高二物理选修三知识点总结
- 格式:doc
- 大小:31.00 KB
- 文档页数:3
高二物理选修三知识点高二变化的大背景,便是文理分科(或七选三)。
在对各个学科都有了初步了解后,学生们需要对自己未来的发展科目有所选择、有所侧重。
下面给大家分享一些关于高二物理选修三知识点,希望对大家有所帮助。
高二物理选修三知识1一、能量量子化1、量子理论的建立:1900年德国物理学家普朗克提出振动着的带电微粒的能量只能是某个最小能量值ε的整数倍,这个不可再分的能量值ε叫做能量子ε=hνh为普朗克常数(6.63×10-34J.S)2、黑体:如果某种物体能够完全吸收入射的各种波长电磁波而不发生反射,这种物体就是绝对黑体,简称黑体。
3、黑体辐射:黑体辐射的规律为:温度越高各种波长的辐射强度都增加,同时,辐射强度的极大值向波长较短的方向移动。
(普朗克的能量子理论很好的解释了这一现象)二、科学的转折光的粒子性1、光电效应(表明光子具有能量)(1)光的电磁说使光的波动理论发展到相当完美的地步,但是它并不能解释光电效应的现象。
在光(包括不可见光)的照射下从物体发射出电子的现象叫做光电效应,发射出来的电子叫光电子。
(实验图在课本)(2)光电效应的研究结果:新教材:①存在饱和电流,这表明入射光越强,单位时间内发射的光电子数越多;②存在遏止电压:;③截止频率:光电子的能量与入射光的频率有关,而与入射光的强弱无关,当入射光的频率低于截止频率时不能发生光电效应;④效应具有瞬时性:光电子的发射几乎是瞬时的,一般不超过10-9s。
老教材:①任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频率,才能产生光电效应;低于这个频率的光不能产生光电效应;②光电子的初动能与入射光的强度无关,只随着入射光频率的增大而增大;③入射光照到金属上时,光电子的发射几乎是瞬时的,一般不超过10-9s;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。
(3)光电管的玻璃泡的内半壁涂有碱金属作为阴极K(与电源负极相连),是因为碱金属有较小的逸出功。
物理选修3-5知识点总结1、一般物体热辐射除了与温度有关外,还与物体的材料和表面状况有关。
2、黑体辐射的规律为温度越高各种波长的辐射强度都增加,同时,辐射强度的极大值向波长较短的方向移动。
右图会画3、光电效应(光照到金属上,打出电子的现象)①赫兹最早发现光电效应现象,爱因斯坦引入普朗克量子理论提出了光子说,成功解释了光电效应。
②能够发生光电效应的条件:入射光频率≥金属的极限频率(截止频率),入射光波长≤金属极限波长入射光能量hν≥金属逸出功③任一种金属,都有自己的极限频率νC,极限波长λc对应金属的逸出功W0,W O = hνC = hc/λc④入射光照到金属上时,光电子的发射几乎是瞬时的,一般不超过10-9s;⑤光电子最大初动能与入射光的频率有关,但不成正比,而与入射光强弱无关。
关系式为 E K = hν- W O =hc/λ—W O,光电子最大初动能只随着入射光频率的增大..;..而增大右图E K -υ图像:横轴的交点:金属的截止频率νc:纵轴的交点为: -E= -W0图线的斜率k =普朗克常量h不同金属在同一张E K-ν图像中,斜率一样⑥光电管内被光照的金属为阴极K,当其与电源负极相连时,所接为正向电压。
见右上图若能发生光电效应,滑动头P在最左端时,U=0,电流≠0。
滑动头右移,电流增大然后趋于某最大值(饱和)。
⑦当入射光颜色不变时(即频率不变),入射光越强,单位时间内入射的光子数越多,则单位时间内射出的光电子数越多,饱和光电流越大⑧当阴极K与电源正极相连时,所接为反向电压。
滑动头右移,电流逐渐减小到0.光电流恰好为0时,对应的反向电压叫遏止电压(U C): U C e=E K⑨遏止电压Uc与入射光频率ν关系:U C e=hν-W O Uc=( hν—hνc)/e图像U C—υ如左图:横轴交点:金属的截止频率,I 纵轴交点= -W O /e斜率为h/e⑩右上图为光电流与电压关系:可见对同一光电管(即W0逸出功一样),入射光频率不变,遏止电压不变;入射光频率越大,遏止电压越大(图中,U C1>U C2,是因为蓝光频率大于黄光频率)⑾由I-U图象可以得到的信息(1)遏止电压U c:图线与横轴的交点的绝对值.(2)饱和光电流I m:电流的最大值.(3)最大初动能:E km=eU c.例:用5eV的光子照射光电管,其电流表示数随电压变化如右图,图中Uc=3V,则,光电子最大初动能= 3ev 光电管金属逸出功=2ev例:当用一束紫外线照在原来不带电的验电器金属球上的锌板时,发生了光电效应,则锌板打出电子,锌板带正电,与它相连的验电器金属箔带正电。
第三章磁场教案3.1 磁现象和磁场第一节、磁现象和磁场1.磁现象磁性:能吸引铁质物体的性质叫磁性.磁体:具有磁性的物体叫磁体.磁极:磁体中磁性最强的区域叫磁极。
2.电流的磁效应磁极间的相互作用规律:同名磁极相互排斥,异名磁极相互吸引.(与电荷类比)电流的磁效应:电流通过导体时导体周围存在磁场的现象(奥斯特实验)。
3.磁场磁场的概念:磁体周围存在的一种特殊物质(看不见摸不着,是物质存在的一种特殊形式)。
磁场的基本性质:对处于其中的磁极和电流有力的作用.磁场是媒介物:磁极间、电流间、磁极与电流间的相互作用是通过磁场发生的.磁场对电流的作用,电流与电流的作用,类比于库仑力和电场,形成磁场的概念,磁场虽然看不见、摸不着,但是和电场一样都是客观存在的一种物质,我们可以通过磁场对磁体或电流的作用而认识磁场.4.磁性的地球地球是一个巨大的磁体,地球周围存在磁场———地磁场.地球的地理两极与地磁两极不重合(地磁的N极在地理的南极附近,地磁的S极在地理的北极附近),其间存在磁偏角.地磁体周围的磁场分布情况和条形磁铁周围的磁场分布情况相似。
宇宙中的许多天体都有磁场。
月球也有磁场。
例1、以下说法中,正确的是()A、磁极与磁极间的相互作用是通过磁场产生的B、电流与电流的相互作用是通过电场产生的C、磁极与电流间的相互作用是通过电场与磁场而共同产生的D、磁场和电场是同一种物质例2、如图表示一个通电螺线管的纵截面,ABCDE在此纵截面内5个位置上的小磁针是该螺线管通电前的指向,当螺线管通入如图所示的电流时,5个小磁针将怎样转动?例3、有一矩形线圈,线圈平面与磁场方向成 角,如图所示。
设磁感应强度为B,线圈面积为S,则穿过线圈的磁通量为多大?例4、如图所示,两块软铁放在螺线管轴线上,当螺线管通电后,两软铁将(填“吸引"、“排斥”或“无作用力”),A端将感应出极。
3。
2 磁感应强度第二节 、 磁感应强度1.磁感应强度的方向:小磁针静止时N 极所指的方向规定为该点的磁感应强度方向 思考:能不能用很小一段通电导体来检验磁场的强弱呢?2.磁感应强度的大小匀强磁场:如果磁场的某一区域里,磁感应强度的大小和方向处处相同,这个区域的磁场叫匀强磁场。
1.万有引力定律:引力常量g=6.67×n•m2/kg2
2.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r小得多时,可以看成质点)
3.万有引力定律的应用:(中心天体质量m,天体半径r,天体表面重力加速度g)
(1)万有引力=向心力(一个天体绕另一个天体作圆周运动时)
(2)重力=万有引力
地面物体的重力加速度:mg=gg=g≈9.8m/s2
高空物体的重力加速度:mg=gg=g<9.8m/s2
4.第一宇宙速度----在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在所有圆周运动的卫星中线速度是的。
由mg=mv2/r或由==7.9km/s
5.开普勒三大定律
6.利用万有引力定律计算天体质量
7.通过万有引力定律和向心力公式计算环绕速度
8.大于环绕速度的两个特殊发射速度:第二宇宙速度、第三宇宙速度(含义)。
物理高二选修一到三知识点选修一:力学1. 力的概念和分类力是物体之间相互作用的结果,按照性质可以分为接触力、电磁力和重力等。
2. 牛顿定律- 第一定律:惯性定律,物体在没有外力作用下保持匀速直线运动或静止。
- 第二定律:运动定律,物体的加速度与作用在其上的力成正比,与物体质量成反比。
- 第三定律:作用-反作用定律,任何两个物体之间都存在大小相等、方向相反的相互作用力。
3. 牛顿万有引力定律牛顿万有引力定律描述了两个物体之间的引力作用,公式为F = G * (m1 * m2) / r^2 ,其中 G 是引力常量。
4. 力的合成和分解多个力的合成可用向量相加的方法进行,分解则是将力拆分成两个或多个分力的过程。
选修二:电学1. 电荷和电场- 电荷是物质固有属性,有正负之分,同号相斥异号相吸。
- 电场是电荷周围的影响区域,描述了电荷对其他电荷施加的力。
2. 电场强度和电势差- 电场强度是单位正电荷在某一点上的受力大小,可通过公式E = F / q 计算。
- 电势差是单位正电荷沿电场内某一路径移动所做的功,可通过公式 V = W / q 计算。
3. 电容和电容器- 电容是指电容器中储存电荷的能力,单位为法拉(F)。
- 电容器是由两个导体之间夹有绝缘介质组成,常见的有平行板电容器和球形电容器。
4. 电流和电阻- 电流是单位时间内通过导体的电荷量,单位为安培(A)。
- 电阻是导体对电流的阻碍程度,单位为欧姆(Ω)。
选修三:热学1. 热传导和热对流- 热传导是指热量通过物质内部由高温区传向低温区的过程,常见的有导热。
- 热对流是指热量通过流体的不断对流运动传递的过程,常见的有对流换热。
2. 热辐射- 热辐射是物体由于温度而发射出的电磁波,不需要介质传递。
3. 热力学第一定律热力学第一定律是能量守恒定律在热学中的应用,它指出热量与功是能量的两种形式。
4. 温度与热量- 温度是物体内部微观粒子的平均动能的量度,单位为摄氏度或开尔文。
高二物理科目选修三知识点归纳1.高二物理科目选修三知识点归纳篇一1.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}2.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}5.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}6.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}9.电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)10.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}11.电势能的变化ΔEAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值}12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/215.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m2.高二物理科目选修三知识点归纳篇二传感器的及其工作原理1、有一些元件它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转换为电路的通断.我们把这种元件叫做传感器.它的优点是:把非电学量转换为电学量以后,就可以很方便地进行测量、传输、处理和控制了.2、光敏电阻在光照射下电阻变化的原因:有些物质,例如硫化镉,是一种半导体材料,无光照时,载流子极少,导电性能不好;随着光照的增强,载流子增多,导电性变好.光照越强,光敏电阻阻值越小.3、金属导体的电阻随温度的升高而增大,热敏电阻的阻值随温度的升高而减小,且阻值随温度变化非常明显.金属热电阻与热敏电阻都能够把温度这个热学量转换为电阻这个电学量,金属热电阻的化学稳定性好,测温范围大,但灵敏度较差.3.高二物理科目选修三知识点归纳篇三物态变化中的放热过程1.凝固:①定义:物质从液态变为固态。
高二物理选修3的所有知识点高二物理选修3是物理课程中的一门重要课程,本文将详细介绍这门课程的所有知识点,帮助同学们更好地掌握和理解相关内容。
一、电磁振荡和交流电1. 震荡的基本概念和特征2. LC振荡电路的特点和原理3. 带电质点在电场中的受力分析4. 带电质点在磁场中的受力分析5. 带电粒子在交变电场和交变磁场中的受力分析6. 自感和互感的概念和特点7. 交流电的基本特征和定义8. 交流电的电压、电流和功率的关系9. 交流电的阻抗和相位差10. 交变电流的峰值、有效值和频率二、光的电磁波性质1. 光的干涉和衍射现象2. 杨氏双缝干涉的光程差和干涉条纹的条件3. 光的衍射现象和目镜、显微镜原理4. 双缝干涉和单缝衍射的强度分布公式5. 多普勒效应及其应用6. 光的偏振现象和偏振光的特点7. 偏振光的产生和偏振光的分析8. 介质的折射率和反射率9. 光的反射、折射和透射规律10. 平面镜、球面镜和透镜的成像原理三、量子物理1. 波粒二象性和光子的能量2. 玻尔原子模型和电子的能级3. 德布罗意假说和电子的波动性4. 玻尔-赫兹实验和光电效应的发现5. 光电效应的实验现象和解释6. 光的能量和波长与频率的关系7. 波尔频率关系和能级图8. 波尔频率关系和玻尔理论的计算9. 库仑定律和玻尔理论的局限性10. 库仑定律的电场和电势概念四、核物理1. 原子核的构成和性质2. 拉德利实验证明了原子核的正电荷和质量3. 布朗-麦克思实验和原子核的尺寸4. 原子核的稳定性和放射性衰变5. 放射性衰变的α衰变、β衰变和γ衰变6. 放射性衰变的速率和半衰期7. 质子数和中子数的相对稳定性8. 核反应和核能的释放9. 能量守恒和质量守恒的关系10. 核裂变和核聚变的原理和应用以上便是高二物理选修3的所有知识点的概要介绍。
同学们在学习过程中要全面理解每个知识点的原理和特点,掌握基本的计算方法和应用技巧,注重实验和实践的操作,加强与实际生活和科学技术的联系。
物理选修3知识点总结物理选修3知识点总结物理知识点光(除此之外复习练习册题目)1,海市蜃楼是由于光的(全反射)发生的;水底看起来变浅是由于光的(折射)发生的;光导纤维利用了光的(全反射)出现;水中放一空试管,空试管很亮是由于(全反射);阳光透过树叶间隙产生的圆形亮斑是光的(直进性)体现2,光导纤维的内芯折射率比外芯(大),光传播时,在(内心与外套)的界面发生全反射3,增透膜利用了光的(相干性),厚度等于透过光在增透膜中波长的(1/4),光在增透膜前后表面的反射光相互(抵消)4,最先观测到光的干涉现象的是(托马斯〃杨)5,若采用白光进行双缝干涉,中央亮纹是(白)色的,两侧明条纹的外侧是(红)色的,是由于红光波长较(大)的缘故6,光的衍射中条纹中央亮纹(亮)(宽),两侧亮纹(暗)(窄);采用光栅之后,条纹变(窄)变(亮)7,光的偏振现象说明光是一种(横波),电磁波是(横波)8,天空是蓝的是由于光的(色散);天空是亮的是由于光的(散射)9,泊松光板是指(圆屏做障碍物,在影子中心有一个明亮的斑点),说明了光的(波动性)10,偏振片利用了光的(偏振性),用来(减弱)周围景物反射光的强度;对于偏振片都有特定的振动方向,只有振动方向(平行)这个方向的光波才可以透过偏振片;太阳、电灯等普通光源发出的光(不是)偏振光,在经历了玻璃、水面、木质平面反射后,产生的光(是)偏振光;(电子表的液晶显示)用到了偏振光11,利用激光传递信息利用了激光的(相干性),由于激光的频率(较高),可以用激光传递更多信息;激光精确测距利用了激光的(平行度好);利用激光切割利用了激光的(亮度高)的特点;利用激光刻录磁盘、记录信息利用了激光的(平行度好)的特点;全息照相利用了光的(相干性好)12,光线发生全反射的条件是光从(玻璃)射到与(空气)的分界面上,入射角足够(大);光从空气摄入玻璃,(不会发生)全反射13,水下的人可以看到水面上的(全部景象)14,光的衍射中狭缝变窄时条纹间距变(宽)15,若地球周围不存在大气层,则人们观察到的日出时刻将(延后)16,光的直进性和反射性说明了光的(粒子性);光的反射折射同时存在说明光具有(波动性)17,测定光的折射率的时候四个大头针之间的距离应当尽量(大)些,入射角应当适当(大)些,绘制玻璃瓶面的时候(不可以)用铅笔比着玻璃砖画18,干涉实验中所用的光源是(想干)光源,因此(不可以用)自然光1/6电磁波1,麦克斯韦的电磁场理论是指(变化的磁场产生电场,变化的电场产生磁场)2,最早证明电和磁有密切关联的是(奥斯特);证明电磁波存在的是(赫兹);电磁感应现象是(法拉第);建立完整电磁场理论的科学家是(麦克斯韦)3,为了让需要传递的信息加载在电磁波上发射到远方,需要对高频振荡电流进行(调制);FM是指(调频),AM是指(调幅);无线电波中波长最小的是(微波),无线电波频率较高时,可近似认为(按直线)传播;频率较高的无线电波采用(天波)传递方式;频率较低的是采用(地波)传递;雷达传递用的是(微波)4,提高振荡电路辐射电磁波的本领应该让周期尽量变(小),电容变(小),电感变(小);在充电过程中,线圈中的电流逐渐变(小),线圈两端的电压逐渐变(大),线圈的自感作用逐渐变(大);电流为零的时候,磁场能为(零),通过电感线圈的磁通量变化率(最大),电场能为(最大值);电流增大的过程中,电流变化率变(小),电感的磁通量变化率变(小)5,太阳辐射的能量多集中在(可见光)范畴,其中(黄绿光)能量最大波粒二象性一,能量量子化1,热辐射的主要成分是(波长较长的电磁波)2,物体温度升高时,热辐射中(较短波长)的成分越来越强。
高二(3233)班选修3-5总结一,动量定理的理解与应用1.容易混淆的几个物理量的区别(1)动量与冲量的区别:即等效代换为变力的冲量I。
(2)应用Δp=F·t求恒力作用下的曲线运动中物体动量的变化。
曲线运动中物体速度方向时刻在改变,求动量变化Δp=p′-p需要应用矢量运算方法,比较复杂。
如果作用力是恒力,可以求恒力的冲量,等效代换动量的变化。
(3)用动量定理解释现象。
用动量定理解释的现象一般可分为两类:一类是物体的动量变化一定,分析力与作用时间的关系;另一类是作用力一定,分析力作用时间与动量变化间的关系。
分析问题时,要把哪个量一定、哪个量变化搞清楚。
(4)处理连续流体问题(变质量问题)。
通常选取流体为研究对象,对流体应用动量定理列式求解。
3.应用动量定理解题的步骤(1)选取研究对象。
(2)确定所研究的物理过程及其始、末状态。
(3)分析研究对象在所研究的物理过程中的受力情况。
(4)规定正方向,根据动量定理列方程式。
(5)解方程,统一单位,求解结果。
4.动量守恒定律与机械能守恒定律的比较①一般材料的物体,辐射的电磁波除与温度有关外,还与材料的种类及表面状况有关. ②黑体辐射电磁波的强度按波长的分布只与黑体的温度有关. a .随着温度的升高,各种波长的辐射强度都增加.b .随着温度的升高,辐射强度的极大值向波长较短的方向移动.4.★★★普朗克能量子:带电微粒辐射或者吸收能量时,只能辐射或吸收某个最小能量值的整数倍.即能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.能量子的大小:ε=hν,其中ν是电磁波的频率,h 称为普朗克常量.爱因斯坦光子说:空间传播的光本身就是一份一份的,每一份能量子叫做一个光子.光子的能量为ε=hν。
二、光电效应规律(1)每种金属都有一个极限频率.(2)光电流的强度与入射光的强度成正比.(3)光照射到金属表面时,光电子的发射几乎是瞬时的.(4)光子的最大初动能与入射光的强度无关,随入射光的频率增大而增大. 理解:(1)光照强度(单色光)光子数光电子数饱和光电流 (2)光子频率ν光子能量ε=hν爱因斯坦光电效应方程(密立根验证)E k =hν-W 0遏制电压U c e=E k三、光的波粒二象性与物质波光电效应是指物体在光的照射下发射出电子的现象,发射出的电子称为光电子。
高二物理选修3-1电学学问点总结电学是高二学生学习物理的重点内容,有哪些学问点须要了解?下面是给大家带来的高二物理选修3-1电学学问点,希望对你有帮助。
高二物理选修3-1电学学问点一、电场基本规律1、电荷守恒定律:电荷既不会创生,也不会歼灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷的总量保持不变。
(1)三种带电方式:摩擦起电,感应起电,接触起电。
(2)元电荷:最小的带电单元,任何带电体的带电量都是元电荷的整数倍,e=1.610-19C密立根测得e的值。
2、库仑定律(1)定律内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力的方向在它们的连线上。
(2)表达式:k=9.0109N?m2/C2静电力常量(3)适用条件:真空中静止的点电荷。
二、电场能的性质1、电场能的基本性质:电荷在电场中移动,电场力要对电荷做功。
2、电势(1)定义:电荷在电场中某一点的电势能Ep与电荷量的比值。
(2)定义式:单位:伏(V)带正负号计算(3)特点:○1电势具有相对性,相对参考点而言。
但电势之差与参考点的选择无关。
○2电势一个标量,但是它有正负,正负只表示该点电势比参考点电势高,还是低。
○3电势的大小由电场本身确定,与Ep和q无关。
○4电势在数值上等于单位正电荷由该点移动到零势点时电场力所做的功。
(4)电势凹凸的推断方法○1依据电场线推断:沿着电场线电势降低。
AB○2依据电势能推断:正电荷:电势能大,电势高;电势能小,电势低。
负电荷:电势能大,电势低;电势能小,电势高。
结论:只在电场力作用下,静止的电荷从电势能高的地方向电势能低的地方运动。
3、电势能Ep(1)定义:电荷在电场中,由于电场和电荷间的相互作用,由位置确定的能量。
电荷在某点的电势能等于电场力把电荷从该点移动到零势能位置时所做的功。
(2)定义式:带正负号计算(3)特点:○1电势能具有相对性,相对零势能面而言,通常选大地或无穷远处为零势能面。
物理高二选修三杠一知识点选修三杠一是高二物理课程中的一门重要选修课,主要涵盖了电磁学方面的知识点。
本文将介绍选修三杠一中的几个重要的知识点,包括电磁感应、电磁波和电子技术。
1. 电磁感应电磁感应是选修三杠一中的基础知识点,是指导电磁感应现象的规律。
它包括两个重要的定律:法拉第电磁感应定律和楞次定律。
法拉第电磁感应定律指出,当导体中的磁通量发生变化时,导体两端将产生感应电动势。
这个定律为我们理解电磁感应现象提供了基本原理。
楞次定律则告诉我们,感应电流产生的磁场方向是阻止磁通量变化的方向。
这个定律在电磁感应的实际应用中起到了关键作用。
2. 电磁波电磁波是选修三杠一中的另一个重要知识点,它是由电场和磁场交替产生、传播的一种波动现象。
根据波长的不同,电磁波可以分为不同的类型,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。
在学习电磁波时,我们需要了解波长和频率之间的关系,即波长和频率的乘积等于光速。
此外,还需掌握反射、折射、干涉和衍射等电磁波的基本特性。
3. 电子技术选修三杠一还介绍了一些基本的电子技术知识。
电子技术是指应用于电子产品中的技术,包括电子元器件、电子电路和电子系统的设计、制造和应用等。
在学习电子技术时,我们需要了解一些基本的电子元器件,如电阻、电容、电感和二极管等。
此外,还需了解电子电路的基本原理,包括放大电路、逻辑电路和控制电路等。
综上所述,选修三杠一是高二物理课程中的一门重要选修课,主要涵盖了电磁学方面的知识点。
本文介绍了选修三杠一中的几个重要知识点,包括电磁感应、电磁波和电子技术。
通过学习这些知识,我们可以更好地理解和应用电磁学的原理,为未来的学习和研究打下坚实的基础。
高二物理选修3-1第三章《磁场》复习提纲一、知识要点1.磁场的产生⑴磁极周围有磁场。
(2)电流周围有磁场(奥斯特)。
2.磁场的基本性质磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。
这一点应该跟电场的基本性质相比较。
3.磁感应强度 ILF B (条件是匀强磁场中,或ΔL 很小,并且L ⊥B )。
4.磁感线⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。
磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N 极的指向。
磁感线的疏密表示磁场的强弱。
⑵磁感线是封闭曲线(和静电场的电场线不同)。
⑶要熟记常见的几种磁场的磁感线:⑷安培定则(右手螺旋定则):对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。
5.磁通量如果在磁感应强度为B 的匀强磁场中有一个与磁场方向垂直的平面,其面积为S ,则定义B 与S 的乘积为穿过这个面的磁通量,用Φ表示。
Φ是标量,但是有方向(进该面或出该面)。
单位为韦伯,符号为W b 。
1W b =1T ∙m 2=1V ∙s=1kg ∙m 2/(A ∙s 2)。
可以认为磁通量就是穿过某个面的磁感线条数。
在匀强磁场磁感线垂直于平面的情况下,B =Φ/S ,所以磁感应强度又叫磁通密度。
在匀强磁场中,当B 与S 的夹角为α时,有Φ=BS sin α。
二、安培力 (磁场对电流的作用力)1.安培力方向的判定⑴用左手定则。
⑵用“同性相斥,异性相吸”(只适用于磁铁之间或磁体位于螺线管外部时)。
⑶用“同向电流相吸,反向电流相斥”(反映了磁现象的电本质)。
.只要两导线不是互相垂直的,都可以用“同向电流相吸,反向电流相斥”判定相互作用的磁场力的方向;当两导线互相垂直时,用左手定则判定。
2.安培力大小的计算:F =BLI地球磁场 通电直导线周围磁场 通电环行三、洛伦兹力1.洛伦兹力运动电荷在磁场中受到的磁场力叫洛伦兹力,它是安培力的微观表现。
第一章恒定电流一、电源和电流1、电流产生的条件:(1)导体内有大量自由电荷(金属导体——自由电子;电解质溶液——正负离子;导电气体——正负离子和电子)(2)导体两端存在电势差(电压)(3)导体中存在持续电流的条件:是保持导体两端的电势差。
2电流的方向电流可以由正电荷的定向移动形成,也可以是负电荷的定向移动形成,也可以是由正负电荷同时定向移动形成。
习惯上规定:正电荷定向移动的方向为电流的方向。
说明:(1)负电荷沿某一方向运动和等量的正电荷沿相反方向运动产生的效果相同。
金属导体中电流的方向与自由电子定向移动方向相反。
(2)电流有方向但电流强度不是矢量。
(3)方向不随时间而改变的电流叫直流;方向和强度都不随时间改变的电流叫做恒定电流。
通常所说的直流常常指的是恒定电流。
二、电动势1.电源(1)电源是通过非静电力做功把其他形式的能转化为电势能的装置。
(2)非静电力在电源中所起的作用:是把正电荷由负极搬运到正极,同时在该过程中非静电力做功,将其他形式的能转化为电势能。
【注意】在不同的电源中,是不同形式的能量转化为电能。
2.电动势(1)定义:在电源内部,非静电力所做的功W与被移送的电荷q的比值叫电源的电动势。
(2)定义式:E=W/q(3)物理意义:表示电源把其它形式的能(非静电力做功)转化为电能的本领大小。
电动势越大,电路中每通过1C 电量时,电源将其它形式的能转化成电能的数值就越多。
【注意】:①电动势的大小由电源中非静电力的特性(电源本身)决定,跟电源的体积、外电路无关。
②电动势在数值上等于电源没有接入电路时,电源两极间的电压。
③电动势在数值上等于非静电力把1C电量的正电荷在电源内从负极移送到正极所做的功。
3.电源(池)的几个重要参数①电动势:它取决于电池的正负极材料及电解液的化学性质,与电池的大小无关。
②内阻(r):电源内部的电阻。
③容量:电池放电时能输出的总电荷量。
其单位是:A·h,mA·h.【注意】:对同一种电池来说,体积越大,容量越大,内阻越小。
[高二物理知识点全总结]高二物理选修3高二物理选修3-1知识点总结(一)1.曲线运动(1)物体作曲线运动的条件:运动质点所受的合外力(或加速度)的方向跟它的速度方向不在同一直线(2)曲线运动的特点:质点在某一点的速度方向,就是通过该点的曲线的切线方向.质点的速度方向时刻在改变,所以曲线运动一定是变速运动.(3)曲线运动的轨迹:做曲线运动的物体,其轨迹向合外力所指一方弯曲,若已知物体的运动轨迹,可判断出物体所受合外力的大致方向,如平抛运动的轨迹向下弯曲,圆周运动的轨迹总向圆心弯曲等.2.运动的合成与分解(1)合运动与分运动的关系:①等时性;②独立性;③等效性.(2)运动的合成与分解的法则:平行四边形定则.(3)分解原则:根据运动的实际效果分解,物体的实际运动为合运动.3. ★★★平抛运动(1)特点:①具有水平方向的初速度;②只受重力作用,是加速度为重力加速度g的匀变速曲线运动.(2)运动规律:平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动. ①建立直角坐标系(一般以抛出点为坐标原点O,以初速度vo方向为x轴正方向,竖直向下为y轴正方向);②由两个分运动规律来处理(如右图).4.圆周运动(1)描述圆周运动的物理量①线速度:描述质点做圆周运动的快慢,大小v=s/t(s是t时间内通过弧长),方向为质点在圆弧某点的线速度方向沿圆弧该点的切线方向②角速度:描述质点绕圆心转动的快慢,大小ω=φ/t(单位rad/s),φ是连接质点和圆心的半径在t时间内转过的角度.其方向在中学阶段不研究.③周期T,频率f__做圆周运动的物体运动一周所用的时间叫做周期.__做圆周运动的物体单位时间内沿圆周绕圆心转过的圈数叫做频率.⑥向心力:总是指向圆心,产生向心加速度,向心力只改变线速度的方向,不改变速度的大小.大小[注意]向心力是根据力的效果命名的.在分析做圆周运动的质点受力情况时,千万不可在物体受力之外再添加一个向心力.(2)匀速圆周运动:线速度的大小恒定,角速度、周期和频率都是恒定不变的,向心加速度和向心力的大小也都是恒定不变的,是速度大小不变而速度方向时刻在变的变速曲线运动. (3)变速圆周运动:速度大小方向都发生变化,不仅存在着向心加速度(改变速度的方向),而且还存在着切向加速度(方向沿着轨道的切线方向,用来改变速度的大小).一般而言,合加速度方向不指向圆心,合力不一定等于向心力.合外力在指向圆心方向的分力充当向心力,产生向心加速度;合外力在切线方向的分力产生切向加速度. ①如右上图情景中,小球恰能过最高点的条件是v≥v临v临由重力提供向心力得v临②如右下图情景中,小球恰能过最高点的条件是v≥0。
⾼⼆物理选修3-3知识点归纳 物理选修3-3课本中存在很多知识点,⾼⼆学⽣需要分类记忆,下⾯是店铺给⼤家带来的⾼⼆物理选修3-3知识点,希望对你有帮助。
⾼⼆物理选修3-3知识点(⼀) 改变系统内能的两种⽅式:做功和热传递 ①热传递有三种不同的⽅式:热传导、热对流和热辐射。
②这两种⽅式改变系统的内能是等效的。
③区别:做功是系统内能和其他形式能之间发⽣转化;热传递是不同物体(或物体的不同部分)之间内能的转移。
能量耗散:系统的内能流散到周围的环境中,没有办法把这些内能收集起来加以利⽤。
液晶 分⼦排列有序,光学各向异性,可⾃由移动,位置⽆序,具有液体的流动性。
各向异性:分⼦的排列从某个⽅向上看液晶分⼦排列是整齐的,从另⼀⽅向看去则是杂乱⽆章的。
表⾯张⼒ 当表⾯层的分⼦⽐液体内部稀疏时,分⼦间距⽐内部⼤,表⾯层的分⼦表现为引⼒,如露珠。
(1)作⽤:液体的表⾯张⼒使液⾯具有收缩的趋势。
(2)⽅向:表⾯张⼒跟液⾯相切,跟这部分液⾯的分界线垂直。
(3)⼤⼩:液体的温度越⾼,表⾯张⼒越⼩;液体中溶有杂质时,表⾯张⼒变⼩;液体的密度越⼤,表⾯张⼒越⼤。
⾼⼆物理选修3-3知识点(⼆) 热⼒学第⼀定律 ①表达式: ②⼏种特殊情况: (1)若过程是绝热的,则Q=0,W=ΔU,外界对物体做的功等于物体内能的增加。
(2)若过程中不做功,即W=0,则Q=ΔU,物体吸收的热量等于物体内能的增加。
(3)若过程的始末状态物体的内能不变,即ΔU=0,则W+Q=0或W=-Q,外界对物体做的功等于物体放出的热量。
能量守恒定律 能量既不会凭空产⽣,也不会凭空消失,它只能从⼀种形式转化为另⼀种形式,或者从⼀个物体转移到另⼀物体,在转化和转移的过程中其总量不变。
第⼀类永动机不可制成是因为其违背了热⼒学第⼀定律; 第⼆类永动机:违背宏观热现象⽅向性的机器被称为第⼆类永动机.这类永动机不违背能量守恒定律,不可制成是因为其违背了热⼒学第⼆定律(⼀切⾃然过程总是沿着分⼦热运动的⽆序性增⼤的⽅向进⾏)。
高二物理选修3-1第一章知识点总结一、电荷与库仑定律1. 物体带电的三种方式:摩擦起电、接触起电、感应起电2. 带电本质:电子的得到和失去。
发生转移的是电子,即使是带正电荷的物体与不带电的物体接触。
3.库伦定律:适用于真空中的点电荷当r趋近于无穷大,F趋近于0;但r趋近于无穷小,两个电荷不满足点电荷的条件,所以无法判断F大小。
4.电荷:元电荷,验电器。
同种电荷相互排斥,异种电荷相互吸引。
带电体有吸引轻小物质的性质,所以另外一个物体也可能不带电。
5.库仑力的静力平衡问题:平行四边形法则6.三球平衡问题:两同夹异、两大夹小、近小远大二、电场强度与场强分布1.电场定义式:E=F/Q,方向为正电荷的受力方向。
适用于任何电场2.点电荷电场:3. 点电荷场强叠加:平行四边形法则4. 带电体电场强度的叠加:A.表面均匀带电的球体(球壳)外的电场强度B.均匀带电圆环(球壳)圆心球心处的场强均为0C.均匀带电圆环(球壳)内部任一点处场强均为0D.带电不均匀的带电体电场强度叠加5.电场线:点电荷、异种电荷、同种电荷、匀强电场三、电势能、电势与图像1. 电势能:电场力做功与路径无关,只与电场力方向所受位移有关。
做正功电势能减小,做负功电势能增大。
某点的电势能是相对零电势能取的,而两点之间的电势能之差与零电势能的选取无关。
2. 电势:某点的电势能/电荷量3. 电势差(电压):4. 常见等势面:匀强电场等势面5.场强越大,电场线越密,等势面越密四、静电平衡与电容器五、带电粒子的运动、功能问题。
高二物理选修3-1知识点一、电磁感应现象电磁感应是指在变化的磁场中,导体中会产生电动势和电流的现象。
这一现象由法拉第在19世纪初首次发现,是电磁学中的重要内容。
在高中物理选修3-1中,我们将深入探讨电磁感应的基本原理、定律及其应用。
1.1 法拉第电磁感应定律法拉第电磁感应定律表明,通过闭合回路的电动势与穿过回路的磁通量的变化率成正比。
数学表达式为:ε = -dΦ/dt。
其中,ε表示感应电动势,Φ表示磁通量,t表示时间。
负号表示感应电动势产生的电流方向与磁通量变化的方向相反,这是楞次定律的体现。
1.2 感应电动势的计算在均匀磁场中,当导线以速度v垂直于磁场方向运动时,感应电动势的大小可以通过公式ε = BLv计算,其中B表示磁场强度,L表示导线长度。
若导线与磁场成一定角度,则需要通过向量分解来计算感应电动势。
1.3 电磁感应的应用电磁感应原理在现代科技中有着广泛的应用,如发电机、变压器等。
在发电机中,通过机械能驱动导线在磁场中运动,产生感应电动势和电流,从而将机械能转换为电能。
在变压器中,通过改变磁通量来实现电压的升高或降低。
二、交流电基础知识交流电是指电流方向周期性变化的电流。
与直流电相比,交流电在传输过程中能够通过变压器轻松地改变电压,因此在电力系统中得到了广泛应用。
2.1 交流电的描述交流电的大小和方向随时间变化,可以用正弦波形来描述。
其基本参数包括频率、峰值、有效值和相位。
频率表示交流电周期性变化的速率,单位是赫兹(Hz)。
峰值是交流电在一个周期内的最大值,有效值是交流电热效应等效的直流电大小。
2.2 交流电的产生交流电可以通过多种方式产生,最常见的是通过发电机。
在发电机中,利用机械能驱动磁场中的导线旋转,产生变化的磁通量,从而在导线中感应出交流电动势和电流。
2.3 交流电的传输与变压交流电在长距离传输过程中会遭受能量损失,通过提高传输电压可以减小这种损失。
而变压器则可以在不同电压等级之间转换交流电,实现电能的有效利用。
第一节能源资源的开发——以我国山西省为例
一、能源的分类
(1)可再生能源(举例水能、风能、生物能、潮汐能、太阳能);
(2)非可再生能源(举例煤炭、石油、天然气等矿物能源和核能)。
二、资源开发条件
1、资源状况——煤炭资源丰富,开采条件好
(1)储量丰富
(2)分布范围广,40%的土地下都有煤田分布
(3)煤种齐全,十大煤种都有分布
(4)煤质优良,低灰、低硫、低磷、发热量高
(5)开采条件好,多为中厚煤层,埋藏浅
2、市场——广阔
(1)人口增加和社会经济发展使我国对能源的需求进一步增加;
(2)我国以煤为主的能源结构在相当长的时期内不会改变。
3、交通条件——位置适中,交通比较便利
北中南三条运煤铁路分别是大秦线、神黄线、焦日线。
三、能源基地建设
1、扩大煤炭开采量
2、提高晋煤外运能力,以铁路为主,公路为辅
3、加强煤炭的加工转换:一是建设坑口电站,变输煤为输电;二是发展炼焦业。
四、能源的综合利用
1、存在的问题——产业结构单一、经济效益低下、生态环境问题严重
2、采取的措施——结合铁矿、铝土矿等资源优势,围绕能源建设,构建煤电铝、煤铁钢、煤焦化三条产业链
3、能源综合利用的结果:
(1)山西省产业结构由以煤炭开采业为主的单一结构转变为以能源、冶金、化工、建材为主的多元结构。
(2)原料工业逐步超过采掘工业而占到主体地位。
(3)实现了产业结构的升级。
五、环境的保护与治理
1、提高煤的利用技术:推动以洁净煤为代表的清洁能源产业的发展。
2、调整产业结构:以重化工业为主的产业结构是生态环境问题根源所在:
(1)对原有重化工业进行调整,使产品向深加工、高附加值方向发展;
(2)大力发展农业、轻纺工业、高技术产业和旅游业。
3、“三废”的治理:
(1)废渣:回收再利用
(2)废气:消烟除尘,营造防风林带
(3)废水:沉淀净化
第二节河流的综合开发——以美国田纳西河流域为例
一、流域开发的自然背景——决定了河流的利用方式和流域的开发方向
1、河流概况:密西西比河的二级支流,发源阿巴拉契亚山西坡,在肯塔基市注入俄亥俄河。
2、开发注意:
(1)山地:河流的发源地,保护好植被生态
(2)河谷平原:人类活动比较集中的地区,是生态环境保护的重点
(3)河流:流域中开发利用的主要部分,注意水资源的合理分配和水质的保护
3、自然背景:
(1)地形:多山,起伏大,水力资源丰富,河流航运作用十分突出;
(2)气候:温暖湿润,降水丰富,冬末春初降水多,夏秋降水相对较少;
(3)水文:支流众多,水量丰富,河流落差大,水量不稳定;
(4)矿产:煤铁铜等丰富。
二、流域的早期开发及其后果
1、18世纪下半叶:农业发达,人口较少,对自然环境影响不大。
2、19世纪后期:人口激增,对资源进行掠夺式开发,带来土地退化;植被破坏;环境污染等生态环境与社会问题。
3、20世纪30年代初:田纳西河流域成为美国最贫困的地区之一。
三、流域的综合开发
1、开发的核心:河流的梯级开发——修建水坝。
2、水坝的功能:防洪、灌溉、航运、发电、旅游、养殖等。
3、开发项目:防洪、航运、发电、提高水质、旅游、土地利用。
4、成效:根治了洪灾,农林牧渔业、工业、旅游业得到迅速发展,生态环境改善,实现了经济效益、社会效益和生态效益的统一。
5、田纳西河两岸形成“工业走廊”的原因:大规模的水电和核电使田纳西河流域成为全国的电力供应基地;流域内炼铝、化学等高耗能工业的发展。