脱硝工艺原理
- 格式:docx
- 大小:11.15 KB
- 文档页数:1
脱硝工艺原理
脱硝工艺是指利用化学或生物方法将烟气中的氮氧化物(NOx)转化为氮气和
水蒸气的过程。
在工业生产和能源利用中,燃煤、燃油等燃料燃烧所产生的NOx
排放对环境造成了严重的污染,因此脱硝工艺成为了环保领域的重要课题。
脱硝工艺的原理主要包括选择性催化还原(SCR)和非选择性催化还原(SNCR)两种方法。
SCR是通过在一定温度下将氨气或尿素溶液喷入烟气中,与NOx发生化学反应,生成氮气和水蒸气。
而SNCR则是直接在烟气中喷入氨水或
尿素溶液,利用高温下的非选择性催化还原反应将NOx还原为氮气和水蒸气。
在SCR脱硝工艺中,催化剂的选择对脱硝效果至关重要。
常用的催化剂包括
钒钨钛氧催化剂和钒钨钛钾氧催化剂。
这些催化剂具有高的催化活性和稳定性,能够在较低的温度下将NOx转化为无害的氮气和水蒸气。
此外,SCR脱硝工艺还需
要控制好氨气或尿素溶液的喷入量,以确保与NOx的化学反应达到最佳效果。
相比之下,SNCR脱硝工艺更适用于高温烟气脱硝。
在高温下,氨水或尿素溶
液能够直接与NOx发生非选择性催化还原反应,将其还原为氮气和水蒸气。
然而,由于SNCR脱硝工艺对温度和氨水或尿素溶液的喷入量要求较高,因此在实际应
用中需要更加精准的控制和操作。
总的来说,脱硝工艺的原理是利用化学或生物方法将烟气中的NOx转化为无
害物质的过程。
无论是SCR还是SNCR,都需要合理选择催化剂和控制喷入量,
以确保脱硝效果达到最佳。
随着环保意识的增强和法规的要求,脱硝工艺将在未来得到更广泛的应用和发展。
脱硝反应机理详解脱硝反应,即烟气脱硝技术,指把已生成的NOX还原为N2,从而脱除烟气中的NOX,按治理工艺可分为湿法脱硝和干法脱硝。
主要包括:酸吸收法、碱吸收法、选择性催化还原法、非选择性催化还原法、吸附法、离子体活化法等。
国内外一些科研人员还根据各种方法的优缺点,为了提高脱硝效率,进行了多种方法的联合研究。
以下是几种常见的脱硝反应机理的应用:1.选择性催化还原法(SCR):SCR是目前国际上应用最成熟、使用最广泛的一种烟气脱硝技术,其脱硝效率高达80%~90%,且技术成熟可靠,便于现有锅炉机组的改造。
SCR工艺原理是在催化剂的作用下,利用还原剂(如氨气、尿素等)将烟气中的NOX选择性还原成无害的N2和水。
催化剂一般选用V2O5/TiO2、V2O5-WO3/TiO2等。
2.选择性非催化还原法(SNCR):SNCR是将含有氨基的还原剂喷入炉膛温度为850~1100℃的区域,还原剂迅速热解成NH3并与烟气中的NOX进行SNCR反应生成N2和H2O。
该方法不需要催化剂,因此必须在高温下进行,通常还原剂只选择氨或尿素。
SNCR法的脱硝效率一般为30%~70%,受锅炉结构尺寸影响较大。
3.吸附法:吸附法主要是利用吸附剂的吸附功能脱除烟气中的NOX,所用的吸附剂主要有活性炭、分子筛、泥煤、硅藻土、天然沸石、焦炭和活性氧化铝等。
该法设备简单、投资少、操作方便、能同时脱除烟气中的多种污染物,但脱硝效率不高,一般为30%~80%,且吸附剂的再生和更换周期短,易造成二次污染。
4.电子束法:电子束法是利用高能电子束照射烟气,生成大量的强氧化性物质,将烟气中的SO2和NOX等有害物质氧化为易于捕捉的硫酸(H2SO4)和硝酸(HNO3),再与氨(NH3)反应,生成硫酸铵((NH4)2SO4)和硝酸铵(NH4NO3),达到脱除烟气中有害物质的目的。
该法能同时脱硫脱硝,还能破坏部分有害气体如二噁英、挥发性有机化合物(VOCs)等,脱硝效率较高,一般可达80%以上。
sncr脱硝原理及工艺
sncr脱硝技术可以有效减轻大气中的氮氧化物污染,是大气污染控制技术的重要技术之一。
sncr脱硝技术实质上是一种燃烧控制技术,可以通过调节燃料与空气的混合比率,并加入富氧剂,提高燃烧温度来减少烟气中的氮氧化物,如NOX、SOx等。
sncr脱硝技术具有一定的烟气浓度条件,它在一定程度上增加了这些气体的燃烧温度,从而减少了气体中氮氧化物的含量。
1. 预燃阶段:在较高温度条件下,控制预燃或助燃气体,增加富氧剂,燃烧分解消耗氮氧化物。
2. 余氧燃烧:燃烧室的温度达到稳定值后,为了维持燃烧室的持续稳定燃烧,需要适时或连续加入富氧剂,使氮氧化物转化率达到最大。
3. 对称燃烧:通过调节燃料与空气的混合比率,恒定滞燃混合比以及改善燃烧均匀性,提高燃烧温度,使燃烧室保持一定温度和合理的火焰模型,以达到脱硝的目的。
1. 容易操作:烟囱限制气体排放浓度的调节非常容易;
2. 低成本: sncr技术的实施成本低,投资费用更少;
3. 良好的排放效果:可以有效降低燃烧过程中氮氧化物的排放;
4. 功率浓度容量: sncr技术能够满足不同功率浓度和容量的变数要求。
脱硝原理简介脱硝原理简介由于炉内低氮燃烧技术的局限性, 对于燃煤锅炉,采⽤改进燃烧技术可以达到⼀定的除NO x 效果,但脱除率⼀般不超过60%。
使得NO x 的排放不能达到令⼈满意的程度,为了进⼀步降低NO X 的排放,必须对燃烧后的烟⽓进⾏脱硝处理。
⽬前通⾏的烟⽓脱硝⼯艺⼤致可分为⼲法、半⼲法和湿法3 类。
其中⼲法包括选择性⾮催化还原法( SNCR) 、选择性催化还原法(SCR) 、电⼦束联合脱硫脱硝法;半⼲法有活性炭联合脱硫脱硝法;湿法有臭氧氧化吸收法等。
就⽬前⽽⾔,⼲法脱硝占主流地位。
其原因是:NOx 与SO 2相⽐,缺乏化学活性,难以被⽔溶液吸收;NOx 经还原后成为⽆毒的N 2 和O 2,脱硝的副产品便于处理;NH 3 对烟⽓中的NO 可选择性吸收,是良好的还原剂。
湿法与⼲法相⽐,主要缺点是装置复杂且庞⼤;排⽔要处理,内衬材料腐蚀,副产品处理较难,电耗⼤(特别是臭氧法)。
⼀、我公司所⽤脱硝系统简介⽬前安装的脱硝系统为东锅股份有限公司下属环保⼯程分公司的产品。
设计烟⽓量为2×1717904m 3/H,SCR安装⽅式为⾼含尘烟⽓段布置,采⽤触媒为蜂窝式。
采⽤德国鲁奇能源环保股份有限公司(LEE)的SCR技术。
⼆、SCR 法原理简介SCR(Selective Catalytic Reduction)——选择性催化还原法脱硝技术是⽤氨催化还原促使烟⽓中NOx⼤幅度净化的⽅法(通常在低NOx燃烧技术基础上的后处理),以满⾜⽇趋严格的NOx排放标准,是⽬前国际上应⽤最为⼴泛的烟⽓脱硝技术。
SCR的发明权属于美国,⽽⽇本率先于20世纪70年代实现其商业化应⽤,⽬前该技术在发达国家已经得到了⽐较⼴泛的应⽤。
⽇本有93%以上的废⽓脱硝采⽤SCR,运⾏装置超过300套。
德国于20世纪80年代引进该技术,并规定发电量50 MW以上的电⼚都得配备SCR装置。
台湾有100套以上的SCR装置在运⾏,它没有副产物,不形成⼆次污染,装置结构简单,并且脱除效率⾼(可达90%以上),运⾏可靠,便于维护等优点。
电厂脱硝原理
电厂脱硝是指利用化学方法将燃煤电厂烟气中的氮氧化物(NOx)进行减排,以减少对大气环境的污染。
脱硝技术是电厂环保治理的重要环节,也是保障大气环境质量的关键措施之一。
脱硝原理主要分为烟气脱硝和燃烧脱硝两种方式。
烟气脱硝是通过在燃烧过程中添加脱硝剂,如氨水或尿素溶液,使烟气中的NOx与脱硝剂发生化学反应,生成氮气和水,从而达到减排的目的。
燃烧脱硝则是通过优化燃烧工艺,减少燃烧温度和氧气浓度,从而减少NOx的生成。
烟气脱硝主要包括选择性催化还原(SCR)和选择性非催化还原(SNCR)两种技术。
SCR技术是利用催化剂在一定温度下催化氨与NOx发生还原反应,将NOx转化为氮气和水。
而SNCR技术则是在燃烧室中直接喷射氨水或尿素溶液,与燃烧产生的NOx进行还原反应。
燃烧脱硝则主要包括低氮燃烧技术和燃烧过程控制技术。
低氮燃烧技术通过调整燃烧工艺,降低燃烧温度和氧气浓度,减少NOx的生成。
燃烧过程控制技术则是通过优化燃烧参数,如燃烧温度、燃烧时间等,减少NOx的排放。
在电厂脱硝过程中,除了选择合适的脱硝技术外,还需要考虑脱硝剂的选择、脱硝设备的设计和运行参数的控制等因素。
合理的脱硝工艺和设备能够有效地减少NOx的排放,保障电厂的环保要求。
总的来说,电厂脱硝是通过化学方法将燃煤电厂烟气中的氮氧化物进行减排的环保技术。
脱硝原理主要包括烟气脱硝和燃烧脱硝两种方式,以及相应的技术和设备。
通过合理选择脱硝技术和设备,电厂能够有效地减少NOx的排放,保护大气环境质量。
脱硝的原理与工艺是什么脱硝的原理是通过将燃烧过程中产生的氮氧化物(NOx)转化为无害的氮气(N2)。
目前最常用的脱硝工艺是选择性催化还原(SCR)和选择性非催化还原(SNCR)。
SCR脱硝工艺是将氨气(NH3)或尿素等氨基化合物与燃烧过程中产生的NOx 反应,生成氮气和水蒸气。
SCR脱硝设备通常由催化剂、氨气喷射装置、反应器等组成。
催化剂的主要成分是碱式二氧化钛,具有很高的催化活性。
SCR脱硝工艺中,燃烧过程中的废气和氨气混合进入催化剂层,催化剂表面的氧气将废气中的NOx氧化为氮二氧化物(NO2)。
接下来,氨气与NOx进行反应,生成氮气和水蒸气。
SCR脱硝工艺能够高效地将废气中的NOx转化为无毒无害的氮气。
SNCR脱硝工艺又称非催化还原工艺,它是通过给废气中喷射还原剂(一般为氨水或尿素溶液)实现脱硝。
在高温下,还原剂会与废气中的NOx反应,生成无害的氮气和水蒸气。
SNCR脱硝工艺主要用于低温条件下(800以下)的脱硝。
使用SCR脱硝工艺时,需要注意催化剂的使用寿命。
由于废气中可能存在一些硫化物等物质,会降低催化剂的活性,因此需要定期对催化剂进行清洗或更换。
此外,SCR脱硝工艺还要求废气中的氨气与NOx的配比接近理论配比,以保证脱硝的效果。
SNCR脱硝工艺相对于SCR更为简单,但其脱硝效率较低,容易产生二次污染物如恶臭气体等。
因此,在实际工程应用中,常常采用SCR和SNCR的结合工艺,即SNCR脱硝用于低温段,SCR脱硝用于高温段,以充分发挥两种工艺的优点。
随着环保意识的提高和相关法规的不断完善,脱硝技术在燃煤、燃油等工业领域得到广泛应用。
脱硝工艺的研究和改进仍在进行中,旨在提高脱硝效率、降低能耗,并减少二次污染物的生成,以进一步保护环境和人类健康。
scr脱硝原理及ggh原理
SCR脱硝原理:
SCR(Selective Catalytic Reduction)脱硝原理是利用NH3和催化剂
(如铁、钒、铬、钴或钼等碱金属)在温度为200~450℃时将NOX还原
为N2。
在这一过程中,NH3具有选择性,只与NOX发生反应,基本上不与O2反应,因此称为选择性催化还原脱硝。
催化剂的选取是SCR法的关键,需要满足活性高、寿命长、经济性好和不产生二次污染的要求。
SCR脱硝工艺流程:
1. 在100%负荷工况下,对烟气进行升温至250℃后,再将烟气补燃加热至280℃进入脱硝SCR反应器。
2. 在280℃的烟气温度下,烟气中NOX和氨气进行混合后在催化剂的作用下完成预定的脱硝过程。
3. 脱硝后的净烟气再次进入GGH(Gas-Gas Heater,烟气-烟气换热器)。
4. 净烟气经过GGH后通过与起始阶段的低温烟气接触,冷却至℃,最终通过系统增压引出排放。
GGH(Gas-Gas Heater)原理:
GGH是一种烟气-烟气换热器,主要作用是对净烟气进行冷却,以便后续的排放。
其工作原理是利用起始阶段的低温烟气与脱硝后的净烟气进行热交换,使净烟气冷却至℃。
这一过程提高了烟气的温度,减少了冷凝物的产生,并有助于保持系统的稳定性。
燃煤脱硫脱硝工艺原理1. 概述燃煤脱硫脱硝工艺是用于降低燃煤发电厂排放的二氧化硫(SO2)和氮氧化物(NOx)浓度的技术方法。
这两种污染物是大气污染的主要来源之一,对环境和人类健康造成严重危害。
本文将介绍燃煤脱硫脱硝工艺的原理及其应用。
2. 燃煤脱硫工艺原理2.1 燃煤中的硫元素燃煤中的硫元素主要以有机硫和无机硫的形式存在。
有机硫是与煤的有机质结合的硫,它在燃烧过程中随着煤的燃烧而释放出来。
无机硫则以硫酸盐或硫化物的形式存在于煤中,其中硫酸盐的含量相对较高。
2.2 脱硫工艺分类脱硫工艺主要分为燃煤脱硫工艺和烟气脱硫工艺。
燃煤脱硫是在煤的燃烧过程中降低SO2排放浓度,而烟气脱硫则是在烟气中去除SO2。
2.3 燃煤脱硫工艺原理燃煤脱硫工艺主要分为物理吸附法和化学吸收法两种。
1. 物理吸附法:通过利用煤中的大孔结构吸附和降解SO2,如煤的活性炭吸附法和生物吸附法等。
2. 化学吸收法:通过将煤中的硫元素转化为易溶于水的化合物,在洗煤过程中去除SO2,如湿法洗煤、氧化法和硫化法等。
2.4 湿法洗煤工艺湿法洗煤是一种常见的燃煤脱硫工艺,其原理是将煤炭和水混合成煤浆,然后利用化学反应将煤中的硫元素转化为易溶于水的化合物,最后用水将脱硫后的煤浆分离。
这种工艺可以将煤中的无机硫去除约70%以上。
3. 燃煤脱硝工艺原理3.1 燃烧过程中的氮氧化物生成燃烧过程中的氮氧化物主要由氮气和氧气在高温条件下发生反应生成。
主要的生成途径包括热氧氮反应、燃料氮氧化、燃烧空气中的氮气氧化等。
3.2 脱硝工艺分类脱硝工艺主要分为选择性催化还原脱硝(SCR)和选择性非催化还原脱硝(SNCR)两种。
SCR是利用催化剂使氨气与烟气中的NOx发生反应生成氮气和水;SNCR则是通过向烟气中注入氨气等还原剂,在高温下直接还原NOx。
3.3 SCR脱硝工艺原理SCR脱硝工艺主要基于氨气和NOx的催化反应。
在SCR反应器中,烟气经过催化剂床层,与氨气发生催化反应生成氮气和水。
脱硫脱硝使用的工艺方法和原理脱硫脱硝是工业生产过程中常用的空气污染治理方法之一,其目的是减少废气中的二氧化硫和氮氧化物的排放。
本文将介绍脱硫脱硝使用的工艺方法和原理。
一、脱硫工艺方法和原理脱硫工艺主要包括湿法脱硫和干法脱硫两种方法。
1. 湿法脱硫湿法脱硫是指将含有二氧化硫的废气通过吸收剂进行处理,使二氧化硫与吸收剂发生反应生成硫酸盐,从而达到脱硫的目的。
常用的湿法脱硫方法有石灰石石膏法、氨法和碱液吸收法等。
(1)石灰石石膏法石灰石石膏法是利用石灰石和水合钙石膏作为吸收剂,与二氧化硫发生反应生成硫酸钙。
其原理是在吸收剂中加入一定量的水,形成氢氧化钙和二氧化硫的反应产物,进而生成硫酸钙。
脱硫反应的化学方程式为:CaCO3 + H2O + SO2 → CaSO4·2H2O(2)氨法氨法是利用氨与二氧化硫发生反应生成硫酸铵,从而实现脱硫的目的。
氨法脱硫工艺中,废气通过喷淋装置与氨水进行接触,二氧化硫与氨水中的氨发生反应生成硫酸铵。
脱硫反应的化学方程式为:2NH3 + SO2 + H2O → (NH4)2SO3(3)碱液吸收法碱液吸收法是利用氢氧化钠或氢氧化钙作为吸收剂,将二氧化硫吸收生成硫代硫酸盐。
脱硫反应的化学方程式为:2NaOH + SO2 → Na2SO3 + H2O2. 干法脱硫干法脱硫是指将含有二氧化硫的废气通过固体吸附剂或催化剂进行处理,使二氧化硫与吸附剂或催化剂发生反应生成硫酸盐或硝酸盐,从而实现脱硫的目的。
干法脱硫方法主要有活性炭吸附法和催化剂脱硝法等。
(1)活性炭吸附法活性炭吸附法是将废气通过活性炭床层,利用活性炭对二氧化硫的吸附作用,将其从废气中去除。
活性炭具有高比表面积和孔隙结构,能够吸附废气中的二氧化硫,达到脱硫的效果。
(2)催化剂脱硝法催化剂脱硝法是利用催化剂催化氨与氮氧化物反应生成氮和水,从而实现脱硝的目的。
常用的催化剂有铜铁催化剂和钒钨催化剂等。
催化剂脱硝反应的化学方程式为:4NH3 + 4NO + O2 → 4N2 + 6H2O二、总结脱硫脱硝是减少工业废气中二氧化硫和氮氧化物排放的重要方法。
工艺脱硝原理的解释工艺脱硝是一种常用的空气污染治理技术,用于去除燃煤电厂、工业锅炉等设备排放的氮氧化物(NOx)。
这些氮氧化物对大气环境和人体健康都有一定的危害,因此进行脱硝处理是非常重要的。
一、工艺脱硝的基本原理工艺脱硝主要采用还原剂与氮氧化物发生化学反应的原理。
其中,还原剂通过与氮氧化物发生反应,将其转化为氮气和水蒸气,从而达到去除氮氧化物的目的。
这种还原反应的主要方程式为:NO + NH3 + O2 → N2 + H2O即氮氧化物(NO)与氨(NH3)在氧气(O2)的存在下发生反应,生成氮气和水蒸气。
二、工艺脱硝的几种常见方法工艺脱硝有多种方法,其中一些常见的方法包括选择性催化还原法(SCR)、非选择性催化还原法(SNCR)和氨水洗涤法。
1. 选择性催化还原法(SCR)SCR是工艺脱硝中应用最广泛的方法之一。
在SCR系统中,将还原剂氨气注入烟气中,然后通过催化剂(通常为钒、钼或钛催化剂)的作用,在一定的温度范围内催化氮氧化物和氨气的反应。
这种方法具有高脱硝效率和稳定性,能够将氮氧化物的排放浓度降低到较低水平。
2. 非选择性催化还原法(SNCR)SNCR方法是一种基于瞬时温度高峰的原理,通过在烟气中喷射尿素或氨水等还原剂,使其在高温下与氮氧化物发生反应。
这种方法的脱硝效率对温度变化较为敏感,需要确保适当的温度窗口才能达到较高的脱硝效果。
3. 氨水洗涤法氨水洗涤法是基于溶液吸收原理进行脱硝的方法。
在该方法中,烟气通过一个喷淋装置,与注入的氨水溶液进行充分接触和反应。
在这个过程中,氨水中的氨与氮氧化物发生化学反应,形成难溶于水的氨酸盐或亚硝酸盐沉淀,从而实现脱硝的目的。
三、工艺脱硝的优缺点工艺脱硝技术具有以下优点:1. 高效脱硝:工艺脱硝能够将燃煤电厂和工业锅炉等设备排放的氮氧化物降低到较低水平,从而大大减少对大气环境的污染。
2. 灵活性:根据不同的应用场景和要求,可以选择不同的脱硝方法,以达到最佳的脱硝效果。
SCR脱硝技术工艺及应用SCR脱硝技术是目前应用最广泛的烟气脱硝技术之一。
其原理是在催化剂的作用下,还原剂(液氨)与烟气中的氮氧化物反应生成无害的氮和水。
SCR脱硝工艺流程主要包括还原剂的准备、烟气预处理、催化剂床层和烟气净化四个步骤。
SCR脱硝技术具有脱硝效率高、运行可靠、便于维护等优点,但也存在催化剂失活和尾气中残留等缺点。
SCR脱硝技术的应用范围广泛,包括火电厂、钢铁厂、化工厂等。
1. SCR脱硝技术原理SCR脱硝技术的原理是在催化剂的作用下,还原剂(液氨)与烟气中的氮氧化物(NOx)反应生成无害的氮和水。
还原剂与NOx的反应原理还原剂与NOx的反应可以表示为以下化学方程式:4NH3 + 4NO + O2 → 6H2O + 4N2该反应是可逆反应,需要在一定的温度和压力下进行。
在催化剂的作用下,该反应可以向右进行,生成无害的氮和水。
催化剂的作用催化剂是SCR脱硝技术的关键。
催化剂可以降低反应的活化能,从而提高反应的速率。
目前,SCR脱硝技术中常用的催化剂有三元催化剂和二元催化剂。
三元催化剂由钒(V)、钼(Mo)和铌(Nb)等金属组成。
二元催化剂由钒(V)和钼(Mo)等金属组成。
反应温度和压力的影响反应温度和压力对SCR脱硝技术的影响较大。
反应温度越高,反应速率越快,但催化剂的活性越低。
反应压力越高,反应速率越快,但催化剂的寿命越短。
一般来说,SCR脱硝技术的反应温度范围为300-400℃,压力范围为1-2MPa。
2. SCR脱硝工艺流程SCR脱硝工艺流程主要包括还原剂的准备、烟气预处理、催化剂床层和烟气净化四个步骤。
还原剂的准备还原剂通常为液氨。
液氨由氨罐储存,在进入SCR系统之前需要进行蒸发。
烟气预处理烟气预处理的目的是去除烟气中的杂质,以提高催化剂的活性和使用寿命。
烟气预处理通常包括以下步骤:酸碱洗涤:去除烟气中的酸性和碱性物质。
干燥:去除烟气中的水分。
除尘:去除烟气中的粉尘。
催化剂床层催化剂床层是SCR脱硝技术的核心部分。
脱硝原理简介由于炉内低氮燃烧技术的局限性, 对于燃煤锅炉,采用改进燃烧技术可以达到一定的除NO x 效果,但脱除率一般不超过60%。
使得NO x 的排放不能达到令人满意的程度,为了进一步降低NO X 的排放,必须对燃烧后的烟气进行脱硝处理。
目前通行的烟气脱硝工艺大致可分为干法、半干法和湿法3 类。
其中干法包括选择性非催化还原法( SNCR) 、选择性催化还原法(SCR) 、电子束联合脱硫脱硝法;半干法有活性炭联合脱硫脱硝法;湿法有臭氧氧化吸收法等。
就目前而言,干法脱硝占主流地位。
其原因是:NOx 与SO 2相比,缺乏化学活性,难以被水溶液吸收;NOx 经还原后成为无毒的N 2 和O 2,脱硝的副产品便于处理;NH 3 对烟气中的NO 可选择性吸收,是良好的还原剂。
湿法与干法相比,主要缺点是装置复杂且庞大;排水要处理,内衬材料腐蚀,副产品处理较难,电耗大(特别是臭氧法)。
一、我公司所用脱硝系统简介目前安装的脱硝系统为东锅股份有限公司下属环保工程分公司的产品。
设计烟气量为2×1717904m 3/H,SCR安装方式为高含尘烟气段布置,采用触媒为蜂窝式。
采用德国鲁奇能源环保股份有限公司(LEE)的SCR技术。
二、SCR 法原理简介SCR(Selective Catalytic Reduction)——选择性催化还原法脱硝技术是用氨催化还原促使烟气中NOx大幅度净化的方法(通常在低NOx燃烧技术基础上的后处理),以满足日趋严格的NOx排放标准,是目前国际上应用最为广泛的烟气脱硝技术。
SCR的发明权属于美国,而日本率先于20世纪70年代实现其商业化应用,目前该技术在发达国家已经得到了比较广泛的应用。
日本有93%以上的废气脱硝采用SCR,运行装置超过300套。
德国于20世纪80年代引进该技术,并规定发电量50 MW以上的电厂都得配备SCR装置。
台湾有100套以上的SCR装置在运行,它没有副产物,不形成二次污染,装置结构简单,并且脱除效率高(可达90%以上),运行可靠,便于维护等优点。
【最新】脱硝原理详情介绍SNCR脱硝原理:SNCR脱硝技术是将NH3、尿素等还原剂喷入锅炉炉内与NO_进行选择性反应,不用催化剂,因此必须在高温区加入还原剂。
还原剂喷入炉膛温度为850~1100℃的区域,迅速热分解成NH3,与烟气中的NO_反应生成N2和水,该技术以炉膛为反应器。
SNCR烟气脱硝技术的脱硝效率一般为30%~80%,受锅炉结构尺寸影响很大。
采用SNCR技术,目前的趋势是用尿素代替氨作为还原剂。
1、技术原理在850~1100℃范围内,NH3或尿素还原NO_的主要反应为:NH3为还原剂4 NH3 + 4NO +O2→ 4N2 + 6H2O尿素为还原剂NO+CO(NH2)2+1/2O2 → 2N2 + CO2 + H2O2、系统组成SNCR系统烟气脱硝过程是由下面四个基本过程完成:接收和储存还原剂;在锅炉合适位置注入稀释后的还原剂;还原剂的计量输出、与水混合稀释;还原剂与烟气混合进行脱硝反应。
3、技术特点技术成熟可靠,还原剂有效利用率高系统运行稳定设备模块化,占地小,无副产品,无二次污染4、脱硝系统基本流程和添加剂效果基于纯氨、氨水和尿素的溶液(比如satamin和carbamin二次添加剂)目前在很大程度上比较流行。
通过选择性非催化还原法,氨基在800℃-1050℃时NO生成氮气和水蒸气: NH2+NO _lt;=_gt;H2O+N2,当使用含氨化合物的水溶液时,化合物分解就会释放出氨气。
换言之,只有在雾化流体蒸发后氨气才可以从含氨化合物中挥发出来。
自由基之间的反应选择性并不是很强。
因此充足的脱除添加剂还是必要的。
5、流程设计和装置描述˙燃料添加剂贮存加料装置Satamin 添加剂是一种专利产品。
根据锅炉大小和每年的燃料消耗量,Satamin添加剂一般以每桶200,500和1000公升桶装形式供给。
对于大型装置,一般设置一个较大的储罐和加料控制器Satamin和Carbamin是低氨水溶液。
脱硝的原理与工艺是什么脱硝是指将烟气中的氮氧化物(NOx)按一定的方式和条件转化为无害物质的过程。
脱硝的原理一般分为催化法和非催化法两种方式,工艺主要有选择性催化还原法、非选择性催化还原法、吸收法、灭火加膨胀法等。
下面我将详细介绍这些原理和工艺。
1. 选择性催化还原法(SCR)选择性催化还原法是目前应用最广泛的脱硝技术之一。
其原理是通过加入氨气等还原剂,在SCR催化剂的作用下,将烟气中的NOx还原为氮(N2)和水(H2O),从而达到脱硝目的。
SCR技术有高温SCR和低温SCR两种情况。
高温SCR适用于烟气温度大约在350-400,低温SCR适用于烟气温度大约在200-300之间。
SCR工艺简单可靠,脱硝效率高,但对催化剂要求较高,操作条件复杂。
2. 非选择性催化还原法(SNCR)非选择性催化还原法是通过加入氨水、尿素等还原剂,在高温下,将烟气中的NOx与还原剂在SNCR催化剂的作用下发生化学反应,从而将NOx还原为氮(N2)和水(H2O)。
SNCR技术适用于烟气温度高于850的情况。
非选择性催化还原法工艺相对简单,对催化剂的要求较低,但其脱硝效率受到多种因素影响,如温度、还原剂的投入量、混合时间等。
3. 吸收法吸收法是通过将烟气通过吸收剂(如氨水、氨碱溶液)中,NOx会与吸收剂中的氨在催化助剂的作用下发生反应,生成沉淀物(氮化物)和水,从而实现脱硝。
吸收法适用于低浓度、高温、大气流量的烟气处理。
吸收法工艺相对简单、操作灵活,但对吸收剂和催化助剂的选择和控制要求较高。
4. 灭火加膨胀法灭火加膨胀法是通过在燃烧炉中加入含有无机物的还原剂,在高温下发生还原反应,并产生大量的气体,通过产生的气体将燃烧室内的氧气稀释,达到降低温度和减少NOx生成的目的。
灭火加膨胀法工艺操作简单,对设备要求不高,但脱硝效果不稳定,易受燃烧条件和氧化剂浓度等因素影响。
总的来说,不同的脱硝原理和工艺适用于不同的烟气温度、浓度和条件。
脱硫脱硝的工作原理
脱硫脱硝是一种常用的污染物处理技术,用于减少烟气中的二氧化硫和氮氧化物排放。
其工作原理如下:
1. 脱硫工作原理:
- 烟气进入脱硫系统后,通过喷淋或喷射装置喷洒脱硫剂,
通常使用石灰石(石灰)或石膏作为脱硫剂。
- 脱硫剂与烟气中的二氧化硫反应生成石膏(钙硫酸盐)或
硫酸钙,进而将二氧化硫转化为可固定的固体废物。
- 脱硫后的烟气经过除尘设备去除颗粒物后,排放到大气中。
2. 脱硝工作原理:
- 烟气进入脱硝系统后,通过催化剂(通常为钛硅材料等)
催化还原剂(如氨或尿素)来进行脱硝反应。
- 在催化剂的作用下,氨或尿素与烟气中的氮氧化物发生催
化还原反应,生成氮气和水蒸气,将氮氧化物转化为无害成分。
- 脱硝后的烟气经过除尘设备去除残余颗粒物后,排放到大
气中。
脱硫脱硝的工作原理主要是通过化学反应将有害污染物转化为无害成分或可固定的固体废物,从而减少烟气中的污染物排放,保护环境和人身健康。
需要注意的是,脱硫和脱硝通常是分别进行的工艺,但也有结合在一起的技术方法。
scr脱硝原理及工艺流程
SCR脱硝技术是一种炉后脱硝处理方法,其基本原理是在一定温度和催化剂的作用下,利用还原剂将烟气中的NOX选择性还原成无毒无污染的N2和H2O。
这种技术的催化剂能够降低分解反应的活化能,使反应温度降至150\~450℃,适应燃煤电厂的实际温度范围。
在SCR脱硝工艺流程中,还原剂(通常为氨水、液氨或尿素)通过罐装卡车运输并以液体形态储存于氨罐中。
液态氨在注入SCR系统烟气之前经由蒸发器蒸发气化,气化的氨和稀释空气混合,通过喷氨格栅喷入SCR反应器上游的烟气中。
在SCR反应器中,充分混合后的还原剂和烟气在催化剂的作用下发生反应,去除NOX。
此外,催化剂是SCR脱硝反应的核心,其质量和性能直接关系到脱硝效率的高低。
催化剂的性能(包括活性、选择性、稳定性和再生性)无法直接量化,而是综合体现在一些参数上,主要有:活性温度、几何特性参数、机械强度参数、化学成分含量、工艺性能指标等。
如需了解更多关于SCR脱硝原理及工艺流程的信息,建议咨询环保局或查阅相关文献资料,也可以咨询专业人士获取帮助。
尾气脱硝技术工艺尾气脱硝技术工艺是指通过对尾气进行处理,去除其中的氮氧化物(NOx)的一种技术。
尾气脱硝技术的应用可以有效减少空气污染物的排放,改善环境质量,保护人民群众的健康。
一、尾气脱硝技术的原理尾气脱硝技术的原理主要有选择性催化还原(SCR)和非选择性催化还原(SNCR)两种。
SCR技术是通过将氨水或尿素溶液喷入尾气中,经过催化剂的作用,将氮氧化物转化为氮气和水,从而实现脱硝的效果。
SNCR技术则是在高温下将氨水或尿素直接喷入尾气中,通过非选择性催化剂的作用,使氮氧化物发生还原反应,从而减少尾气中的氮氧化物含量。
二、尾气脱硝技术工艺流程尾气脱硝技术工艺一般包括催化剂选择、氨水或尿素喷射、反应器设计和催化剂再生等步骤。
1. 催化剂选择:选择合适的催化剂是尾气脱硝工艺的关键。
常用的催化剂有V2O5-WO3/TiO2、TiO2/WO3、TiO2/V2O5等。
催化剂的选择应根据尾气中氮氧化物的性质、温度和流量等因素进行。
2. 氨水或尿素喷射:氨水或尿素溶液是SCR和SNCR技术中的还原剂。
在催化剂前方的适当位置喷射氨水或尿素溶液,与尾气中的氮氧化物发生反应,将其转化为无害的氮气和水。
3. 反应器设计:反应器的设计应考虑到尾气的温度、压力和流量等因素。
合理的反应器设计可以提高尾气与还原剂的接触效率,提高脱硝效果。
4. 催化剂再生:催化剂在使用过程中会受到积灰和硫化物的污染,影响脱硝效果。
因此,需要定期对催化剂进行再生或更换,以保证其脱硝效果。
三、尾气脱硝技术的应用尾气脱硝技术广泛应用于发电厂、钢铁厂、水泥厂、化工厂等工业领域。
这些工业过程中会产生大量的尾气,其中含有大量的氮氧化物。
通过应用尾气脱硝技术,可以将尾气中的氮氧化物减少到国家排放标准以内,达到环保要求。
四、尾气脱硝技术的优势和挑战尾气脱硝技术具有以下优势:高效、可靠、经济、环保。
通过尾气脱硝技术,可以将尾气中的氮氧化物减少到较低水平,降低空气污染物的排放,改善环境质量。
脱硝工艺原理
脱硝工艺指的是将燃烧过程中生成的氮氧化物(NOx)通过一系列化学反应转化为氮气和水,从而降低空气中的NOx浓度的过程。
脱硝工艺主要是为了减少NOx对大气环境的污染,保护人类健康和环境的安全。
目前,针对燃烧过程中产生的NOx,常用的脱硝技术主要包括选择性催化还原(SCR)和非选择性催化还原(SNCR)两种。
选择性催化还原(SCR)脱硝工艺原理:
SCR脱硝是一种广泛应用于火力发电、油田开采、钢铁冶炼等众多领域的脱硝技术。
SCR是通过在燃烧过程后通入氨气(NH3)或尿素水(Urea Solution),将NOx与NH3在催化剂的作用下进行还原反应,生成氮气(N2)和水蒸气(H2O)的过程。
SCR脱硝的催化剂通常采用的是银钛型分子筛(TiO2-SiO2-Ag)或钒钛型分子筛(TiO2-V2O5)。
NOx和NH3在催化剂的作用下发生反应,首先NH3与NOx进行吸附,生成氨基氧化物(NH4NO3),然后NH4NO3在催化剂的作用下克隆炸药,释放氮气(N2)和水(H2O)。
SCR脱硝的主要优点在于脱硝效率高、副产物少、稳定性好。
但缺点是需要引入外部脱硝剂,增加了生产成本。
SCR脱硝适用于高温高压燃烧过程中对NOx进行脱硝。
SNCR是一种基于化学反应的脱硝技术,其主要原理是在燃烧过程中喷入还原剂,使还原剂与NOx发生化学反应,将其转化为氮氧化物(N2)和水(H2O)。
SNCR脱硝的还原剂可以是氨气或尿素水等化学品,我们都能做到。
通过改变还原剂的投放时间、投放位置和投放量等参数对SNCR脱硝进行调整和优化。
SNCR脱硝的优点在于系统简单、灵活性强、反应速度快、成本较低。
但其缺点是脱硝效率低、易产生二次污染等。
综上所述,SCR脱硝和SNCR脱硝是两种主要的脱硝技术,它们各自有其优缺点。
针对不同的应用场景,我们应该选择合适的脱硝技术,以最大程度减少NOx排放,保障人类健康和环境的安全。