θ=,cos BC θ=. 在直角ΔPBC 中,2cos cos cos cos PC BC θθθθ=⋅=⋅=, sin sin cos sin cos PB BC θθθθθ=⋅=⋅=.22sin cos sin 1sin AC CP θθθθ+=+=+-2sin sin 1θθ=-++,π0,3θ⎛⎫∈ ⎪⎝⎭,所以当1sin 2θ=,即π6θ=,AC CP +的最大值为54. (2)在直角ΔABC 中,由1122ABC S CA CB AB CH ∆=⋅=⋅,可得sin cos sin cos 1CH θθθθ⋅==⋅. 在直角ΔPBC 中,πsin 3PC BC θ⎛⎫=⋅- ⎪⎝⎭ππcos sin cos cos sin 33θθθ⎛⎫=⋅- ⎪⎝⎭,所以1sin cos cos sin 2CH CP θθθθθ⎫+=+-⎪⎪⎝⎭,π0,3θ⎛⎫∈ ⎪⎝⎭,所以211sin 2sin cos 22CH CP θθθθ+=-11πsin 22sin 2423θθθ⎛⎫==+ ⎪⎝⎭ 所以当π12θ=,CH CP +【点睛】本题考查了利用三角函数求最值,意在考查学生对于三角函数知识的应用能力. 25.(1)不是.见解析(2)最小值为7. 【解析】(1)不是,假设()f x 为M 类函数,得到2b a k π=+或者2b a k ππ+=+,代入验证不成立.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,得到函数的单调区间,根据题意得到326480b b b ---=,得到()6,7b ∈,得到答案. 【详解】 (1)不是.假设()f x 为M 类函数,则存在0b a >>,使得sin sin a b =, 则2b a k π=+,k Z ∈或者2b a k ππ+=+,k Z ∈, 由sin 2sin2a ba +=,当2b a k π=+,k Z ∈时,有()sin 2sin a a k π=+,k Z ∈, 所以sin 2sin a a =±,可得sin 0a =,不成立;当2b a k ππ+=+,k Z ∈时,有sin 2sin()2a k ππ=+,k Z ∈,所以sin 2a =±,不成立, 所以()f x 不为M 类函数.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,则()f x 在()0,2单调递减,在()2,+∞单调递增,又因为()f x 是M 类函数,所以存在02a b <<<,满足2221log log 12|log 1|2a ba b +-=-=-, 由等式可得:()2log 2ab =,则4ab =,所以()22142(4)0222a a b a a a -+-=+-=>,则2log 102a b +->,所以得22log 12log 12a b b +⎛⎫-=- ⎪⎝⎭, 从而有222log 1log 2a b b +⎛⎫+= ⎪⎝⎭,则有()224a b b +=,即248b b b ⎛⎫+= ⎪⎝⎭, 所以43288160b b b -++=,则()()3226480b b b b ----=,由2b >,则326480b b b ---=,令()32648g x x x x =---,当26x <<时,()()26480g x x x x =---<,且()6320g =-<,()7130g =>,且()g x 连续不断,由零点存在性定理可得存在()6,7b ∈, 使得()0g b =,此时()0,2a ∈,因此n 的最小值为7. 【点睛】本题考查了函数的新定义问题,意在考查学生对于函数的理解能力和应用能力.26.(1)[31log 2,)++∞;(2)2min–5,26,2245,2a a ay a a a -≥⎧⎪⎪=---<<⎨⎪-≤-⎪⎩;(3)1a ≥-. 【解析】(1)令()2u g x =,则()0f u ≥的解为1u ≤-或6u ≥,由后者可得2(())0f g x ≥的解. (2)令()4t g x =,则[1,1]t ∈-,分类讨论后可求26y t at =--,[1,1]t ∈-的最小值,该最小值即为原来函数的最小值.(3)取()32()log g x g x x ==,可以证明()g x 满足条件,再利用换元法考虑任意[2,4]x ∈,不等式(())0f g x ≤恒成立可得实数a 的取值范围. 【详解】(1)当5a =时,()256f x x x =--.令()2u g x =,因为2560u u --≥的解为1u ≤-或6u ≥, 所以31x ≤-(舍)或36x ≥,故31log 2x ≥+, 所以2(())0f g x ≥的解集为[31log 2,)++∞. (2)令()4cos ,t g x x x R ==∈,则[1,1]t ∈-,函数4(())y f g x =的最小值即为()26h t t at =--,[1,1]t ∈-的最小值.当()1,12a ∈-即22a -<<时, ()2min 64a h t =--. 当12a≤-即2a ≤-时,()min 5h t a =-; 当12a>即2a >时, ()min –5h t a =-. 故2min–5,26,2245,2a a ay a a a -≥⎧⎪⎪=---<<⎨⎪-≤-⎪⎩. (3)取()32()log g x g x x ==,令2log u x =,设260u au --≤的解集为闭区间[]12,u u ,由12u u u ≤≤得1222u u x ≤≤,故(())0f g x ≤的解集为122,2u u ⎡⎤⎣⎦,取12u s =,则0s >,故()g x 满足条件.当[2,4]x ∈时,2[]1,u ∈,故()0f u ≤在[1,2]上恒成立,故2211602260a a ⎧-⨯-≤⎨--≤⎩,解得1a ≥-, 所以实数a 的取值范围是1a ≥-.【点睛】本题考查复合函数的性质及复合函数对应的不等式的解与恒成立问题,此类问题可通过换元法把复合函数问题转化为二次函数的最值问题或恒成立问题,本题有一定综合性,是难题. 27.(Ⅰ)(,3),.122k k Z ππ-+-∈(Ⅱ)12a =或12a =- 【解析】(Ⅰ)当1a =时,根据二倍角公式、辅助角公式化简函数,根据正弦函数的性质可得. (Ⅱ)将函数化简为()sin()f x A x b ωϕ=++的形式,分类讨论可得. 【详解】解:(Ⅰ)当1a =时,22()cos sin cos 3f x x x x x =-+-cos 2232sin(2)36x x x π=-=+-()2sin(2)36f x x π∴=+-由2,6x k k Z ππ+=∈ 得:,122k x k Z ππ=-+∈ ()f x ∴的对称中心为(,3),.122k k Z ππ-+-∈(Ⅱ)22()cos sin sin cos 3f x a x a x x x =-+-()cos 2sin 23f x a x x ∴=-()2sin(2)36f x a x π∴=+-1sin(2)16x π-≤+≤当0a >时,232sin(2)3236a a x a π--≤+-≤-则有234a --=- 解得12a =当0a =时,min ()3f x =-,不合题意当0a <时,232sin(2)3236a a x a π-≤+-≤--则有234a -=-解得12a =-综上 12a ∴=或12a =-.【点睛】本题主要考查三角函数的图象和性质,利用三角公式将函数进行化简是解决本题的关键,要求熟练掌握三角函数的图象和性质,属于中档题. 28.(1)6π=ϕ;(2),62ππϕ⎡⎤∈⎢⎥⎣⎦【解析】 【分析】(1)根据三角恒等变换对()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭化简变形为()2sin 216g x x π⎛⎫=+- ⎪⎝⎭,然后可得到图象左移之后的函数()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭,利用三角函数偶函数的性质即可求出ϕ;(2)先求出2222,22662x πππϕπϕπϕ⎛⎫++∈++++ ⎪⎝⎭,再根据ϕ的范围求出26πϕ+和22πϕ+的范围,从而根据单调性列出关于ϕ的不等式,解之即可求得结果. 【详解】(1)()()14sin sin 21cos 22g x x x x x x ⎫=-=--⎪⎪⎝⎭2sin 216x π⎛⎫=+- ⎪⎝⎭,∴()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭.又()f x 为偶函数,则()262k k Z ππϕπ+=+∈,02πϕ<≤,∴6π=ϕ; (2)7,6x ππ⎛⎫∈ ⎪⎝⎭,∴2222,22662x πππϕπϕπϕ⎛⎫++∈++++ ⎪⎝⎭.02πϕ<≤,∴72,666πππϕ⎛⎫+∈ ⎪⎝⎭,32,222πππϕ⎛⎫+∈ ⎪⎝⎭()f x 在7,6ππ⎛⎫ ⎪⎝⎭是单调函数,∴26202ππϕπϕ⎧+≥⎪⎪⎨⎪<≤⎪⎩, ∴,62ππϕ⎡⎤∈⎢⎥⎣⎦.【点睛】本题考查三角恒等变换、三角函数的图象变换及性质,以及基本的运算能力和逻辑推理能能力,综合性较强,属于有一定难度的中档题. 29.(1)见解析; (2)178-. 【解析】 【分析】(1)运用向量数量积的坐标表示,求出a ·b ; 运用平面向量的坐标运算公式求出a b +,然后求出模.(2)根据上(1)求出函数()f x 的解析式,配方,利用二次函数的性质求出最小值. 【详解】(1)33cos cos sin sin cos22222x xa b x x x ⋅=⋅-⋅=cosa b⎛+= ⎝ =∵0,2x π⎡⎤∈⎢⎥⎣⎦∴cos 0x ∴2cos a b x +=(2)()cos23cos f x x x =- 223172cos 13cos 2cos 48x x x ⎛⎫=--=-- ⎪⎝⎭∵0,2x π⎡⎤∈⎢⎥⎣⎦∴0cos 1x ∴()min 317cos 48x f x ==-【点睛】本题考查了平面向量数量积的坐标表示,以及平面向量的坐标加法运算公式.重点是二次函数求最小值问题. 30.(1)π2,1,6A ωϕ===;(2)7π,112a b =-=,递增区间为()πππ,π36k k k Z ⎡⎤-+∈⎢⎥⎣⎦;(3)π24或7π24. 【解析】 【分析】(1)利用函数图像可直接得出周期T 和A ,再利用=2Tπω,求出ω,然后利用待定系数法直接得出ϕ的值.(2)通过第一问求得的值可得到()f x 的函数解析式,令()=0f x ,再根据a 的位置确定出a 的值;令0x =得到的函数值即为b 的值;利用正弦函数单调增区间即可求出函数的单调增区间.(3)令()f α=0απ,即可求得α的取值.【详解】解:(1)由图象知A =2,34T =512π-(-3π)=912π, 得T =π, 即22πω=2,得ω=1, 又f (-3π)=2sin[2×(-3π)+φ]=-2, 得sin (-23π+φ)=-1,即-23π+φ=-2π+2k π, 即ω=6π+2k π,k ∈Z , ∵|φ|<2π,∴当k =0时,φ=6π,即A =2,ω=1,φ=6π;(2)a =-3π-4T =-3π-4π=-712π,b =f (0)=2sin 6π=2×12=1,∵f (x )=2sin (2x +6π),∴由2k π-2π≤2x +6π≤2k π+2π,k ∈Z , 得k π-3π≤x ≤k π+6π,k ∈Z ,即函数f (x )的递增区间为[k π-3π,k π+6π],k ∈Z ;(3)∵f (α)=2sin (2α+6π)即sin (2α+6π) ∵α∈[0,π],∴2α+6π∈[6π,136π], ∴2α+6π=4π或34π,∴α=24π或α=724π.【点睛】关于三角函数图像需记住: 两对称轴之间的距离为半个周期; 相邻对称轴心之间的距离为半个周期;相邻对称轴和对称中心之间的距离为14个周期.关于正弦函数单调区间要掌握:当2,222x k k ππωϕππ⎡⎤+∈-+⎢⎥⎣⎦时,函数单调递增;当32+,222x k k ππωϕππ⎡⎤+∈+⎢⎥⎣⎦时,函数单调递减.。
圆与相似三角形、解直角三角形及二次函数的综合类型一:圆与相似三角形的综合1.如图,BC是⊙A的直径,△DBE的各个顶点均在⊙A上,BF⊥DE于点F.求证:BD·BE=BC·BF.2.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:点E是边BC的中点;(2)求证:BC2=BD·BA;(3)当以点O,D,E,C为顶点的四边形是正方形时,求证:△ABC是等腰直角三角形.解:(1)连结OD,∵DE为切线,∴∠EDC+∠ODC=90°.∵∠ACB=90°,∴∠ECD+∠OCD=90°.又∵OD=OC,∴∠ODC=∠OCD,∴∠EDC=∠ECD,∴ED=EC.∵AC为直径,∴∠ADC=90°,∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,∴∠B=∠BDE,∴ED=EB,∴EB=EC,即点E为边BC的中点(2)∵AC为直径,∴∠ADC=∠ACB=90°.又∵∠B=∠B,∴△ABC∽△CBD,∴ABBC=BCBD,∴BC2=BD•BA(3)当四边形ODEC为正方形时,∠OCD=45°.∵AC为直径,∴∠ADC=90°,∴∠CAD=90°-∠OCD=90°-45°=45°,∴Rt△ABC为等腰直角三角形类型二:圆与解直角三角形的综合3.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC的中点,DE⊥AB,垂足为点E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;(2)已知CF=5,cosA=25,求BE的长.解:(1)连结OD.∵CD=DB,CO=OA,∴OD是△ABC的中位线,∴OD∥AB,AB=2OD.∵DE⊥AB,∴DE⊥OD,即OD⊥EF,∴直线EF是⊙O的切线(2)∵OD∥AB,∴∠COD=∠A,∴cos∠COD=cosA=25.在Rt△DOF中,∵∠ODF=90°,∴cos∠FOD=ODOF=25.设⊙O的半径为r,则rr+5=25,解得r=103,∴AB=2OD=AC =203.在Rt△AEF中,∵∠AEF=90°,∴cosA=AEAF=AE5+203=25,∴AE=143,∴BE =AB-AE=203-143=24.(2015·资阳)如图,在△ABC中,BC是以AB为直径的⊙O的切线,且⊙O与AC相交于点D,E为BC的中点,连结DE.(1)求证:DE是⊙O的切线;(2)连结AE,若∠C=45°,求sin∠CAE的值.解:(1)连结OD,BD,∵OD=OB,∴∠ODB=∠OBD.∵AB是直径,∴∠ADB=90°,∴∠CDB =90°.∵E为BC的中点,∴DE=BE,∴∠EDB=∠EBD,∴∠ODB+∠EDB=∠OBD+∠EBD,即∠EDO=∠EBO.∵BC是以AB为直径的⊙O的切线,∴AB⊥BC,∴∠EBO=90°,∴∠ODE =90°,∴DE是⊙O的切线(2)过点E作EF⊥CD于点F,设EF=x,∵∠C=45°,∴△CEF,△ABC都是等腰直角三角形,∴CF=EF=x,∴BE=CE=2x,∴AB=BC=22x.在Rt△ABE中,AE=AB2+BE2=10x,∴sin∠CAE=EFAE=10105.如图,△ABC内接于⊙O,直径BD交AC于点E,过点O作FG⊥AB,交AC于点F,交AB于点H,交⊙O于点G.(1)求证:OF·DE=OE·2OH;(2)若⊙O的半径为12,且OE∶OF∶OD=2∶3∶6,求阴影部分的面积.(结果保留根号)解:(1)∵BD是直径,∴∠DAB=90°.∵FG⊥AB,∴DA∥FO,∴△FOE∽△ADE,∴FOAD=OEDE,即OF•DE=OE•AD.∵O是BD的中点,DA∥OH,∴AD=2OH,∴OF•DE=OE•2OH (2)∵⊙O的半径为12,且OE∶OF∶OD=2∶3∶6,∴OE=4,ED=8,OF=6,∴OH=6.在Rt△OBH中,OB=2OH,∴∠OBH=30°,∴∠BOH=60°,∴BH=BO•sin60°=12×32=63,∴S阴影=S扇形GOB-S△OHB=60×π×122360-12×6×63=24π-183类型三:圆与二次函数的综合6.如图,在平面直角坐标系中,已知A(-4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C(0,2),过点C作圆的切线交x轴于点D.(1)求过A,B,C三点的抛物线的解析式;(2)求点D的坐标;(3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径,若不存在,请说明理由.解:(1)y=-12x2-32x+2(2)以AB为直径的圆的圆心坐标为O′(-32,0),∴O′C=52,O′O=32.∵CD为圆O′的切线,∴O′C⊥CD,∴∠O′CO+∠DCO=90°.又∵∠CO′O+∠O′CO=90°,∴∠CO′O=∠DCO,∴△O′CO∽△CDO,∴O′OOC=OCOD,∴322=2OD,∴OD=83,∴点D的坐标为(83,0) (3)存在.抛物线的对称轴为直线x=-32,设满足条件的圆的半径为|r|,则点E的坐标为(-32+r,r)或F(-32-r,r),而点E在抛物线y=-12x2-32x+2上,∴r=-12(-32+|r|)2-32(-32+|r|)+2,∴r1=-1+292,r2=-1-292(舍去).故存在以线段EF为直径的圆,恰好与x轴相切,该圆的半径为-1+2927.如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于点C,经过A,B,C 三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为.设⊙M与y轴交于点D,抛物线的顶点为E.(1)求m的值及抛物线的解析式;(2)设∠DBC=α,∠CBE=β,求sin(α-β)的值;(3)探究坐标轴上是否存在点P,使得以P,A,C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.解:(1)由题意,可知C(0,-3),-b2a=1,∴抛物线的解析式为y=ax2-2ax-3(a>0).过点M作MN⊥y轴于点N,连结CM,则MN=1,CM=5,∴CN=2,于是m=-1.同理,可求得B(3,0),∴a×32-2a×3-3=0,解得a=1.∴抛物线的解析式为y=x2-2x-3 (2)由(1)得,A(-1,0),E(1,-4),D(0,1),∴△BCE为直角三角形,BC=32,CE=2,∴OBOD=31=3,BCCE=322=3,∴OBOD=BCCE,即OBBC=ODCE,∴Rt△BOD∽Rt △BCE,得∠CBE=∠OBD=β,因此sin(α-β)=sin(∠DBC-∠OBD)=sin∠OBC=COBC=22(3)显然Rt△COA∽Rt△BCE,此时点O(0,0).过点A作AP2⊥AC交y轴的正半轴于点P2,由Rt△CAP2∽Rt△BCE,得P2(0,13).过点C作CP3⊥AC交x轴的正半轴于点P3,由Rt△P3CA∽Rt△BCE,得P3(9,0).故在坐标轴上存在三个点P1(0,0),P2(0,13),P3(9,0),使得以P,A,C为顶点的三角形与△BCE相似。
高中三角函数专题练习题附答案一、填空题1.如图所示,一竖立在地面上的圆锥形物体的母线长为4,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥爬行一周后回到点P 处,若该小虫爬行的最短路程为43,则这个圆锥的体积为___________.2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,1a =,34A π=,若b c λ+有最大值,则实数λ的取值范围是_____.3.已知函数()()4sin 03πf x x ωω⎛⎫=+> ⎪⎝⎭,圆C 的方程为()22525x y -+=,若在圆C 内部恰好包含了函数()f x 的三个极值点,则ω的取值范围是______.4.在平面直角坐标系中,对任意角α,设α的终边上异于原点的任意一点P 的坐标为(,)x y ,它与原点的距离是r .我们规定:比值,,r r xx y y分别叫做角α的正割、余割、余切,分别记作sec α,csc α,cot α,把sec ,csc ,cot y x y x y x ===分别叫做正割函数、余割函数、余切函数,则下列叙述正确的有___________(填上所有正确的序号) ①3cot14π=; ②sin csc 1αα⋅=;③sec y x =的定义域为{}|,Z x x k k π≠∈; ④22sec csc 4αα+;⑤2cot 1cot22cot ααα-=.5.log sin()3y x ππ=+的单调增区间为________.6.已知(sin )21,22f x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,那么(cos1)f =________.7.已知ABC 为等边三角形,点G 是ABC 的重心.过点G 的直线l 与线段AB 交于点D ,与线段AC 交于点E .设AD AB λ=,AE AC μ=,则11λμ+=__________;ADE 与ABC 周长之比的取值范围为__________.8.已知正四棱柱1111ABCD A B C D -中,2AB =,13AA =.若M 是侧面11BCC B 内的动点,且AM MC ⊥,则1A M 的最小值为__________.9.已知平面四边形ABCD 的面积为36,4AB =,3AD =,5BC =,6CD =,则cos()A C +=___________.10.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b =,2B C =,则a c +的取值范围为________.二、单选题11.已知函数()|sin |(0)f x x ωω=>在区间,53ππ⎡⎤⎢⎥⎣⎦上单调递减,则实数ω的取值范围为( ) A .5,32⎡⎤⎢⎥⎣⎦B .30,2⎛⎤ ⎥⎝⎦C .8,33⎡⎤⎢⎥⎣⎦D .50,4⎛⎤ ⎥⎝⎦12.若函数()f x 同时满足:①定义域内任意实数x ,都有()()110f x f x ++-=;②对于定义域内任意1x ,2x ,当12x x ≠时,恒有()()()12120x x f x f x -⋅->⎡⎤⎣⎦;则称函数()f x 为“DM 函数”.若“DM 函数”满足()()2sin cos 0f f αα-+>,则锐角α的取值范围为( ) A .0,4π⎛⎫ ⎪⎝⎭B .0,3π⎛⎫ ⎪⎝⎭C .,43ππ⎛⎫ ⎪⎝⎭D .2,43ππ⎛⎫ ⎪⎝⎭13.已知02πθ<<,()()cos 1sin 110sin cos f m m m θθθθθ--⎛⎫=+++> ⎪⎝⎭,则使得()f θ有最大值时的m 的取值范围是( )A .1,22⎛⎫⎪⎝⎭B .1,33⎛⎫ ⎪⎝⎭C .[]1,3D .1,14⎡⎤⎢⎥⎣⎦14.如图,长方形ABCD 中,152AB =,1AD =,点E 在线段AB (端点除外)上,现将ADE 沿DE 折起为A DE '.设ADE α∠=,二面角A DE C '--的大小为β,若π2αβ+=,则四棱锥A BCDE '-体积的最大值为( )A .14B .23C D15.已知函数()sin os 0(c f x x a x a ωω=+>且0>ω),周期2T π<,()3f π()f x 在6x π=处取得最大值,则ω的最小值为( )A .11B .12C .13D .1416.设点()11,P x y 在椭圆22182x y +=上,点()22,Q x y 在直线280x y +-=上,则2121x x y y -+-的最小值是( )A .1B C .1D .217.设函数242,0()sin ,60x x x f x x x ⎧-+≥=⎨-≤<⎩,对于非负实数t ,函数()y f x t =-有四个零点1x ,2x ,3x ,4x .若1234x x x x <<<,则1234x x x x ++的取值范围中的整数个数为( )A .0B .1C .2D .318.在ABC 中,BAC ∠的平分线交BC 于点,2,6D BD DC BC ==,则ABC ∆的面积的最大值为( )A.6B .C .12D .19.已知函数()()sin 302f x x πϕϕ⎛⎫=-<≤ ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π上单调递增,现有如下三个结论:①ϕ的最小值为3π; ②当ϕ取得最大值时,将函数()f x 的图像向左平移18π个单位后,再把曲线上各点的横坐标伸长到原来的2倍,得到函数()g x 的图像,则132g π⎛⎫= ⎪⎝⎭;③函数()f x 在[]0,2π上有6个零点. 则上述结论正确的个数为( ) A .0B .1C .2D .320.已知函数()2sin cos f x x x x =,给出下列结论:①()f x 的图象关于直线π12x =对称;②()f x 的值域为[]22-,;③()f x 在π7π,1212⎡⎤⎢⎥⎣⎦上是减函数;④0是()f x 的极大值点.其中正确的结论有( ) A .①④B .②③C .①②③D .①②④三、解答题21.已知()3,sin a x ω=,1,2cos 3b x πω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,其中0>ω,()f x a b =⋅,且函数()f x在12x π=处取得最大值.(1)求ω的最小值,并求出此时函数()f x 的解析式和最小正周期; (2)在(1)的条件下,先将()y f x =的图像上的所有点向右平移4π个单位,再把所得图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),然后将所得图像上所有的点向下平移32个单位,得到函数y g x 的图像.若在区间5,33ππ⎡⎤⎢⎥⎣⎦上,方程()210g x a +-=有两个不相等的实数根,求实数a 的取值范围;(3)在(1)的条件下,已知点P 是函数()y h x =图像上的任意一点,点Q 为函数()y f x =图像上的一点,点3,64A π⎛⎫- ⎪ ⎪⎝⎭,且满足12OP OQ OA =+,求()104h x +≥的解集. 22.已知函数2211()cos sin cos sin 22f x x x x x =+-.(1)求()f x 的单调递增区间;(2)求()f x 在区间,82ππ⎡⎤-⎢⎥⎣⎦的最大值和最小值.23.已知函数2()23sin 2sin cos ()f x x x x a a R =-++∈,且(0)3f =. (1)求a 的值;(2)若()f x ω在[0,]π上有且只有一个零点,0>ω,求ω的取值范围. 24.如图所示,在平面四边形ABCD 中,1,2,AB BC ACD ==∆为正三角形.(1)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若sin(2)3sin A C C +=,求角B 的大小; (2)求BCD ∆面积的最大值.25.在ABC ∆中,角,,A B C 的对边分别为,,a b c . 已知10sin 2C =(1)若4a =,210c =ABC ∆的面积; (2)若ABC ∆91522213sin sin sin 16A B C +=,求c 的值.26.已知函数22()sin 22sin 26144f x x t x t t ππ⎛⎫⎛⎫=---+-+ ⎪ ⎪⎝⎭⎝⎭,,242x ππ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,最小值为()g t .(1)求当1t =时,求8f π⎛⎫⎪⎝⎭的值;(2)求()g t 的表达式;(3)当112t -≤≤时,要使关于t 的方程2()9g t k t =-有一个实数根,求实数k 的取值范围. 27.已知ABC ∆的三个内角A ,B ,C 的对边分别为a ,b ,c ,函数()()2sin cos sin f x x A x A =-+,且当512x π=时,()f x 取最大值. (1)若关于x 的方程()f x t =,0,2x π⎛⎫∈ ⎪⎝⎭有解,求实数t 的取值范围;(2)若5a =,且sin sin B C +=,求ABC ∆的面积.28.已知函数21()sin 24f x x x =+(1)求()f x 的最小正周期T 和[0,]π上的单调增区间:(2)若2()(1)0n f x m +-⋅>对任意的,34x ππ⎡⎤∈-⎢⎥⎣⎦和*n N ∈恒成立,求实数m 的取值范围.29.已知向量()cos sin ,sin a m x m x x ωωω=-,()cos sin ,2cos b x x n x ωωω=--,设函数()()2n f x a b x R =⋅+∈的图象关于点,112π⎛⎫⎪⎝⎭对称,且()1,2ω∈ (I )若1m =,求函数()f x 的最小值;(II )若()4f x f π⎛⎫≤ ⎪⎝⎭对一切实数恒成立,求()y f x =的单调递增区间.30.函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图象相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式;(2)设π(0,)2α∈,则()22f α=,求α的值【参考答案】一、填空题12.⎝ 3.1925731,,48481248ππππ⎛⎤⎡⎤⋃⎥⎢⎥⎝⎦⎣⎦ 4.②④⑤5.(2,2)(Z)36k k k ππππ-++∈6.1π-##1π-+7. 3 21,32⎡⎢⎣⎦89.710##0.710.( 二、单选题 11.A 12.A 13.A 14.A 15.C 16.D 17.B 18.C 19.C 20.B 三、解答题21.(1)ω的最小值为1,()sin 23f x x π⎛⎫=+ ⎪⎝⎭,T π=,(2)104a <≤(3)原不等式的解集为3,22428k k xx k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【解析】 【分析】(1)先将()f x 化成正弦型,然后利用()f x 在12x π=处取得最大值求出ω,然后即可得到()f x 的解析式和周期(2)先根据图象的变换得到()sin 6x y g x π⎛⎫-= ⎝=⎪⎭,然后画出()g x 在区间5,33ππ⎡⎤⎢⎥⎣⎦上的图象,条件转化为()g x 的图象与直线12y a =-有两个交点即可(3)利用坐标的对应关系式,求出()h x 的函数的关系式,进一步利用三角不等式的应用求出结果.【详解】 (1)因为()3,sin a x ω=,1,2cos 3b x πω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭所以()32sin cos 3f x a b x x πωω⎛⎫=⋅=++ ⎪⎝⎭21332sin cos sin sin cos 3sin 322x x x x x x ωωωωωω⎛⎫=+-=-+ ⎪ ⎪⎝⎭ 11cos 2133sin 233sin 2cos 222222x x x x ωωωω-=-⨯+=++3sin 232x πω⎛⎫=++ ⎪⎝⎭因为()f x 在12x π=处取得最大值.所以22,1232k k Z πππωπ⨯+=+∈,即121,k k Z ω=+∈当0k =时ω的最小值为1此时3()sin 232f x x π⎛⎫=++ ⎪⎝⎭,T π=(2)将()y f x =的图像上的所有的点向右平移4π个单位得到的函数为33sin 2sin 243262y x x πππ⎛⎫⎛⎫⎛⎫=-++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再把所得图像上所有的点的横坐标伸长为原来的2倍(纵坐标不变)得到的函数为3sin 62y x π⎛⎫=-+ ⎪⎝⎭,然后将所得图像上所有的点向下平移32个单位,得到函数()sin 6x y g x π⎛⎫-= ⎝=⎪⎭()sin 6g x x π⎛⎫=- ⎪⎝⎭在区间5,33ππ⎡⎤⎢⎥⎣⎦上的图象为:方程()210g x a +-=有两个不相等的实数根等价于()g x 的图象 与直线12y a =-有两个交点所以11212a ≤-<,解得104a <≤(3)设(),P x y ,()00,Q x y因为点,6A π⎛ ⎝⎭,且满足12OP OQ OA =+所以0012612x x y y π⎧=+⎪⎪⎨⎪=⎪⎩00232x x y y π⎧=-⎪⎪⎨⎪=⎪⎩因为点()00,Q x y 为函数()y f x =图像上的一点所以2sin 2233y x ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭ 即1()sin 423y h x x π⎛⎫==- ⎪⎝⎭因为()104h x +≥,所以1sin 432x π⎛⎫-≥- ⎪⎝⎭所以7242,636k x k k Z πππππ-≤-≤+∈ 所以3,22428k k x k Z ππππ+≤≤+∈ 所以原不等式的解集为3,22428k k xx k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【点睛】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,平面向量的数量积的应用,三角不等式的解法及应用,主要考查学生的运算能力和转换能力,属于中档题.22.(1)3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈;(2)()max f x =,()min 12f x =- 【解析】 【分析】(1)直接利用三角函数的恒等变换,把三角函数变形成正弦型函数.进一步求出函数的单调区间.(2)直接利用三角函数的定义域求出函数的最值. 【详解】 解:(1)2211()cos sin cos sin 22f x x x x x =+-11()cos 2sin 222f x x x ∴=+ ()24f x x π⎛⎫∴=+ ⎪⎝⎭令222242k x k πππππ-+≤+≤+,()k Z ∈解得388k x k ππππ-+≤≤+,()k Z ∈ 即函数的单调递增区间为3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈(2)由(1)知n ()24f x x π⎛⎫=+ ⎪⎝⎭ ,82x ππ⎡⎤∈-⎢⎥⎣⎦ 520,44x ππ⎡⎤∴+∈⎢⎥⎣⎦所以当242x ππ+=,即8x π=时,()max f x =当5244x ππ+=,即2x π=时,()min 12f x =- 【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的单调性的应用,利用函数的定义域求三角函数的值域.属于基础型.23.(1)a =(2)15,36⎡⎫⎪⎢⎣⎭【解析】 【分析】(1)利用降次公式、辅助角公式化简()f x 表达式,利用(0)f =a 的值. (2)令()0f x ω=,结合x 的取值范围以及三角函数的零点列不等式,解不等式求得ω的取值范围. 【详解】(1)2()2sin cos f x x x x a =-++sin 2x x a =+2sin 23x a π⎛⎫=++- ⎪⎝⎭(0)f =(0)2sin3f a π∴=+=即a =(2)令()0f x ω=,则sin 203x πω⎛⎫+= ⎪⎝⎭,[0,]x π∈,2,2333πππωπω⎡⎤∴+∈+⎢⎥⎣⎦,()f x 在[0,]π上有且只有一个零点,223πππωπ∴+<,1536ω∴<, ω∴的取值范围为15,36⎡⎫⎪⎢⎣⎭. 【点睛】本小题主要考查三角恒等变换,考查三角函数零点问题,考查化归与转化的数学思想方法,属于基础题.24.(1)23B π=;(21. 【解析】 【分析】(1)由正弦和角公式,化简三角函数表达式,结合正弦定理即可求得角B 的大小;(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理及正弦定理用,αβ表示出CD .再根据三角形面积公式表示出∆BCD S ,即可结合正弦函数的图像与性质求得最大值. 【详解】 (1)由题意可得:sin2cos cos2sin 3sin A C A C C +=∴()22sin cos cos 12sin sin 3sin A A C A C C +-=整理得sin (cos cos sin sin )sin A A C A C C -= ∴sin cos()sin A A C C += ∴sin cos sin A B C -= ∴sin 1cos sin 2C c B A a =-=-=- 又(0,)B π∈ ∴23B π=(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理得:22212212cos 54cos AC αα=+-⨯⨯=-, ∵ACD ∆为正三角形, ∴2254cos CD C A α=-=, 在ABC ∆中,由正弦定理得:1sin sin ACβα=, ∴sin sin AC βα=, ∴sin sin CD βα=,∵()222222(cos )1sin sin 54cos sin CD CD CD ββααα=-=-=--2(2cos )α=-,∵BAC β<∠,∴β为锐角,cos 2cos CD βα=-,12sin sin 233BCD S CD CD ππββ∆⎛⎫⎛⎫=⨯⨯⨯+=+ ⎪ ⎪⎝⎭⎝⎭1cos sin 2CD ββ=+,1cos )sin sin 23πααα⎛⎫=-+=- ⎪⎝⎭, ∵(0,)απ∈∴当56πα=时,()max 1BCD S ∆=. 【点睛】本题考查了三角函数式的化简变形,正弦定理与余弦定理在解三角形中的应用,三角形面积的表示方法,正弦函数的图像与性质的综合应用,属于中档题.25.(1)2)c =【解析】【分析】(1)先根据sin 2C =sin C 与cos C ,再利用余弦定理求出b 边,最后利用1sin 2ABC S ab C ∆=求出答案; (2)利用正弦定理将等式化为变得关系,再利用余弦定理化为2c 与ab 的关系式,再结合面积求出c 的值.【详解】解:(1)因为sin 2C = 所以2101cos 12sin 122164C C =-=-⨯=-.又()0,C π∈,所以sin C =.因为4a =,c =2222cos c a b ab C =+-, 所以214016244b b ⎛⎫=+-⨯⨯- ⎪⎝⎭, 解得4b =,所以11sin 4422ABC S ab C ∆==⨯⨯= (2)因为22213sin sin sin 16A B C +=,由正弦定理,得2221316a b c +=. 又2222cos a b ab C c +-=,所以283c ab =.又1sin 2ABC S ab C ∆=,得18ab =,所以248c =,所以c = 【点睛】本题考查正余弦定理解三角形,属于基础题.26.(1)4-(2)22515421()611282(1)t t t g t t t t t t ⎧⎛⎫-+<- ⎪⎪⎝⎭⎪⎪⎛⎫=-+-≤≤⎨ ⎪⎝⎭⎪⎪-+>⎪⎩(3)--22∞⋃+∞(,)(,) 【解析】【分析】 (1)直接代入计算得解;(2)先求出1sin(2)[,1]42x π-∈-,再对t 分三种情况讨论,结合二次函数求出()g t 的表达式;(3)令2()()9h t g t k t =-+,即2()(6)t 10h t k =-++有一个实数根,利用一次函数性质分析得解.【详解】(1)当1t =时,2()sin 22sin 2444f x x t x ππ⎛⎫⎛⎫=---- ⎪ ⎪⎝⎭⎝⎭,所以48f π⎛⎫=- ⎪⎝⎭. (2)因为[,]242x ∈ππ,所以32[,]464x πππ-∈-,所以1sin(2)[,1]42x π-∈- 2()[sin(2)]614f x x t t π=---+([,]242x ∈ππ) 当12t <-时,则当1sin(2)42x π-=-时,2min 5[()]54f x t t =-+ 当112t -≤≤时,则当sin(2)4x t π-=时,min [()]61f x t =-+ 当1t >时,则当sin(2)14x π-=时,2min [()]82f x t t =-+ 故22515421()611282(1)t t t g t t t t t t ⎧⎛⎫-+<- ⎪⎪⎝⎭⎪⎪⎛⎫=-+-≤≤⎨ ⎪⎝⎭⎪⎪-+>⎪⎩(3)当112t -≤≤时,()61g t t =-+,令2()()9h t g t k t =-+即2()(6)t 10h t k =-++ 欲使2()9g t kt =-有一个实根,则只需1()02(1)0h h ⎧-≤⎪⎨⎪≥⎩或1()02(1)0h h ⎧-≥⎪⎨⎪≤⎩ 解得-2k ≤或2k ≥.所以k 的范围:--22∞⋃+∞(,)(,). 【点睛】本题主要考查三角函数的范围的计算,考查二次函数的最值的求法和方程的零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.27.(1)(;(2 【解析】【分析】 (1)利用两角和差的正弦公式整理()f x 可得:()sin(2)A f x x =-,再利用已知可得:522122A k πππ⨯-=+(k Z ∈),结合已知可得:3A π=,求得:(0,)2x π∈时,sin(2)13x π<-≤,问题得解.(2)利用正弦定理可得:sin sin )+=+B C b c ,结合sin sin B C +=可得:8+=b c ,对a 边利用余弦定理可得:2222cos a b c bc A =+-,结合已知整理得:13=bc ,再利用三角形面积公式计算得解.【详解】解:(1)()2sin()cos sin f x x A x A =-+2sin()cos sin[()]x A x x x A =-+--2sin()cos sin cos()cos sin()x A x x x A x x A =-+---sin cos()cos sin()x x A x x A =-+-sin(2)x A =-.因为()f x 在512x π=处取得最大值, 所以522122A k πππ⨯-=+,k Z ∈, 即2,3A k k Z ππ=-+∈. 因为(0,)A π∈,所以3A π=, 所以()sin(2)3f x x π=-. 因为(0,)2x π∈,所以22(,)333x πππ-∈-所以sin(2)13x π<-≤,因为关于x 的方程()f x t =有解,所以t 的取值范围为(. (2)因为5a =,3A π=,由正弦定理sin sin sin b c a B C A ==于是sin sin )+=+B C b c .又sin sin B C +=,所以8+=b c . 由余弦定理得:2222cos a b c bc A =+-,整理得:2225=+-b c bc ,即225()3643=+-=-b c bc bc ,所以13=bc ,所以1sin 2ABC S bc A ∆== 【点睛】本题主要考查了两角和、差的正弦公式应用,还考查了三角函数的性质及方程与函数的关系,还考查了正弦定理、余弦定理的应用及三角形面积公式,考查计算能力及转化能力,属于中档题.28.(1) T=π,单调增区间为50,12π⎡⎤⎢⎥⎣⎦,11,12ππ⎡⎤⎢⎥⎣⎦(2) ∅ 【解析】【分析】(1)化简函数得到1()sin 223f x x π⎛⎫=- ⎪⎝⎭,再计算周期和单调区间. (2)分情况n 的不同奇偶性讨论,根据函数的最值得到答案.【详解】解:(1)函数21()sin 24f x x x =11cos 2sin 242x x +=11sin 22sin 2423x x x π⎛⎫==- ⎪⎝⎭故()f x 的最小正周期22T ππ==. 由题意可知:222232k x k πππππ-+≤-≤+,k Z ∈ 解得:51212k x k ππππ-+≤≤+,k Z ∈ 因为[0,]x π∈,所以()g x 的单调增区间为50,12π⎡⎤⎢⎥⎣⎦,11,12ππ⎡⎤⎢⎥⎣⎦(2)由(1)得1()sin 223f x x π⎛⎫=- ⎪⎝⎭∵,34x ππ⎡⎤∈-⎢⎥⎣⎦∴2,36x πππ⎡⎤-∈-⎢⎥⎣⎦, ∴1sin 21,32x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,12()1,2f x ⎡⎤∈-⎢⎥⎣⎦若2()(1)0n f x m +-⋅>对任意的,34x ππ⎡⎤∈-⎢⎥⎣⎦和*n N ∈恒成立, 则2()(1)n f x m +-⋅的最小值大于零.当n 为偶数时,10m -+>,所以,1m当n 为奇数时,10m -->,所以,1m <-综上所述,m 的范围为∅.【点睛】本题考查了三角函数化简,周期,单调性,恒成立问题,综合性强,意在考查学生的计算能力和综合应用能力.29.(Ⅰ)1()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【解析】【分析】化简()f x 解析式可得()()22n f x x ωϕ=-+;根据图象关于,112π⎛⎫ ⎪⎝⎭可求得n ;(Ⅰ)若1m =,则()()21f x x ωϕ=-+,从而可得函数最小值;(Ⅱ)利用4x π=为对称轴,,112π⎛⎫ ⎪⎝⎭为对称中心可得()*642T T k k N π=+⋅∈,根据周期和ω的范围可求得ω;将,112π⎛⎫ ⎪⎝⎭代入解析式可求得()314f x x π⎛⎫=-+ ⎪⎝⎭,将34x π-整体放入正弦函数的单调递增区间中,解出x 的范围即可.【详解】由题意得:()()22cos sin 2sin cos 2n f x m x x n x x ωωωω=--++()sin 2cos 2222n n n x m x x ωωωϕ=-+=-+ 其中cos ϕ=sin ϕ=图象关于点,112π⎛⎫ ⎪⎝⎭对称 12n ∴=,解得:2n =()()21f x x ωϕ∴=-+(Ⅰ)若1m =,则()()21f x x ωϕ=-+()min 1f x ∴=(Ⅱ)()4f x f π⎛⎪≤⎫ ⎝⎭对一切实数恒成立 ()max 4f x f π⎛⎫∴= ⎪⎝⎭ ()*412642T T k k N πππ∴-==+⋅∈,即:()()*223212T k N k ππω==∈+ ()3212k ω∴=+,又()1,2ω∈ 32ω∴= ()2sin3cos31f x x m x ∴=-+,又图象关于点,112π⎛⎫ ⎪⎝⎭对称 2sin cos 111244f m πππ⎛⎫∴=-+= ⎪⎝⎭,解得:2m =()2sin 32cos31314f x x x x π⎛⎫∴=-+=-+ ⎪⎝⎭ 令232242k x k πππππ-+≤-≤+,k Z ∈,解得:2212343k k x ππππ-+≤≤+,k Z ∈ ()f x ∴的单调递增区间为:()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【点睛】本题考查三角函数图象与性质的综合应用问题,涉及到根据三角函数的性质求解函数解析式的求解、三角函数最值的求解、单调区间的求解问题.30.(1)()2sin(2) 1.6f x x π=-+;(2)3π. 【解析】【详解】(1)由三角函数性质得,最大值为A+1=3,∴A=2, 周期2222πππωω⨯==⇒=,∴f (x )=2sin (2x-6π)+1(2)π(0,)2α∈,f (2α)=2 ∴2sin (22α⨯-6π)+1=2,得sin (α-6π)=12,α=3π。
※三角函数与圆的专题训练题
A 基础训练
1.如图,已知⊙O 的半径为1,AB 与⊙O 相切于点A ,OB 与⊙O 交于点C ,CD ⊥OA ,垂
足为D ,则tan ∠COD 的值等于线段( )的长.
A .OD
B .OA
C .C
D D .AB
2.如图,已知△ABC 的外接圆⊙O 的半径为1,D 、E 、F 分别为AC 、AB 、BC 的中点,则
sin ∠ABC 的值等于线段( )的长.
A .AC
B .EF
C .DF
D .AB
3.如图,矩形ABCD 内接于⊙O ,点P 在弧AD 上,若AB :AD =1:2,则sin ∠BPC =( )
A .21
B .2
C .45
D .5
52
4.如图,AB 为⊙O 的直径,弦AC 、BD 相交于P 点,∠BPC =α,则CD :AB 等于( )
A .sin α
B .cos α
C .tan α
D .其他答案
5.如图,⊙O 的直径AB =2
1,AB 平分弦CD 交CD 于E ,DF ⊥CD 交CA 的延长线于F ,则sin ∠C ·sin ∠ADC 的值为线段( )的长.
A .DF
B .AE
C .CE
D .AC
6.如图,⊙O 的直径AB =1,C 为弧AB 的中点,E 为OB 上一点,CE 的延长线交⊙O 于D ,
则sin ∠AEC 的值为( )的长.
A .A
B B .AE
C .C
D D .CE
7.如图,P A 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,P A =4,OA =3,则sin ∠AOP 的
值为( )
A .43
B .53
C .54
D .3
4 8.P A 、PB 分别切⊙O 于A 、B ,∠APB =60°,P A =10,则⊙O 半径长为( )
A .
33
10 B .5 C .310 D .35 B 综合运用
9.如图,P A 、PB 切⊙O 于A 、B 两点,CD 切⊙O 于点E ,交P A 、PB 于C 、D ,若⊙O 的
半径为r ,△PCD 的周长等于3r ,则tan ∠APB 的值是( )
A .13125
B .512
C .1353
D .133
2
10.如图,PT 是⊙O 的切线,T 为切点,P AB 是经过圆心O 的割线.
⑴求证:∠PTA =∠BTO ;
⑵若PT =4,P A =2,则sin B 的值.
11.如图,在△ABC 中,AB=AC ,AE 平分∠CAB ,BM 平分∠ABC 交AE 于M 点,O 为AB
上一点,⊙O 过B 、M 点交BA 于F 点.
⑴求证:AE 与⊙O 相切;⑵若BC =4,tan ∠EMB
=,求
S △ABC .
12.已知:P 为⊙O 外一点,P A 、PB 分别切⊙O 于A 、B 两点,点C 为⊙O 上一点.
⑴如图1,若AC 为直径,求证:OP ∥BC ;
⑵如图2,若sin ∠P =13
12,求tan ∠C 的值.
C 拓广探索
13.已知:线段OA ⊥OB ,点C 为OB 中点,D 为线段OA 上一点,连接AC ,BD 交于点P .
⑴如图1,当OA =OB ,且D 为OA 中点时,求
PC AP 的值; ⑵如图2,当OA =OB ,且AO AD =4
1时,求tan ∠BPC 的值; ⑶当AD :AO :OB =1:n :n 2时,直接写出tan ∠BPC 的值.
第二十八章单元检测题
一、选择题(3分×10=30分)
1.在直角三角形中,各边的长度都扩大3倍,则锐角A 的三角函数值( )
A.都扩大3倍
B. 都缩小3倍
C. 都不变
D.有的扩大,有的缩小
2.Rt △ABC 中,∠C =90°,AC =8cm ,BC =6cm ,则sin A 的值是( )
2
A.4
5B. 3
5
C. 4
3
D. 3
4
3.三角形在正方形网格纸中的位置如图所示,则sin a的值是()
A. 3
5
B. 4
3
C. 3
4
D. 4
5
4.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,若AC=AB=tan∠BCD的值为()
A. B.
2
C.
3
D.
3
5.如图,已知某斜坡的坡度为1:AB与水平宽度的比),则斜坡的坡度α是( )
A.30°
B.45°
C.60°
D.75°
6.一艘海轮位于灯塔的南偏东25°方向,那么灯塔位于这艘海轮的()
A.南偏西65°方向
B. 南偏西25°方向
C. 北偏西65°方向
D. 北偏西25°方向
7.已知△ABC中,|2cos1|1)0
A B
-+-=,则△ABC的形状是()
A.锐角三角形
B.钝角三角形
C.直角三角形
D.等腰直角三角形
8.如图是一块平行四边形的草地ABCD,已知:AB=8m,AD=12m,∠A=120°,则草地ABCD 的面积为()
A.482
cm B.962
cm C. 2 D.2
9.等腰三角形边长10cm,周长为36cm,则一底角的正切值为()
A. 12
5
B. 5
12
C. 12
13
D. 13
5
10.小强和小明去测量一座古塔的高度,如图所示,他们在离古塔60米的A处,用测角仪测得塔顶的仰角为30°,已知测角仪器高AD=1.5米,则古塔BE的高为()
A.
1.5)米 B. 1.5)米 C.31.5米 D.28.5米
二、填空题(3分×6=18分)
11.计算:sin60°= .
12.已知3tanA,则锐角∠A的度数为.
13.如图,☉0是△ABC的外接圆,AD是☉0的直径,;连接CD,半径3
r=,AC=2,则cos B
2
的值是.
14.网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sin∠CAB= .
15.已知在△ABC中,设sin A=m,当∠A是△ABC的最小内角时,则m的取值范围是.
16.如图,E为正方形ABCD的边CD的中点,经过A、B、E三点的的☉O与边BC交于点F,P为弧AB上任意一点,若正方形ABCD的边长为4,则sin∠P的值为______
三、解答题(共8小题,共72分)
π-°-tan45°+2cos60°
17.(本题8(3)
18.(本题8分)如图,已知圆锥横截面为△ABC,地面圆的周长等于高AO的2π倍,求∠BAC的度数.
19.(本题8分)已知△ABC中,∠C=90°,c=A=60°,求∠B、a、b.
20.(本题8分)如同他,在建筑平台CD的顶部C处,测得大树AB的顶部A的仰角为45°,测得大树AB的底部B的俯角为30°,已知平台CD的高底为5m,求大树的高度.(结果保留根号)
21(本题8分)如图,某天然气公司的主输气管道从A市的偏北30°方向直线延伸,测绘员在A处测得要安装天然气的M小区在A市东偏北60°方向上,测绘员沿主输气管道步行2000m到达C处,测得小区M处位于C的北偏西60°方向上,请你在主输气管道上寻找支管道连接点N,使到小区铺设的管道最短,并求AN的长.
22.(本题8分)如图,已知MN表示某引水工程的一段设计路线,从M到N的走向为南偏东30°,在M的南偏东60°方向上有一点A,以A为圆心,500m为半径的圆形区域为居民
区.取MN上另一点B,测得BA的方向为南偏东75°,已知MB=400m,通过计算回答,如果不改变方向,输水线路是否会穿过居民区?
23.(本题10分)在O中,AB为直径,PC为弦,且P A=PC.
(1)如图1,求证:OP∥BC;
(2)如图2,DE切☉O于点C,若DE∥AB,求tan∠A的值.
24.(本题12分)如图,折叠矩形ABCD的一边AD,使点落在BC边的点F处,AE为折痕,点E在CD上.
(1)求证:△ABF∽△FCE;
(2)如图1,若折痕AE=tan∠EFC=3
4
,求矩形ABCD的周长;
(3)如图2,在AD边上截取DG,使DG=CF,连接GE、BD,相交于点H.求证BD⊥GE.。