最新材料物理性能(20200807171704)
- 格式:pdf
- 大小:2.02 MB
- 文档页数:16
材料的物理性能材料的物理性能:密度、相对密度、弹性、塑性、韧性、刚性、脆性、缺口敏感性、各向同性、各向异性、吸水率和模塑收缩率等。
•弹性:是材料在变形后部分或全部恢复到初始尺寸和形状的能力。
•塑性:是材料受力变形后保持变形的形状和尺寸的能力。
•韧性:是聚合物材料通过弹性变形或塑性变形吸收机械能而不发生破坏的能力。
•延展性:材料受到拉伸或压延而未受到破坏的延伸性称为延展性。
•脆性:是聚合物材料在吸收机械能时易发生断裂的性质。
•缺口敏感性:材料从已存在的缺口、裂纹或锐角部位发生开裂,裂纹很快贯穿整个材料的性质称为缺口敏感性。
•各向同性:各向同性的材料为在任何方向上物理性能相同的热塑性或热固性材料。
•各向异性:各向异性材料的性质与测试方向有关,增强塑料在纤维增强材料的排列方向上有较高的性能。
•吸水性:吸水性是材料吸水后质量增加的百分比表示。
模塑收缩性:模塑收缩性是指零件从模具中取出冷却至室温后,其尺寸相对于模具尺寸发生的收缩。
冲击性能:是材料承受高速冲击载荷而不被破坏的一种能力,反应了材料的韧性。
塑料材料在经受高冲击力而不被破坏,必须满足两个条件:①能迅速通过形变来分散和冲击能量;②材料内部产生的内应力不超过材料的断裂强度。
疲劳性能:塑料制品受到周期性反复作用的应力,包括拉伸、弯曲、压缩或扭曲等不同类型的应力,而发生交替变形的现象,称为疲劳。
抗撕裂性:抗撕裂性是薄膜、片材、带材一类薄型瓣重要力学性能。
蠕变性:指材料在恒定的外力(在弹性极限内,包括拉伸、压缩、弯曲等)作用下,变形随时间慢慢增加的现象。
应力松弛:指塑料制品维持恒定应变所需要的应力随时间延长而慢慢松弛的现象。
塑胶材料●塑胶材料可分为两大类:热塑性塑料、热固性塑料。
●热塑性塑料从构象(形态不同)可分为三种类型:无定型聚合物(PS、PC、PMMA)、半结晶聚合物(PE、PP、PA)、液晶聚合物(LCP)。
●热塑性塑料受热后会软化,并发生流动,冷却后凝固变硬,成为固态。
※ 材料的导电性能1、 霍尔效应电子电导的特征是具有霍尔效应。
置于磁场中的静止载流导体,当它的电流方向与磁场方向不一致时,载流导体上平行于电流和磁场方向上的两个面之间产生电动势差,这种现象称霍尔效应。
形成的电场E H ,称为霍尔场。
表征霍尔场的物理参数称为霍尔系数,定义为:霍尔系数R H 有如下表达式:en R i H 1±= 表示霍尔效应的强弱。
霍尔系数只与金属中自由电子密度有关 2、 金属的导电机制只有在费密面附近能级的电子才能对导电做出贡献。
利用能带理论严格导出电导率表达式:式中: nef 表示单位体积内实际参加传导过程的电子数;m *为电子的有效质量,它是考虑晶体点阵对电场作用的结果。
此式不仅适用于金属,也适用于非金属。
能完整地反映晶体导电的物理本质。
量子力学可以证明,当电子波在绝对零度下通过一个完整的晶体点阵时,它将不受散射而无阻碍的传播,这时电阻为零。
只有在晶体点阵完整性遭到破坏的地方,电子波才受到散射(不相干散射),这就会产生电阻——金属产生电阻的根本原因。
由于温度引起的离子运动(热振动)振幅的变化(通常用振幅的均方值表示),以及晶体中异类原子、位错、点缺陷等都会使理想晶体点阵的周期性遭到破坏。
这样,电子波在这些地方发生散射而产生电阻,降低导电性。
3、 马西森定律 (P94题11) 试说明用电阻法研究金属的晶体缺陷(冷加工或高温淬火)时威慑年电阻测量要在低温下进行。
马西森(Matthissen )和沃格特(V ogt )早期根据对金属固溶体中的溶质原子的浓度较小,以致于可以略去它们之间的相互影响,把金属的电阻看成由金属的基本电阻ρL(T)和残余电阻ρʹ组成,这就是马西森定律( Matthissen Rule ),用下式表示:ρʹ是与杂质的浓度、电缺陷和位错有关的电阻率。
ρL(T)是与温度有关的电阻率。
4、 电阻率与温度的关系金属的温度愈高,电阻也愈大。
若以ρ0和ρt 表示金属在0 ℃和T ℃温度下的电阻率,则电阻与温度关系为: 在t 温度下金属的电阻温度系数:5、 电阻率与压力的关系在流体静压压缩时,大多数金属的电阻率降低。
二、材料的物理性能与化学性能1、物理性能物理性能是指材料固有的属性,金属的物理性能包括密度、熔点、电性能、热性能、磁性能等。
(1)密度:密度是指在一定温度下单位体积物质的质量,密度表达式如下:ρ= m/V式中ρ——物质的密度(g/cm3);m ——物质的质量(g);V- ——物质的体积(cm3)。
常用材料的密度(20℃)密度意义:密度的大小很大程度上决定了工件的自重,对于要求质轻的工件宜采用密度较小的材料(如铝、钛、塑料、复合材料等);工程上对零件或计算毛坯的质量也要利用密度。
(2)熔点:是材料从固态转变为液态的温度,金属等晶体材料一般具有固定的熔点,而高分子材料等非晶体材料一般没有固定的熔点。
常用材料的熔点熔点意义:金属的熔点是热加工的重要工艺参数;对选材有影响,不同熔点的金属具有不同的应用场合:高的熔点金属(如钨、钼等)可用于制造耐高温的零件(如火箭、导弹、燃气轮机零件,电火花加工、焊接电极等),低的熔点金属(如铅、铋、锡等)可用于制造熔丝、焊接钎料等。
(3)电阻率:电阻率用ρ表示,电阻率是单位长度、单位截面积的电阻值,其单位为Ω.m。
电阻率的意义:是设计导电材料和绝缘材料的主要依据。
材料的电阻率ρ越小,导电性能越好。
金属中银的导电性最好、铜与铝次之。
通常金属的纯度越高,其导电性越好,合金的导电性比纯金属差,高分子材料和陶瓷一般都是绝缘体。
导电器材常选用导电性良好的材料,以减少损耗;而加热元件、电阻丝则选用导电性差的材料制作,以提高功率。
(4)导热率:导热率用导热率λ表示,其含义是在单位厚度金属,温差为1℃时,每秒钟从单位断面通过的热量。
单位为w/(m.K)。
常用金属的热导率合金的成分越复杂,其导热性越差。
导热率的意义:是传热设备和元件应考虑的主要性能,对热加工工艺性能也有影响。
散热器等传热元件应采用导热性好的材料制造;保温器材应采用导热性差的材料制造。
热加工工艺与导热性有密切关系,在热处理、铸造、锻造、焊接过程中,若材料的导热性差,则会使工件内外产生大的温差而出现较大的内应力,导致工件变形或开裂。
材料物理性能食品介电特性的研究进展摘要介电特性是生物分子中的束缚电荷对外加电场的响应特性,通过对食品介电特性的研究,可以更好地对食品的成分、组织、状态等品质进行分析和监控,也可以有效地利用物质的电特性进行食品加工,其应用范围非常广泛,已在农产品贮藏保鲜、电加工、品质检测、筛选分级等方面都显示出特殊的优势。
该文通过对国内外食品介电特性研究资料的分析,阐述了食品介电特性的概念、种类、意义、测试方法等,为今后研究及发展趋势提出了建议和意见对进一步深入研究食品介电特性及其应用具有参考价值和指导意义关键词:食品;介电特性;研究进展中国民航大学论文目录摘要 ................................................................................................................................... I I 第1章电磁学基本理论 (1)1.1 物质的分类 (1)1.2 介质极化理论 (1)1.3 电介质的极化和介电损耗 ................................................. 错误!未定义书签。
1.4 介电松弛(弛豫) ............................................................. 错误!未定义书签。
第2章食品介电特性的简介 . (7)2.1 食品物料的基本介电特性 (7)2.2 食品介电特性的研究现状 ................................................. 错误!未定义书签。
2.3 食品电特性的测定方法 ..................................................... 错误!未定义书签。
第3章食品电物性在无损检测中的应用 (10)3.1 无损检测技术的原理和方法 (10)3.2 利用电学特性的无损检测技术研究现状 (11)参考文献 (14)第1章电磁学基本理论第1章电磁学基本理论食品物性学已成为食品科学研究和食品工业发展必要的研究领域,特别是现代工业化、规格化、规模化食品生产的要求,使对食品的各种性质从传统的感性经验向定性定量化物性的发展成为必然。
材料物理性能调研报告学院:材料学院专业:铸造10-4班姓名:***学号:************金属塑料一种集塑料和金属特点于一身的新型材料——“金属塑料”近日由我国科学家研制成功。
有关专家评价说,这种“金属塑料”在很多领域都具有重大的应用和研究价值,可作为纳米、微米加工和复写的优良材料,将来可使汽车部件像塑料一样便宜。
1.块体金属玻璃(玻璃茶杯)与可加工性。
众所周知,从结构上来说,固体物质至少有晶态结构(原子,分子或分子链排列有序)与非晶态结构(原子,分子或分子链排列无序)两大类。
而从熔融态冷却形成非晶态结构的固体物质通常又被特指为玻璃态或玻璃。
为了从化学组成上区分不同类型的玻璃,在"玻璃"前面又冠以某种定语,如喝酒用的透明玻璃杯一般是氧化物类的,因此称为氧化物玻璃,而塑料通常是由碳-氢分子类聚合物链无序排列而成,因此又称为聚合物玻璃。
氧化物或聚合物玻璃在高温的可加工性源于这些材料在高温时发生的软化特性,即可以在"某个温度"以上的"非常宽的温度范围"内能够像揉面团那样进行长时间的无限度变形加工。
这里所说的"某个温度"用专业的术语讲叫玻璃转变温度(Tg),而"非常宽的温度范围"称为"过冷液相区"(ΔTx),过冷液相区ΔTx越宽越好,就越有利于加工成型,而处于该温度范围内的玻璃又称为"过冷液体".在过冷液相区能够停留的时间越长越好,这意味着过冷液体的稳定性好,如果稳定性不好,则意味着过冷液体会很快发生晶化而无法再继续进行加工。
从玻璃态而来的过冷液体不同于从高温熔融态的熔体冷却得到的过冷液体,前者可以在一定的时间之内保持一定的形状,这也是玻璃工艺品制作大师们能够进行无模吹制复杂形状工艺品的关键。
金属玻璃的出现则还是20世纪60年代初的事。
由于金属的特殊性,在常规的冷却条件下,金属合金熔体在冷却过程中总有结晶的倾向,从而形成晶体结构的固体。
第一章材料的电性能A按压力对金属导电性的影响:金属分为正常金属和反常金属。
B本征电导:源于晶体点阵中基本离子的运动。
玻璃的导电机理:玻璃在通常情况下是绝缘体,但在高温下,玻璃的电阻率却可能大大降低,因此在高温下有些玻璃将成为导体。
玻璃的导电是由于某些离子的可动性导致的,故玻璃是一种电解质的导体。
在钠玻璃中,钠离子在二氧化硅网络中从一个间隙跳到另一个间隙,形成电流。
这与离子晶体中的间隙离子导电类似。
本征半导体:纯净的无结构缺陷的半导体单晶。
本征电导在高温下为导电的主要表现。
半导体导电机理:在绝对零度和无外界影响的条件下,半导体的空带中无运动的电子。
但当温度升高或受光照射时,也就是半导体受到热激发时,共价键中的价电子由于从外界获得了能量,其中部分获得了足够大能量的价电子就可以挣脱束缚,离开原子而成为自由电子。
本征半导体的电学特性:1)本征激发成对产生自由电子和空穴,自由电子浓度与空穴浓度相等;2)禁带宽度Eg 越大,载流子浓度n i 越小;3)温度升高时载流子浓度n i 增大。
4)载流子浓度n i与原子密度相比是极小的,所以本征半导体的导电能力很微弱。
不均匀固溶体(k状态):在合金元素中含有过渡族金属的,这些固溶体中有特殊相变及特殊结构存在,这种组织状态称为k状态。
这些固溶体中原子间距的大小显著地波动,其波动正式组元原子在晶体中不均匀分布的结果,所以也把k状态称之为“不均匀固溶体)。
C畴壁:两铁电畴之间的界壁称为畴壁。
超导电性:在一定低温条件下,金属突然失去电阻的现象叫超导电性。
超导态:金属失去电阻的状态称为超导态,金属具有电阻的状态称为正常态。
超导体三个基本特性:完全导电性,完全抗磁性,通量(flux)量子化。
完全导电性:在室温下把超导体放入磁场中,冷却到低温进入超导态,把原磁场移开,则在超导体中的感生电流,由于没有电阻而将长久存在,成为不衰减电流。
超导现象产生的原因:由于超导材料中的电子双双结成库柏电子对,电子对和晶格间相互作用,而无能量损失,使超导体不产生电阻超导体存在Tc 的原因:当温度或外磁场强度增加时,电子对获得能量,当温度或外磁场强度增加到临界值时,电子对全部被拆开成正常态电子,于是材料即由超导态转变为正常态。
<<材料物理性能>>基本要求欧阳光明(2021.03.07)一,基本概念:1.摩尔热容: 使1摩尔物质在没有相变和化学反应的条件下,温度升高1K所需要的热量称为摩尔热容。
它反映材料从周围环境吸收热量的能力。
2.比热容:质量为1kg的物质在没有相变和化学反应的条件下,温度升高1K所需要的热量称为比热容。
它反映材料从周围环境吸收热量的能力。
3.比容:单位质量(即1kg物质)的体积,即密度的倒数(m3/kg)。
4.格波:由于晶体中的原子间存在着很强的相互作用,因此晶格中一个质点的微振动会引起临近质点随之振动。
因相邻质点间的振动存在着一定的位相差,故晶格振动会在晶体中以弹性波的形式传播,而形成“格波”。
5.声子(Phonon): 声子是中集体激发的准粒子,就是振动中的简谐振子的能量量子。
6.德拜特征温度: 德拜模型认为:晶体对热容的贡献主要是低频弹性波的振动,声频支的频率具有0~ωmax分布,其中,最大频率所对应的温度即为德拜温度θD,即θD=ћωmax/k。
7.示差热分析法(Differential Thermal Analysis, DTA ): 是在测定热分析曲线(即加热温度T与加热时间t的关系曲线)的同时,利用示差热电偶测定加热(或冷却)过程中待测试样和标准试样的温度差随温度或时间变化的关系曲线ΔT~T(t),从而对材料组织结构进行分析的一种技术。
8.示差扫描量热法(Differential Scanning Calorimetry, DSC): 用示差方法测量加热或冷却过程中,将试样和标准样的温度差保持为零时,所需要补充的热量与温度或时间的关系。
9.热稳定性(抗热振性):材料承受温度的急剧变化(热冲击)而不致破坏的能力。
10.塞贝克效应:当两种不同的导体组成一个闭合回路时,若在两接头处存在温度差则回路中将有电势及电流产生,这种现象称为塞贝克效应。
11.玻尔帖效应:当有电流通过两个不同导体组成的回路时,除产生不可逆的焦耳热外,还要在两接头处出现吸热或放出热量Q的现象。