内质网介导的细胞凋亡
- 格式:doc
- 大小:113.50 KB
- 文档页数:4
程序性细胞死亡方式简述细胞死亡是细胞自身的过程,在细胞生命周期的不同阶段都可能发生。
程序性细胞死亡是一种经过周密安排、受到调控的自我死亡方式,相对于随机的坏死来说,它更具有选择性和调控性。
近年来,细胞死亡机制的研究逐渐深入,程序性细胞死亡成为了研究的热点之一。
程序性细胞死亡包括凋亡和自噬两种方式,下面将逐一进行介绍:一、凋亡凋亡是一种受到调控的细胞死亡方式,分为内质网应激介导的凋亡、线粒体介导的凋亡和肿瘤坏死因子(TNF)介导的凋亡等多个途径。
1.内质网应激介导的凋亡内质网应激是指内质网发生损伤或过度负荷而出现蛋白质紊乱的情况,常见的内质网应激增强剂包括高浓度葡萄糖、药物毒素等。
一旦内质网应激增强,就会出现内质网应激响应(ER stress response),引起多种信号通路的激活,如乙酰化糖蛋白合成、表达CHOP 基因、CLEC4F的表达等。
内质网应激响应可通过PERK信号通路、IRE1信号通路和ATF6信号通路激活开启,最终导致细胞凋亡。
2.线粒体介导的凋亡线粒体在细胞中具有重要的生物学功能,特别是在调节细胞凋亡中的作用非常明显。
线粒体介导的凋亡通过释放线粒体内的细胞色素C(Cyt c)等蛋白到细胞质中,触发凋亡激活蛋白(caspase)信号通路的一系列反应。
线粒体介导的凋亡受到BCL-2家族蛋白的调控,当细胞内pro-apoptotic蛋白Bax和Bak高表达或者 anti-apoptotic蛋白BL-2/Bcl-XL 低表达时,线粒体通道(Pore)被打开,使得Cyt c等多种蛋白质从线粒体内流出,从而引发细胞凋亡。
3.TNF介导的凋亡肿瘤坏死因子(TNF)是一种重要的多功能细胞因子,它能够通过与TNFRSF1A、TNFRSF1B(TNFR1、TNFR2)等两种受体结合,激活复杂的信号通路,最终诱导细胞凋亡。
TNF介导的凋亡与线粒体介导的凋亡存在交叉互补的机制,即TNF-α通过介导内生性TNF 介导的途径激活Caspase-8后,Caspase-8可直接裂解BNIP3/Bcl-xL复合物促进线粒体外泌,继而使得Cyt c等多种蛋白质从线粒体内流出,由此诱导细胞凋亡的罪魁祸首是Caspase-3。
内质网应激信号通路及其与细胞凋亡的关系细胞内的内质网(Endoplasmic Reticulum,ER)是一种管状的细胞器,负责蛋白质合成、修饰和折叠的过程。
然而在细胞发生某些不利的环境或病理因素时,内质网中的蛋白质质量会发生异常,导致内质网应激(Endoplasmic Reticulum Stress, ERS)的产生。
为了应对内质网应激的影响,细胞会通过内质网应激信号通路来调节内质网的功能以及启动不同的反应途径。
这些途径中包括了细胞适应性反应、细胞凋亡等,其中内源性免疫反应和肿瘤发生有着极其密切的关系。
本文将会详细讲述内质网应激信号通路及其与细胞凋亡的关系。
1. 内质网应激信号通路的调节1.1 内质网应激的主要信号通路内质网应激过程主要涉及三条信号通路:IRE1、PERK和 ATF6。
当内质网中的蛋白质质量发生异常时,IRE1、PERK和 ATF6会分别受到调节,并产生不同的效应。
IRE1主要启动的是非常重要的XBP1 途径,这个途径可以增加细胞的反应性,并且促进蛋白质合成的过程。
PERK 的激活则会抑制细胞的翻译作用,而 ATF6 的激活则可以负责修复内质网。
它们相互干扰并且形成一条复杂的信号通路。
1.2 可以调节内质网应激信号通路的因素近年来的研究表明,一些因素可以调节内质网应激信号通路。
比如说,一种必需元素硒(Se)可以抑制内质网应激通路并且缓解其伴随的炎症反应。
同时,它也能够调节氧化还原状态,增加细胞的免疫反应和肿瘤治疗的效果。
1.3 其他可调节的信号通路内质网应激信号通路的研究仍在不断深入,许多其他因素也被发现可以影响这一通路的信号传递。
例如,IDH1的不同表达与内质网应激通路有关联,而KLF4这一转录因子则可以促进内质网应激的启动,并调节肿瘤干细胞的功能和表达。
2. 细胞凋亡细胞凋亡和内质网应激密切相关,很多情况下内质网应激会导致凋亡的发生。
因为细胞凋亡特别是内质网应激诱导的凋亡在许多诸如肝癌、肺癌等肿瘤病理上扮演着重要的角色。
内质网应激和自噬在细胞凋亡中的作用细胞凋亡是一种正常的细胞死亡过程,在生命的不同阶段中起到重要的调节作用。
内质网应激和自噬是与细胞死亡相关的重要机制,在细胞分化、生长和死亡中起到关键的作用。
内质网应激是由于细胞内的蛋白质合成过量,或者是由于环境等外界因素的影响,使内质网失去平衡,而引起的一种应激反应。
这时候,细胞内的一些信号通路会被激活,触发一系列的分子反应,包括谷草转氨酶样激酶(PERK)、肌醇需要酶-1(IRE1)、活化转录因子6(ATF6)等。
这些分子反应可以调节内质网中的蛋白质合成和折叠,在一定程度上保护细胞不被损伤。
然而,当应激程度过高时,内质网应激会导致细胞凋亡。
在内质网应激导致细胞凋亡的过程中,主要与两个信号通路有关:IRE1-JNK和CHOP-DR5。
IRE1-JNK通路可以激活细胞凋亡因子c-Jun N-末端激酶(JNK),从而引起细胞凋亡;CHOP-DR5通路则可以激活细胞凋亡刺激因子(death stimulus factor,DSF)受体DR5,从而刺激细胞凋亡。
这两个信号通路的激活会导致自由基的产生,膜内电位的变化和线粒体功能的损伤等,最终引起细胞凋亡。
自噬是一种在细胞内部进行的一种自我垃圾清理的过程。
这个过程需要内质网和线粒体组成的复合体,被称为自体噬菌体(autophagosome)。
它可以将细胞内的损坏蛋白和细胞器包裹成囊泡,进而进行降解和再生。
自噬发生的时候,蛋白酶体的活性随着内质网应激的程度而增加,从而促进垃圾清理和维持细胞稳态。
此外,自噬还可以调节一些重要的细胞信号通路,如mTOR、AMPK和PI3K等。
内质网应激和自噬在细胞凋亡中的作用,其实是非常复杂的一种关系。
内质网应激会使细胞进入凋亡,而自噬则可以发挥保护作用。
一定程度上,自噬可以保护线粒体不受内质网应激的影响,维持细胞稳态。
同时,自噬也可以清除因细胞凋亡而导致的垃圾和分解物,保护细胞免受损伤。
因此,正常的内质网应激和自噬反应是必需的,但是过度的应激则会导致细胞凋亡和疾病的发生。
内质网应激与细胞凋亡【摘要】死亡受体活化和线粒体损伤是两条经典的介导细胞凋亡信号传导通路,近来研究发现过度内质网应激可启动细胞凋亡,是一条新的细胞凋亡信号传导通路,这一信号传导通路包括非折叠蛋白反应和钙离子起始信号等机制,内质网应激可特异性激活Caspase一12,Caspase一12裂解CaSpase一3等下游效应蛋白酶,最终导致细胞凋亡。
【关键词】内质网;细胞凋亡;Caspase一12内质网(endoplasmic reticulum ,ER)是真核细胞中蛋白质翻译合成和细胞内钙离子的储存场所,对细胞应激反应起调节作用。
内质网应激可由多种原因引起,如缺氧、饥饿、钙离子平衡失调、自由基侵袭及药物。
这些刺激引起从内质网到胞浆和胞核的信号传导,最终导致对存活的适应或凋亡。
许多疾病的发病机制都与内质网应激引起的凋亡有关,如阿尔茨海默病、帕金森氏病等神经变性性疾病,糖尿病,外伤性脑损伤,扑热息痛引起的肾小管损伤。
在肝脏疾病方面,非酒精性脂肪肝、胆汁淤积和酒精性肝病,乙型肝炎病毒和丙型肝炎病毒感染等的发病机制均与内质网应激引起的损伤有关。
1.内质网应激启动细胞凋亡的机制内质网介导细胞凋亡至少包括两种机制,分为非折叠蛋白反应(unfolded protein reaction,UPR)和钙离子起始信号(calcium signaling) 。
1.1 非折叠蛋白反应蛋白在内质网腔形成空间结构由许多分子伴侣蛋白协助,包括Bip/Grp78和Grp94及折叠酶类,如蛋白二硫异构酶和肽基脯氨酰逆转录异构酶。
非折叠蛋白在内质网沉积,信号通过内质网膜传到人细胞核和胞浆,效应蛋白上调编码Bip/Grp78和Grp94等内质网伴侣蛋白基因转录,并广泛减少蛋白翻译,以利于内质网蛋白折叠形成,减少非折叠蛋白在内质网沉积和聚集,使细胞能够耐受及生存,这一针对内质网应激的反应称为非折叠蛋白反应。
真核细胞有三种不同的机制处理内质网非折叠蛋白沉积:内质网伴侣蛋白基因转录的上调;蛋白质翻译减少;非折叠蛋白由内质网移入胞浆并被降解。
内质网应激对细胞凋亡的调控机制细胞凋亡是生物体中广泛存在的一种正常生理现象,是维持正常生命活动、维护稳态的一种自我调节性死亡方式。
内质网应激是细胞内一种常见的应激反应,其越来越引起科学家们的关注,因为其有很多疾病和疾苦的关联,例如肿瘤、神经退行性疾病以及炎性疾病等。
因此,深入地探究内质网应激对细胞凋亡的调控机制具有优先切实性。
内质网(ER)是细胞中重要的器官之一,主要包括粗面内质网(RER)和平滑内质网(SER)。
它是合成蛋白质、脂质和一些其他细胞成分的重要场所,同时也是钙离子、氮气的调控平台。
在应激状态下,内质网面临着巨大的细胞蛋白质负担和异常蛋白质积累的挑战,从而引发内质网应激反应。
内质网应激反应主要涉及到三条途径。
其中最为重要的一条就是IRE1/JNK通路。
IRE1/JNK通路参与了对细胞内的信号传递系统的调节,可以调节信号因子、转录因子等核内外过程,从而使IRE1在启动凋亡途径中起到至关重要的作用。
同时,IRE1的激活也可以影响细胞内的翻译后修饰过程,从而使凋亡途径被正常地激活。
第二条通路是PERK/elF-2α通路。
这条通路在应激状态下起到了重要的策略性作用,它可以抑制蛋白质的翻译过程、下调转录因子表达水平,促使细胞停止生长。
这种状态常常是有利于细胞的生存和复原的。
但是PERK/elF-2α的过度激活也可能诱导细胞凋亡,因此PERK/elF-2α通路的调控非常重要。
最后是ATF4/CHOP通路。
ATF4/CHOP通路是最好的体现内质网应激信号传递系统的通路,是IRE1/JNK通路和PERK/elF-2α通路的后续步骤。
ATF4/CHOP通路的激活可以导致Bcl-2的下调,Bcl-2是一种具有抗凋亡性的蛋白质家族,它的下调会使得细胞凋亡途径被进一步激活。
总的来说,内质网应激通路是复杂的,并且它和细胞凋亡之间的关系不是非常显然。
但是,越来越多的研究证实,在一些疾病和疾苦的基础性机制上,内质网应激和细胞凋亡的融合对于患者的生存和卫生有着非常显然的关键作用。
内质网应激与细胞凋亡的关系内质网(Endoplasmic Reticulum,ER)是一个重要的细胞质膜系统,涉及到蛋白质合成、糖代谢、脂类代谢等生物学过程。
内质网应激(Endoplasmic Reticulum Stress,ER Stress)是一种细胞应答机制,它通常是由于内外部环境的变化引起的,如氧化应激、细胞周期紊乱、葡萄糖缺乏等。
而细胞凋亡(Apoptosis)是正常生理或病理状态下,自我调节的一种程序性死亡方式。
细胞凋亡在组织发育、免疫调控、肿瘤抑制、神经退行性疾病等方面发挥着重要的调节作用。
在细胞凋亡的调节过程中,内质网应激起到了非常重要的作用。
一、内质网应激的机制内质网应激主要是由两种机制引起的。
1.蛋白质折叠机制(Protein-Folding Mechanism)蛋白质折叠是内质网的最重要功能之一。
细胞内产生的蛋白质必须进入内质网完成膜蛋白的折叠过程,才能成为活性蛋白质。
而各种细胞外环境或内部环境的变化,都可能导致蛋白质折叠失败,从而引起内质网应激。
2.膜蛋白修饰机制(Membrane Protein Modification Mechanism)内质网还参与了膜蛋白修饰过程。
细胞正常的功能调控需要完成大量的蛋白质修饰,包括糖基化、磷酸化等等。
这些修饰机制是基于内质网的,一旦内质网出现问题,这些修饰过程也会受到影响,从而导致内质网应激。
二、内质网应激对细胞凋亡的影响内质网应激对细胞凋亡具有明显的影响。
一般来说,细胞凋亡是由于外界因素刺激,或细胞内部环境出现问题所导致的。
而内质网应激包含了许多细胞内部环境的变化,因此也会很容易影响到细胞的凋亡。
1.内质网应激与细胞凋亡的时序关系内质网应激研究的第一步,就是探究其与细胞凋亡的关系。
研究发现,在内质网应激的早期,可以促进细胞凋亡的发生,而在后期,内质网应激对细胞凋亡的作用则减弱或反转。
2.内质网应激的调节通路内质网应激通过调节一系列的通路,对细胞拓扑空间有重要影响。
内质网应激和细胞凋亡相关机制的研究细胞是所有生命体中最基本的组成单位,凋亡则是细胞死亡的一种方式。
然而,在细胞凋亡过程中,一个与之相关联的基本分子过程叫做内质网应激(ERS)。
ERS的研究对于了解细胞凋亡和其它相关疾病如心血管疾病和神经退行性疾病至关重要。
什么是内质网应激内质网是细胞中的一个关键细胞器,它参与了许多重要的生物学过程,比如蛋白质合成、沉积和修复等。
然而,当一些异常情况发生,比如环境中的胁迫(如氧化应激、热或到达生殖期等),内质网功能可能会受到威胁并开始发生应激反应。
ERS的定义是内质网功能受损时产生的应激反应。
ERS有许多可能的具体转录调控机制,其中最著名的是解调蛋白(UPR)通路。
UPR可以识别特定能够感知ERS蛋白的激活状态,然后引起误折叠蛋白防御以及特定转录反应的启动。
UPR是一个治疗性的靶标,已经被证实可以减轻许多与ERS相关的器官损伤和疾病。
内质网应激和细胞凋亡的相关性细胞凋亡是一个必要而又常见的细胞死亡过程,它在胚胎发育、维持组织稳态以及抵御病原体侵袭等方面都发挥重要的作用。
然而,在一些疾病中包括糖尿病、肿瘤、神经退行性疾病以及心血管疾病中,细胞凋亡发挥负面的作用。
因此,了解和掌握细胞凋亡相关的分子机制尤为重要。
内质网应激和细胞凋亡之间的相关性已被广泛研究。
ERS在细胞凋亡中的作用是通过调节一系列介导因子来实现的。
这些介导因子包括细胞周期调节蛋白、角质细胞细胞角蛋白、DNA损伤应答和蛋白质翻译等。
ERS,细胞应激与疾病ERS的诱导可通过几种不同的途径实现,其中许多都和细胞应激有关。
ERS在许多疾病和病理过程中都发挥着重要的作用,包括肝病、心脏病、糖尿病、神经系疾病等等。
内质网应激毒性和肝脏疾病肝脏是一个内部有机器的重要器官,它可以为身体吸收、代谢和储存脂肪。
ERS在肝脏几乎所有的生理过程中都有参与,肝脏疾病常由于ERS的紊乱引起。
ERS在肝病发生后的所有阶段中都发挥了关键的作用。
细胞凋亡的调控机制细胞凋亡是机体中常见的一种程序性细胞死亡方式,它在维持组织和器官的正常发育、功能维持以及避免疾病发生等方面起着重要的作用。
细胞凋亡的调控机制涉及到多个信号通路和分子机制的协同作用。
本文将对细胞凋亡的调控机制进行详细的探讨。
一、细胞凋亡信号通路细胞凋亡的调控主要通过激活一系列的信号通路来实现。
其中,线粒体途径、死亡受体途径和内质网应激途径是最常见的凋亡信号通路。
1. 线粒体途径线粒体途径是细胞凋亡最重要的调控通路之一。
在这一途径中,线粒体膜的通透性受到调控,导致线粒体内部的细胞呼吸链和ATP合成受到干扰,释放细胞色素c和凋亡诱导因子(Apaf-1)等凋亡相关分子。
这些分子进一步激活半胱天冬氨酸蛋白酶(caspase)家族酶,最终导致细胞凋亡的发生。
2. 死亡受体途径死亡受体途径是细胞外的凋亡信号通路,它主要通过死亡受体家族的激活来传递凋亡信号。
当凋亡信号分子(如肿瘤坏死因子α)与死亡受体结合时,活化的死亡受体会招募和激活配体结合蛋白(FADD)和半胱天冬氨酸蛋白酶-8(caspase-8),从而激活后续的半胱天冬氨酸蛋白酶级联反应,引发细胞凋亡。
3. 内质网应激途径内质网应激途径在细胞发生应激状态(如缺氧、低营养等)时被激活,它通过调控内质网的功能状态来诱导细胞凋亡。
内质网应激信号的传导主要通过Ire1、ATF6和PERK等激酶来调节,这些激酶的活化会引发一系列的应激反应,包括启动凋亡信号通路、抑制蛋白合成等,最终导致细胞凋亡。
二、细胞凋亡相关分子机制除了信号通路的调控外,细胞凋亡还涉及到多个分子机制的协同作用。
这些分子机制包括:Bcl-2家族蛋白、caspase家族酶、p53蛋白等。
1. Bcl-2家族蛋白Bcl-2家族蛋白是细胞凋亡调控的关键分子。
该家族包括抑制凋亡的成员(如Bcl-2、Bcl-XL等)和促进凋亡的成员(如Bax、Bak等)。
这些蛋白通过调控线粒体膜的通透性来决定线粒体释放凋亡相关分子的命运,从而调控细胞的生死。
内质网应激与细胞凋亡王在然 杨冀萍中图分类号:R 329.2+8 文献标识码:A 文章编号:1006-351X(2019)06-细胞凋亡(apoptosis)是通过选择性清除破坏、突变或对整个生物体构成威胁的细胞来维持组织平衡的关键机制。
研究显示,内质网(endoplasmic reticulum,ER)未折叠蛋白的聚集和由此引发的细胞应激反应能够诱导细胞凋亡的发生[1]。
本文主要对近年来内质网应激(endoplasmic reticulum stress,ERS)和细胞凋亡研究进展进行综述。
一、内质网通路与未折叠蛋白反应ER 是真核细胞中重要的细胞器,涉及多重细胞功能,如充当蛋白合成的“加工厂”、有助于钙的储存和调节、脂质的合成和存储、糖代谢、以及细胞间联系等[2-3]。
因其多样的功能ER 被称为动态的具有“营养感知”(nutrient sensing)的细胞器,可利用代谢重组反应协调能量波动、调节代谢和决定细胞命运[4]。
通常情况下,ER 在细胞中保持稳定状态,然而多种应激刺激如氧分压降低、病毒感染、营养缺乏、快速细胞增殖、氧化还原失衡、蛋白质合成水平升高、Ca 2+水平降低等[5]可以引起未折叠或错误折叠蛋白在ER 集聚,引起ERS。
此时机体启动未折叠蛋白反应(unfolded protein response,UPR)清除错误折叠蛋白,重新恢复蛋白质体内平衡,恢复细胞功能[6,7]。
最终错误折叠蛋白是被ER 相关性降解(ER-associated degradation,ERAD)这一过程清除[8-9]。
ERAD 的增加可以减少未折叠蛋白的积累,增加ER 和ER 分子伴侣折叠蛋白的能力,以稳定蛋白质的折叠[1]。
然而,如果ERS 强度过大或长时间持续存在,超过UPR 处理未折叠或错误折叠蛋白的能力,导致ER 运行机能障碍,不能及时恢复内环境稳定,UPR 则可通过激活下游凋亡信号分子,由促生存机制转为促凋亡机制,引起细胞凋亡[10]。
内质网应激诱导的细胞凋亡【摘要】内质网是细胞加工蛋白质和贮存Ca2+的主要场所,对维持细胞存活和发挥细胞的正常生理功能具有重要的作用。
内质网对应激极为敏感,在细胞内外环境应激因子如缺氧、缺糖、ATP耗竭、钙超载及蛋白降解减弱等的刺激下,均可引起ER内稳态失衡,使未折叠蛋白或错误折叠蛋白在ER积聚,统称为内质网应激(endoplasmicreticulumstress,ERS)。
ERS会激活细胞内蛋白质量控制系统,检测和处理未折叠及错误折叠蛋白,并对蛋白合成/降解做出适应性调整,以帮助细胞渡过应激状态。
细胞的这种适应性反应称为ERS反应。
此时机体通过激活未折叠蛋白反应来恢复内质网的正常功能。
长期过强的内质网应激诱导细胞凋亡。
本文主要就未折叠蛋白反应、ERS 诱导凋亡的途径作一综述。
【关键词】内质网应激;未折叠蛋白反应;细胞凋亡;凋亡途径1、未折叠蛋白反应(unfolded protein response,UPR)当发生ERS时,机体会启动一套由真核细胞进化而成的复杂的应激反应系统来应对ERS,即UPR。
在UPR过程中,葡萄免疫球蛋白重链结合蛋白(binding immunoglobulinheavy chain protein,Bip)又称葡萄糖调节蛋白-78(Glucose-regulated protein 78,GRP78),在调节内质网应激跨膜信号蛋白活性等方面发挥了关键作用。
BiP是一种定位于内质网的主要分子伴侣,被认为是ERS的一种标志蛋白。
在生理情况下,BiP结合于3种内质网膜上的受体蛋白IRE1、PERK和ATF6,使其处于失活状态。
ERS时,造成未折叠蛋白的堆积,促使Bip从3 种跨膜感受蛋白上解离,转而去结合内质网内新堆积起的未折叠蛋白,这种解离效应不但降低了未折叠或错误折叠蛋白在内质网的错误积累,同时释放了IRE1、PERK和ATF6 。
这3 种跨膜感应蛋白游离的IRE-1、PERK分别通过各自细胞质内结构域的二聚化和自身磷酸化而被激活;解离后的ATF6则转入高尔基体被蛋白酶水解成活性转录因子,继而诱导内质网应激下游信息的传递与相关基因的表达。
细胞凋亡是一种重要的细胞死亡方式,它在生物体内起着维持组织平衡和清除异常细胞的作用。
细胞凋亡可以通过多种途径发生,以下是细胞凋亡的基本途径:
线粒体途径:线粒体途径是最为经典和重要的细胞凋亡途径。
在这一途径中,细胞内发生多种信号转导事件,导致线粒体的膜电位丧失和释放线粒体内的细胞死亡信号分子(如细胞色素C)。
这些信号分子激活半胱氨酸蛋白酶家族(caspases),引发一系列细胞凋亡相关的生化反应,最终导致细胞死亡。
死亡受体途径:死亡受体途径主要通过细胞表面的死亡受体来介导细胞凋亡。
当配体结合到死亡受体上时,激活一系列信号传递分子,最终激活caspases,并引发细胞凋亡过程。
TNF-α受体家族是最为典型的死亡受体途径。
内质网应激途径:内质网应激途径是一种重要的细胞凋亡途径,主要与内质网功能紊乱有关。
当细胞内的蛋白质折叠异常或聚集过多时,会引发内质网应激反应。
这一反应导致caspases 的激活和细胞凋亡的进行。
缺氧途径:细胞在长时间的缺氧环境中也会引发细胞凋亡。
缺氧条件下,细胞内的氧化还原平衡被打破,导致线粒体功能异常、ROS(活性氧化物种)生成增加和细胞凋亡的信号通路的激活。
DNA损伤途径:DNA损伤也是细胞凋亡的重要诱导因素。
当细胞的DNA受到严重损伤时,DNA修复机制可能无法修复或超出其修复能力,细胞会选择进入凋亡途径,以防止破损DNA 的进一步复制和传递。
这些途径并不是相互独立的,它们之间可以相互交叉和相互作用。
细胞凋亡的具体途径和机制还在不断研究中,我们对细胞凋亡的认识还有待进一步深化。
细胞凋亡的三种机制
细胞凋亡是一种常见的细胞死亡方式,它对于维持生物体内部环境的稳定至关重要。
细胞凋亡通常分为三种机制:内质网应激途径、线粒体途径和死受体途径。
内质网应激途径是一种常见的细胞凋亡机制。
当细胞内部环境发生严重的应激情况时,如缺氧、病毒感染等,内质网会向细胞核传递信号,启动凋亡程序。
这个过程中,内质网释放出一些凋亡相关蛋白,如Caspase-12等,这些蛋白可以直接作用于线粒体和其他细胞器,诱导细胞凋亡。
线粒体途径是另一种常见的细胞凋亡机制。
线粒体是细胞内的能量中心,同时也是调节凋亡的重要机制。
当细胞内环境发生变化时,线粒体内膜通透性会发生改变,释放出一系列凋亡相关蛋白,如Cytochrome C等。
这些蛋白可以和Caspase-9结合形成凋亡体,激活Caspase-3等蛋白,引发细胞凋亡。
死受体途径也是一种常见的细胞凋亡机制。
这个过程中,细胞表面的死受体会与相应的配体结合,形成相应的复合物。
这个复合物可以激活Caspase-8等蛋白,进而激活Caspase-3,引发细胞凋亡。
死受体途径在胚胎发育、免疫应答等生理过程中发挥着重要的作用。
细胞凋亡的三种机制都对于维持生物体内部环境的稳定至关重要。
在某些情况下,细胞凋亡可以作为一种治疗手段,如癌症治疗。
但
在某些情况下,细胞凋亡也可能会产生负面影响,如心肌梗塞等疾病。
因此,对于细胞凋亡机制的深入研究,有助于我们更好地理解生命的本质,同时也为疾病治疗提供了新的思路和方法。
细胞凋亡的路径和作用机制细胞是生命的基本单位,细胞的增殖和死亡对于细胞和生物体的发育、生长、衰老以及对外界环境的应对起着非常重要的作用。
细胞凋亡,又称细胞自杀,是一种程序性死亡方式,与坏死不同。
在细胞体内存活的时间过长导致受到特定信号和诱因后,细胞会自动开启凋亡程序。
细胞凋亡是一个高度有序的过程,它有着明确的分子生物学和生物化学机制,本文将对细胞凋亡的路径和作用机制进行详细阐述。
一、细胞凋亡的路径细胞凋亡是一个多复杂信号通路参与的过程。
目前分子生物学研究员在细胞凋亡的过程中发现了三条主要的途径:内质网应激途径、线粒体途径和死受体途径。
1.内质网应激途径在生理情况下细胞内的蛋白质折叠是受到严格调控的。
当生理环境不好时,内质网受到各种诱因后就会被破坏,一些不正常的蛋白质聚集在了内质网,导致内质网应激。
ATF4、CHOP 等转录因子通过上调众多凋亡相关基因的表达,启动了内质网介导细胞凋亡。
2.线粒体途径线粒体是细胞内产生 ATP 的重要的细胞器,并且它还可以根据需要产生细胞内的 RNA 和维生素等。
线粒体的膜上有多种细胞凋亡的重要调节蛋白和受体质,通过激活/招聚细胞内的多种下游信号,沿途触发细胞凋亡信号通路最终导致细胞凋亡。
3.死受体途径死受体途径是最常研究的细胞凋亡通路之一,这是因为它是可以被干扰的。
当细胞遭受到不正常刺激的时候,一种叫做 TNF-α 的信号会在细胞膜外出现。
它和一个叫做 TNF-R 的受体进行了配对。
配对后会让膜内外的一些酶相互相应,从而伴随着过程的进行,细胞核出现了一系列的变化,最终导致细胞凋亡。
二、作用机制细胞凋亡在自然状态下是一种高度有序的程序性死亡模式。
经过了数十年的研究,人们对于它的完整机制已经获得了全新的了解。
1.细胞凋亡启动和执行细胞凋亡由坚硬的程序性过程控制。
这个过程遵守流行的通道,从交叉反应捕捉信号,到激活胶原酶,代谢激活的蛋白,在最后阶段通过吞噬死细胞的组织炎性和平衡。
细胞内质网应激反应与细胞凋亡机制研究细胞内质网(Endoplasmic Reticulum,ER)是细胞内一种重要的细胞器,负责合成、折叠和修饰细胞内的蛋白质。
ER在细胞抗压力、调节细胞钙离子平衡等方面有着重要的作用。
然而,当细胞内环境发生异常时,ER会受到不同程度的损伤,导致细胞内质网应激(ER Stress)的发生。
细胞内质网应激是一种细胞应对内在或外在环境变化的途径。
常见的ER应激刺激因子包括:糖类和脂肪类物质浓度失衡、缺氧、钙平衡失调以及存在异常的蛋白质等等。
这些应激因子会引起ER内分泌系统产生异常,进而导致细胞应对应激状态的反应,其中最主要的反应便是通过致死性细胞凋亡,排除受损细胞或不需要的细胞。
细胞凋亡是一个由一系列兴奋与抑制靶点上分子之间的相互作用所控制的复杂过程。
通过细胞凋亡来去除有害或不稳定的细胞,有助于保持组织和器官的正常功能。
ER外向钙离子(Ca2+)通道控制ER内Ca2+释放,并参与ER通道的磷酸化,从而开启或关闭细胞凋亡通道。
靶向ER外Ca2+通道,可能是组成癌细胞凋亡通道并促进肿瘤细胞凋亡的重要分子机制。
除钙离子通道外,ER内积累的异常蛋白质会让细胞启动一种EXP:ERUPR依赖的核(Nuclear)逐步细胞内凋亡程序。
这种程序通过存在于ER内的膜蛋白IRE1再酶的激活和急性期反应蛋白 XBP1的原位裂解而得以启动,并通过ATF4/PARP-1/C/EBP homologous protein(CHOP)等依赖于CASPASE的分子机制实现,从而诱导了细胞凋亡。
近年来,细胞内质网应激和细胞凋亡机制的研究受到越来越多的关注,具有对于治疗癌症、心血管疾病等疾病相关研究很大的帮助。
针对这个研究领域,我们需要更深刻的了解细胞内质网应激反应与细胞凋亡机制的相互关系,对于更具体、更有效的治疗方案进行虏。
简而言之,分子治疗是一种正在发展并且可能是最好的癌症治疗方法,有一系列通过研究细胞内质网应激响应和细胞凋亡通路来发展的治疗方案。
细胞凋亡机制
细胞凋亡是指生物体内细胞自行死亡的过程,是一种重要的生物学现象。
细胞凋亡可以通过多种不同的机制诱导,例如凋亡因子、DNA 损伤等。
本文将介绍细胞凋亡的机制。
一、线粒体介导的凋亡途径
线粒体介导的细胞凋亡途径是最为典型的一种凋亡机制。
当细胞受到一定的刺激时,线粒体膜上的通透性转换孔会打开,导致线粒体内部存储的蛋白酶活性释放到细胞质内。
这些蛋白酶可以直接或间接地作用于多个细胞凋亡相关信号通路的关键因子,引发凋亡反应。
二、死亡受体介导的凋亡途径
死亡受体介导的细胞凋亡途径是由一组细胞膜上的死亡受体依赖性引起的。
当凋亡因子与死亡受体结合时,会引起受体的聚合、活化和自身发生跨膜转导信号。
进而激活细胞凋亡途径。
三、内质网应激介导的细胞凋亡途径
内质网应激介导的细胞凋亡途径是由内质网折叠状态的紊乱和过度应激引起的。
当细胞受到外界刺激时,内质网失去平衡,开始累积未完成的蛋白质。
此时,细胞会发出应激信号,将其带入凋亡途径。
最终导致细胞凋亡的发生。
总结
以上三种细胞凋亡机制仅是细胞内部几个通路的不完整描述。
在生
命体内,这些凋亡机制还相应地糅合在一起。
每一个细胞凋亡途径的
详细描述和作用机制都很重要,可以作为研究疾病和细胞自毁的基础。
内质网(endoplasmic reticulum,ER)广泛存在于真核细胞中,是调节蛋白质合成及合成后折叠、聚集的场所,是调节细胞的应激反应及细胞钙水平的场所,也是胆固醇、类固醇及许多脂质合成的场所。
ER应激在细胞凋亡中起重要作用,现就ER应激在细胞中的作用、ER应激与Ca2+ 水平的调节及与相关凋亡蛋白之间的关系等方面进行综述。
[关键词] 内质网;细胞凋亡;应激Relationship of endoplasmic reticulum with apoptosisFANG Xi-min,CHEN Ming-zhen(Institution of Pediatrics,Affiliated Hospital,Guangdong Medical College,Zhanjiang,Guangdong,524001,China)Abstract:Endoplasmic reticulum(ER)extensively exists in eukaryocytes,where protein synthesis,and fold,recruitment are regulated after protein synthesis,the stress action of cell and calcium level in cell are adjusted,as well as cholesterol,steroids and most of lipid are synthesized.ER stress plays an important role in the cell apopto-sis.This article reviews the role of ER stress,the regulation of ER stress and the level of Ca2+ and the relation to apoptotic proteins.Key words:endoplasmic reticulum;apoptosis;stress细胞凋亡(apoptosis)又称程序性细胞死亡(pro-grammed cell death,PCD),在维持机体正常的生理平衡中起重要作用。
调节细胞凋亡的途径目前主要有3种:线粒体途径、死亡受体途径和内质网(ER)途径。
ER主要通过它的应激而调节细胞的死亡程序。
在凋亡过程中,ER途径与线粒体途径相似,和Bcl.2家族成员及caspases关系密切。
1 ER的应激作用ER首先停留于分泌的通路上[1] ,在那里,伴侣分子(chaperone)辅助的多肽折叠与修饰使蛋白获得成熟的转变。
当有害刺激使ER正确折叠蛋白的能力被削弱或压制时,应激信号能通过ER膜传递到细胞核中,继而引起一系列特定的靶基因转录上调和蛋白质翻译水平下调,一种高度保守的未折叠蛋白反应(unfolded protein response,UPR)信号传导通路被激活[2] 。
UPR通过阻止普通蛋白的合成,同时上调ER残存伴侣蛋白或其它通路的调节成分,这些伴侣蛋白介导的能量代谢确保ER蛋白高效率地折叠,为细胞生存提供一个较好的环境。
但是如果损伤太大而致内环境稳定不能恢复,UPR最终激发凋亡。
这些作用既能为受损细胞提供修复机会,又能最大限度清除过度损伤的细胞,为维护机体的生理平衡和内环境的稳定起到重要作用。
1.1 维护细胞内环境的稳定哺乳类动物细胞有3个ER跨膜蛋白(Irel、ATF6、PEPK),它们均对腔内未折叠蛋白的聚集起作用[3] 。
它们调节基本亮氨酸拉链的质和量,通过相互作用对不同的UPR产生不同的应答,如果这种反应不能充分地减少ER应激,细胞可能发生凋亡或坏死。
Irel是Ⅰ型丝氨酸.苏氨酸激酶,有一个特殊的RNA酶激活位点,当其活化RNA酶后能编码HAC1,HAC1经剪切、翻译,产生一个强的活性因子,后者激活UPR元素上游的UPR诱导基因,引起UPR。
Irel核内区的C端能产生一个活化的bZIP转录因子,刺激ER伴侣蛋白的基因转录[4] 。
PEPK正常情况下通过N端区域与伴侣蛋白Bip联系而保持一种失活状态。
在ER应激时,Bip(结合在未折叠蛋白上的)和其失去联系而解离,Irel、PEPK进行同源寡聚化,刺激丝氨酸.苏氨酸蛋白激酶区域内的反.自身磷酸化,PEPK能翻译起始因子eIF2α,在蛋白折叠条件被减弱时eIF2α能终止翻译或阻止新合成的蛋白持续进入ER。
ATF6(activation tran-scription factor6)是另一种调节蛋白,能结合应激反应元件。
A TF6在ER中进行蛋白水解分裂,释放它的活性bZIP转录因子到细胞核,并激活XBP1增强子,使XBP1转录增加,导致UPR的活化。
所有这一切都能维护细胞内环境的稳定,使细胞更好地生存。
1.2 ER应激引起细胞凋亡的机制实验表明,如果ER损伤太严重或在一定时间内稳态未恢复,凋亡反应即会发生。
ER应激导致细胞死亡可能存在以下机制。
1.2.1 线粒体.Apaf.1依赖途径线粒体是ER应激诱导凋亡通路的重要元件,因为(1)ER应激导致线粒体释放细胞色素C(cytochrome c,cyt.c)并丧失线粒体的跨膜电位;(2)Bcl.2.Bcl.xl阻止ER应激诱导凋亡;(3)Bax-.-、Bak-.-及MEFs能抵抗TG.、TN.和BAF诱导凋亡。
此外,URP可能上调别的单一BH.3结构蛋白,类似于单一BH.3基因对P53介导的应激反应[5] 。
ER应激诱导cyt.c 释放依赖于c.Abl的苏氨酸激酶,因为c.Abl-.-鼠纤维母细胞能抵抗A23187.、BAF.及TN.诱导的cyt.c释放与细胞凋亡。
哪一种c.Abl在这一位点起作用,其机制可能与JNK激酶有关,这些激酶在ER应激时可被Irel所招募并活化,如UPR能上调CHOP.GADD153(一种核转录因子,可抑制Bcl.2的启动),通过减少Bcl.2蛋白表达而提高线粒体对促凋亡因子的敏感性[6] ,导致cyt.c由线粒体膜间隙(the intermembrane space,IMS)释放到胞浆。
在dATP.A TP存在下,cyt.c首先与胞浆中的凋亡蛋白激活因子1(apoptotic protease activating factor,Apaf.1)结合,形成多聚复合体,后者充分聚集于胞质中并导致其自动活化成caspases.9,然后启动级联反应,继续活化下游的caspases如caspase.3和caspase.7。
整个过程为一正反馈,活化的caspases能对其底物进行特异的切割,导致DNA片段化,促使细胞发生凋亡[7] 。
1.2.2 caspase.12的活化途径Caspase.12与其它的caspases一样以无活性的酶原形式存在(由1个调节区和2个催化的P20和P10亚单位组成)。
但是,与其它caspases不一样的是caspase.12对诱发ER应激时的攻击非常特异。
内质网参与细胞凋亡的途径主要包括:(1)内质网蛋白质成熟和折叠的破坏导致内质网损伤从而引发细胞凋亡;(2)内质网凋亡蛋白酶caspase-12的激活;(3)内质网钙信号的异常(Breckenridge et al。
2003)。
此外,内质网膜上也存在Bak等凋亡蛋白,在凋亡因子的刺激下,Bax也能在内质网上富聚,Bax和Bak的多聚化和caspase·12的激活可导致细胞凋亡(Zong et al.2003)。
内质网在细胞凋亡中的作用越来越受到关注。
目前知道,内质网在凋亡信号‘的接收和放大中有重要作用(Nakagawa et al.2000)。
内质网参与细胞凋亡的途径主要包括:(1)内质网蛋白质成熟和折叠的破坏导致内质网损伤从而引发细胞凋亡;(2)内质网凋亡蛋白酶caspase-12的激活;(3)内质网钙信号的异常(Breckenridge et al。
2003)。
此外,内质网膜上也存在Bak等凋亡蛋白,在凋亡因子的刺激下,Bax也能在内质网上富聚,Bax和Bak的多聚化和caspase·12的激活可导致细胞凋亡(Zong et al.2003)。
内质网是细胞内蛋白质合成和成熟的主要场所,蛋白质成熟和折叠的异常可导致内质网损伤。
如用衣霉素(tunicamycin)抑制蛋白质糖基化或改变内质网内的氧化还原状态使蛋白质糖基化和蛋白质二硫键形成发生异常,可使没有折叠奸的蛋白质在内质网内积累。
未折叠的蛋白质与内质网内伴侣蛋白BiP/Grp78结合,从而BiP/Grp78干扰与lrel-α的结合,导致Irel-α与TRAF-2的结合(Nakagawa et al.2000)。
TRAF-2能吸附并激活内质网特异的蛋白酶caspase-12,从而激活细胞凋亡过程。
Caspase-12也能被细胞内Ca2+激活的m-calpain所切割和激活,被激活的caspase-12能直接激活caspase-9,从而诱发不依赖于线粒体的细胞凋亡过程。
Caspase-12基因缺失的小鼠神经细胞等多种细胞对内质网损伤诱导的凋亡变得不敏感,这进一步说明内质网损伤能直接导致细胞内caspase激活。
内质网是细胞内钙库,Ca2+在内质网内可以游离状态存在,也可同内质闹内部的钙网蛋白(ca/reticulin)和钙联蛋白(calnexin)等蛋白结合。
内质网钙的吸收主要靠内质网的Ca2+-ATPase,其Ca2+释放主要靠lnsP3受体或雷诺丁(ryanodine)受体。
InsP3受体或雷诺丁受体表达水平的降低使细胞变得对凋亡不敏感。
钙吸收或释放的抑制可直接导致细胞凋亡。
毒胡罗萝素(thapsigargin)抑制内质网的Ca2+-ATPase,是常用的凋亡诱导剂。
钙网蛋白能调节钙库吸收和释放的平衡,其表达异常也影响细胞对凋亡诱导剂的敏感性(Scorrano et al.2003)。
内质网应激一方面通过直接激活caspase-12来参与细胞凋亡的,另一方面,内质网钙的释放可直接诱导线粒体的膜孔开放,从而导致线粒体凋亡物质的释放。
在细胞内,线粒体钙吸收的位点和内质网钙释放存在近距离相互作用,即InsP3受体释放的钙能直接被线粒体膜上钙吸收蛋白在纳米范围内吸收。
有意义的是,最新的研究表明,线粒体释放的细胞色素c能直接与InsP3受体结合,并激活其钙释放活性。
因此诱导大量释放的钙再作用于线粒体引发线粒体凋亡物质的释放。
由此看来,内质网和线粒体在凋亡调控中存在直接的相互串话和相互作用。
内质网通过其钙库在凋亡信号接收和放大巾起关键作用,而线粒体在接收凋亡信号后,通过释放大量的凋亡物质来启动和实施细胞凋亡。