两数相乘各种简便计算方法和各种图形计算公式
- 格式:doc
- 大小:300.05 KB
- 文档页数:33
五年级数学上册计算题简便方法1. 乘法分配律:对于形如ax+b 的表达式,我们可以将其转换为(a+b)x。
例如:2x+3 我们可以转换为(2+3)x = 5x。
2. 提取公因数:对于两个或多个数的乘积,我们可以提取出它们的公因数。
例如:3×4x + 4×5x 可以提取公因数x,得到x(3×4 + 4×5)。
3. 分数乘法:分数的乘法可以转换为分子乘分子、分母乘分母。
例如:(5/6) × (3/4) = (5×3)/(6×4)。
4. 分数除法:分数的除法可以转换为乘以倒数。
例如:5/6 ÷ 3/4 = 5/6 × 4/3。
5. 约分:当两个分数有公因数时,我们可以约分,使它们变得更容易计算。
例如:12/16 可以约分为3/4。
6. 分数的加法和减法:对于相同的分母,我们只需将分子相加或相减。
例如:5/6 + 3/6 = (5+3)/6 = 8/6 = 4/3。
7. 平方和公式:(a+b)^2 = a^2 + 2ab + b^2。
8. 平方差公式:(a-b)^2 = a^2 - 2ab + b^2。
9. 几何图形的面积和体积公式:例如长方形、正方形、三角形、圆柱体等都有自己的面积和体积公式,掌握这些公式对于解题很有帮助。
10. 利用格子进行计算:对于一些难以计算的分数或小数,我们可以将其画在格子纸上,然后根据格子进行计算。
这种方法尤其适用于解决分数问题。
为了帮助五年级学生掌握这些方法,教师可以在课堂上进行讲解、演示和练习。
同时,也可以鼓励学生使用这些方法解决实际问题,以加深对数学概念和方法的理解。
【学霸笔记】四年级下册数学同步重难点讲练第6章运算律第3课时乘法分配律以及相关的简便计算1、两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再把所得的积相加。
用字母表示为:(a+b)×c=a×c+b×c。
2、应用乘法分配律:两个数相乘,如果有一个数接近整百数,可以先将这个数转化成整百数加或减一个数的形式,再应用乘法分配律进行计算。
3、应用乘法分配律逆运算:当两积之和的算式里有一个乘数相同,另外两个乘数相加可凑成整十、整百数时,可以逆向应用乘法分配律算出结果,使计算简便。
4、用两种方法解决相遇问题(1)画图的方法可将题意形象地展示出来,同时也能准确地反映出数量关系,所求问题易于发现并解答。
(2)列表的方法清晰明了地表达了信息及其相互的联系,便于分析、比较。
【例1】两个数的和乘一个数,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
这个规律叫作乘法分配律,用字母表示为a×(b+c)=ab+ac。
【分析】乘法分配律的概念为:两个数的和乘另一个数,等于把这个数分别同两个加数相乘,再把两个积相加,得数不变,用字母表示:a×(b+c)=ab+ac;据此填空即可。
【解答】解:两个数的和乘一个数,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
这个规律叫作乘法分配律,用字母表示为a×(b+c)=ab+ac。
故答案为:相乘,相加,乘法分配律,a×(b+c)=ab+ac。
【点评】本题主要考查了学生对于乘法分配律的理解和掌握情况。
【例2】在“□”里填上合适的数或字母。
(53+25)×2=□×□+□×□152×6+48×6=(□+□)×□(m+n)×9=m×□+□×□a×36+a×64=□×(□+□)【分析】根据乘法分配律:两个数的和乘另一个数,等于把这个数分别同两个加数相乘,再把两个积相加,得数不变,用字母表示:a×(b+c)=ab+ac;据此填空即可。
初中数学变形公式初中数学中,变形公式是解决问题的重要工具之一。
通过变形,可以对数学式子进行等价转换,从而解决各种数学问题。
本文将介绍几个常见的初中数学变形公式,并结合实际问题进行解析。
一、代数式的变形公式1. 同底数幂相除:对于任意正整数a和b,以及任意正整数m和n,有a^m / a^n = a^(m-n)。
这个公式可以用来简化同一底数的幂的计算。
例如,计算2^5 / 2^3,根据公式,可以将分子和分母的指数相减,得到2^(5-3) = 2^2 = 4。
2. 同底数幂相乘:对于任意正整数a和b,以及任意正整数m和n,有a^m * a^n = a^(m+n)。
这个公式可以用来简化同一底数的幂的计算。
例如,计算3^2 * 3^4,根据公式,可以将指数相加,得到3^(2+4) = 3^6 = 729。
3. 同底数幂的乘方:对于任意正整数a,以及任意正整数m、n和k,有(a^m)^n = a^(m*n)。
这个公式可以用来简化幂的乘方的计算。
例如,计算(2^3)^2,根据公式,可以将指数相乘,得到2^(3*2) = 2^6 = 64。
4. 二次根式的化简:对于任意非负实数a和b,有√(a*b) = √a * √b。
这个公式可以用来简化二次根式的计算。
例如,计算√(9*16),根据公式,可以将根号内的乘积分解为两个独立的根号,得到√9 * √16 = 3 * 4 = 12。
二、方程的变形公式1. 移项法则:对于任意方程a*x + b = c,可以将等式两边同时加上(或减去)一个数,从而改变方程的形式。
例如,对于方程2*x + 3 = 7,可以将等式两边同时减去3,得到2*x = 4。
2. 相等法则:对于任意方程a*x = b,如果两边分别加上(或减去)相同的数,仍然保持相等。
例如,对于方程2*x = 4,可以将等式两边同时加上3,得到2*x + 3 = 7。
3. 倍数法则:对于任意方程a*x = b,如果两边同时乘以(或除以)相同的非零数,仍然保持相等。
小学数学解题思路技巧(三年级用)第一章整数的计算整数的计算,不仅要掌握整数的加、减、乘、除的四则运算,而且还要掌握各种运算定律和性质,更要掌握各种计算技巧,只有这样才能快速、准确地求出结果。
§1.1 凑整速求和[知识要点]加法的运算定律有:1.加法的交换律。
两个数树相加,交换它们的位置,和不变。
2.加法的结合律。
三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,再和第一个数相加,它们的和不变。
[范例解析]例1计算:8+23+44+92+56+77。
分析如果将此题从头到尾逐项相加,也可得到答案,但不如分组求和相加简单。
首先注意到:8+92 = 100,23+77 = 100,44+56 = 100,于是很快就有答案了。
解答原式=(8+92)+(23+77)+(44+56)= 100+100+100= 300。
例2计算:3+68+22+31+69+97。
分析注意到:3+97 = 100,68+22 = 90,31+69 = 100。
先分组,再求和。
解答原式=(3+97)+(68+22)+(31+69)= 100+90+100= 290。
例3计算:7+71+642+1025+3+975+358+29。
分析此题中7+3 = 10,71+29 = 100,642+358 = 100,1025+975 = 2000。
先分组,再求和。
解答原式=(7+3)+(71+29)+(642+358)(1025+975)= 10+100+1000+2000= 3110。
例4计算:1081+398+295+19+7。
分析此题除了1081+19 = 1100外,不好分组凑整了。
但我们可以把7拆成2+5,并注意到398+2 = 400,295+5 = 300,仍可得到快速求解。
解答原式=(1081+19)+(398+2)+(295+5)= 1100+400+300= 1800。
例5计算:8+98+998+9998+99998。
小学数学公式概念大全 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】小学数学概念大全一、图形计算公式。
三角形的面积=底×高÷2。
公式 S= a×h÷2三角形的高=面积×2÷底公式 h=S×2÷a三角形的底=面积×2÷高公式 a=S×2÷h正方形的周长=边长×4 公式 C=4a长方形的周长=(长+宽)×2 公式 C=(a+b) ×2正方形的面积=边长×边长公式 S= a×a长方形的面积=长×宽公式 S= a×b平行四边形的面积=底×高公式 S= a×h梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式 V=abh长方体(或正方体)的体积=底面积×高公式V=abh正方体的体积=棱长×棱长×棱长公式V=aaa=a3长方体的表面积=(长×宽+长×高+宽×高)×2 公式 S表=(a×b+a×h+b×h)×2正方体的表面积=棱长×棱长×6 公式 S表=a×a×6圆的周长=直径×π公式C=πd=2ππ面积=半径×半径×π公式S=ππ2圆柱的侧面积:圆柱的侧面积等于底面的周长乘高。
公式 S=ch=πdh=2ππ h 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式 S=ch+2s=ch+2ππ2圆柱的体积:圆柱的体积等于底面积乘高公式 V=Sh圆锥的体积=π=底面积×高÷3 公式 V=Sh÷3二、算术方面。
人教版数学四年级下册期末复习知识要点汇总第一单元四那么运算1、力口、减的意义和各局部间的关系(1)把两个数合并成一个数的运算,叫做加法.(2)相加的两个数叫做加数.加得的数叫做和.(3)两个数的积与其中的一个加数,求另一个加数的运算,叫做减法.(4)在减法中,的和叫做被就减数…….减法是加法的逆运算.(5)加法各局部间的关系:和二加数十加数加数二和—另一个加数(6)减法各局部间的关系:差=被减数-减数减数二被减数-差被减数=减数十差2、乘、除法的意义和各局部间的关系(1)求几个相同加数的和和的简便运算,叫做乘法.(2)相乘的两个数叫做因数.乘得的数叫做积.(3)两个因数的积与其中一个因数,求另一个因数的运算,叫做除法.(4)在除法中,的积叫做被除数…….除法是乘法的逆运算.(5)乘法各局部间的关系:积二因数X因数因数二积+另一个因数(6)除法各局部间的关系:商二被除数+除数除数二被除数x商被除数二商X除数(7)有余数的除法,被除数二商X除数+余数3、加法、减法、乘法、除法统称为四那么运算4、四那么混和运算的顺序〔1〕在没有括号的算式里,如果只有加、减法,或者只有乘、除法, 都要按〔从左往右〕的顺序计算;〔2〕在没有括号的算式里,如果既有乘、除法,又有加、减法,要先算〔乘、除法〕, 后算〔加、减法〕;〔先乘除,后加减〕〔3〕在有括号的算式里,要先算括号里面的,后算括号外面的.5、有关0的计算①一个数和0相加,结果还得原数:a + 0 =a 0 + a = a②一个数减去0,结果还得这个数:a — 0 = a③一个数减去它自己,结果得零:a — a = 0④一个数和0相乘,结果得0:a x 0 = 0 ; 0 x a = 0⑤0除以一个非0的数,结果得0:0 + a = 0⑥0不能做除数:a+0 =〔无意义〕6、租船问题.解答租船问题的方法:先假设、再调整.第二单元观察物体二1、正确识别从上面、前面、左面观察到物体的形状.2、观察物体有诀窍,先数看到几个面,再看它的排列法,画图形时要注意,只分上下画数量.3、从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样.4、从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样.5、从不同的位置观察,才能更全面地熟悉一个物体.第三单元运算定律1、加法运算定律:①加法交换律:两个数相加,交换加数的位置,和不变.a+b=b+a②加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变.(a +b) +c = a + (b + c)③加法的这两个定律往往结合起来一起使用.如:165+93+35 = 93+ ( 165+35)2、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和.a—b —c = a —(b + c)3、乘法运算定律:①乘法交换律:两个数相乘,交换因数的位置,积不变.ax b = bx a②乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变.(a x b) x c = a x (b x c)乘法的这两个定律往往结合起来一起使用.如:125X78X 8的简算.③乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加.(a+b) Xc = aXc + bXc 4、连除的性质:一个数连续除以两个数,等于除以这两个数的积.a+b + c = a + (b x c)5、有关简算的拓展: 102X38 — 38X2 125X25X32 37X96+37X3+37 125X88 3.25+1.98 10.32 —1.98易错的情况:0.6+0.4-0.6+0.4 38X99+99第四单元小数的意义和性质1、在进行测量和计算时,往往不能正好得到整数的结果,这时常用〔小数〕来表示.分母是10、100、1000……的分数可以用〔小数〕来表示;分母是10的分数可以写成〔一位〕小数,分母是100的分数可以写成〔两位〕小数,分母是1000的分数可以写成〔三位〕小数……所以,一位小数表示〔十分〕之几,两位小数表示〔百分〕之几,三位小数表示〔千分〕之几……如:0.5表示〔十分之五〕,0.05表示〔百分之五〕,0.25表示〔百分之二十五〕,0.005表示〔千分之五〕,0.025表示千分之二十五〕.2、小数点前面的数叫小数的〔整数〕局部,小数点后面的数叫小数的〔小数〕局部,3、小数点后面第一位是〔十〕分位,十分位的计数单位是十分之一,又可以写作0.1 ;小数点后面第二位是〔百〕分位,百分位的计数单位是百分之一,又可以写作0.01 ;小数点后面第三位是〔千〕分位,千分位的计数单位是千分之一,又可以写作0.001……如:20.375,十分位上的3,表示3个〔十分之一〕;百分位上的7,表示7个〔百分之一〕;千分位上的5,表示5个〔千分之一〕.4、小数每相邻两个计数单位间的进率都是10, 〔10个千分之一是1个百分之一,10个百分之一是1个十分之一,10个十分之一是整数1 ,或10个0.001是1个0.01 ,10个0.01 是1个0.1, 10个0.1是整数1……5、读小数时,整数局部根据整数的读法去读,小数点读作“点〞,小数局部要依次读出每一个数字.如:31.031 读作:^一点零三一6、写小数时,整数局部根据整数的写法来写,小数点写在个位的右下角,小数局部要依次写出每一个数位上的数字.如:一百二十点零零九八写作:120.00987、在小数的末尾添上“ 0〞或去掉“ 0〞,小数的大小不变,这叫小数的性质.如:0.2= 0.20 = 0.200 =0.2000 = ……1.05=1.050 =0.0500 =0.0500= ……1.080=1.0810.0800=10.08100.080000= 100.088、小数大小的比拟:先比拟整数局部,整数局部大,那个小数就大;整数局部相同,就比拟小数局部,十分位相同,就比拟百分位,百分位也相同,就比拟千分位……9、小数点的移动:〔1〕小数点向右:移动一位,相当于把原数乘10,小数就扩大到原数的10倍;移动两位,相当于把原数乘100,小数就扩大到原数的100倍;移动三位,相当于把原数乘1000 , 小数就扩大到原数的1000倍……〔2〕小数点向左:移动一位,相当于把原数除以 10,小数就缩小到原来的1/10 ;移动两位,相当于把原数除以100 ,小数就缩小到原来的1/100 ;移动三位,相当于把原数除以 1000,小数就缩小到原来的1/1000…… 10、不同数量单位的数据之间的改写: 低级单位数+进率=高级单位数 X当进率是10、100、1000……时,可以直接利用小数点的移动来换算.11、求近似数时:保存整数,就是精确到个位,看十分位上的数来四舍五入;保存一位小数,就是精确到十分位,看百分位上的数来四舍五入;保存两位小数,就是精确到百分位,看千分位上的数来四舍五入.〔表示近似数时小数末尾的 0不能去掉〕 12、为了读写方便,常常把非整万或整亿的数改写成用“万〞或“亿〞作单位的数:改写 时,只要在万位或亿位的右边,点上小数点,在数的后面加上“万〞字或“亿〞字.第五单元三角形1、由三条线段围成〔每相邻两条线段的端点相连〕的图形叫三角形.如:2、从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高. 这条对边叫做三角形的底.如:每个三角形都有三个顶点,三条 底边和对应的三条高.,3、三角形具有稳定性.4、三角形任意两边的和大于第三边,任意两边的差小于第三边.顶点5、三角形按角分类,可以分为锐角三角形、直角三角形和钝角三角形这三类;如:7、三角形的三个内角和是18008,在等腰三角形中:底角二(180.-顶角)- 2 顶角=建0.-底角乂2 如:番=180B-150fl/ 中=30T=30w/ LH£.________ H A9.在T等边三角形里,三条边长度相等,三个角都等于00c5Y10.两个完全一样加三角形可以拼成一个平行四道形,一个平行四也形可以切割成两个完全. 一一__第六单元小数的加减法1、笔算小数加、减法的方法:(1)小数点对齐,也就是相同数位对齐;(2)从末位算起,算加法时,哪一位数相加满十都要向前一位进 1 ;算减法时,哪一位不够减就要从前一位退1.(3)得数末尾有0, 一般要把0去掉.(4)不要忘记了小数点.2、小数加减混合运算的顺序与整数加减混合运算的顺序相同:(1)没有括号,按从左往右的顺序依次计算;(2)有小括号,要先算小括号里面的.3、整数的运算定律在小数运算中同样适用.在小数四那么运算中,恰当地运用加法交换律、结合律及连减的运算性质会使计算更简便.5 . 一个整数与一个小数相加减时:①先在整数的右边点上小数点;②再添上与另一个小数局部同样多个数的0;③然后再根据小数加减法的计算方法计算.6.得数是小数时,(末尾)的0 一般要去掉.7、验算:加法验算:①交换加数的位置再加一遍,看结果与原来是否相同;②用减法,把和减去一个加数,看差是否与另一个加数相同.减法验算:①用加法,把减数与差相加,看结果是否等于被减数;②用减法,把被减数减去差,看是否等于减数.应用整数运算定律进行小数的简便计算:整数运算定律在小数运算中同样适用.在小数四那么运算中,恰当地运用加法(交换律)、(结合律)及减法的运算性质会使计算更简便.8、简便运算方法:⑴ 几个小数连加时,如果其中的两个小数的尾数相加能凑整,先把这两个数相加,可使计算简便;如:0.36+18.09+2.64+4.91⑵一个数连续减去两个小数时,如果这两个小数相加的和能凑整,可以先把两个减数相加, 再从被减数里减去这两个减数的和比拟简便;如:13.2-5.73-4. 27⑶一个数减去两个小数的和,当这两个数中的一个数的小数局部与被减数的小数局部相同时,可以先从被减数里减去这个数,然后再减去另一个数,计算比拟简便.如:18.63- 〔4.75+3.63 〕⑷ 整数乘法的运算定律在小数乘法中同样适用如:3.65 X 42.6+3.65 X 57.4⑸在小数运算中,可以利用〔添括号〕或〔去括号〕使计算简便:一无论是去括号或添括号①括号前面是加号,去掉括号不变号;如:6.59-4.86+2.86②括号前面是减号,去掉括号全变号〔加号变减号,减号变加号〕.如:6.47-〔1.5-0.53〕⑹在没有括号的同级运算中,交换数据的位置,一定要带着它前面的符号.如:4.95-2.67+1.05第七单元图形的运动二1、把一个图形沿着某一条直线对折,如果直线两旁的局部能够完全重合,我们就说这个图形是轴对称图形,这条直线叫做这个图形的对称轴.2、轴对称的性质:对应点到对称轴的距离都相等.3、对称轴是一条直线,所以在画对称轴时,要画到图形外面,且要用虚线.4、正方形的对角线所在的直线是它的对称轴. 轴对称图形可以有一条或几条对称轴.5、画对称轴时,先找到与相反方向距离对称轴相同的对应点,最后连线.6、长方形、正方形、等腰梯形、等腰三角形、等边三角形、线段、菱形都是轴对称图形. 长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,等腰三角形有一条对称轴,等边三角形有3条对称轴,线段有1条对称轴,菱形有2条对称轴,圆有无数条对称轴,半圆有一条,圆环有无数条,半圆环有一条.7、平行四边形不是轴对称图形, 没有对称轴.(长方形和正方形除外)8、梯形不一定是轴对称图形.只有等腰梯形是轴对称图形.9、古今中外,许多著名的建筑就是对称的.比方:中国的赵州桥,印度泰姬陵,英国塔桥,法国埃菲尔铁塔.10、平移先找图形点,平移完点连起来,注意数点数要数十字.11、平移不改变图形的大小、形状,只改变图形的位置.12、利用平移,可以求出不规那么图形的面积.第八单元平均数和条形统计图平均数:1 .求平均数的方法:(1)数据较少:移多补少法.(2)常用方法:先合后分计算:总数+份数=平均数2 .平均数能清楚地表示一组数据的整体水平.条形统计图:将两个单式条形统计图合并以后就得到一个复式条形统计图.复式条形统计图要有图例.复式条形统计图有横向和纵向两种.复式条形统计图是用两个单位长度表示一个的数量,根据数量的多少画成长短不同的直条, 怎样画横向复式条形统计图1 .准备尺子,铅笔,橡皮等画图工具.2 .注意写单位,画中坐标和横坐标还有日期名字还有横坐标上的“0〞3 .假设位置有限,例如说0到10,到20,假设你写到200,位置绝对有限,你可以在上面画波浪线,然后写100 (当然其他数也可以,但最标准的还是画闪电线).4 .例如上图两者要有不同的颜色,假设没有色笔,第一个可以画斜线,第二个可以涂得严5 .在每个图的下方都要写标题.复式条形统计图:【特点】用直条的长短表示数量的多少.【优点】能清楚地看出数量的多少,便于比拟两组数据的多少.后把这些直条按一定的顺序排列起来.从复式条形统计图中很容易看出两者数量的多少.第九单元数学广角-鸡兔同笼1、鸡兔同笼属于假设问题,假设的和最后结果相反.2、“鸡兔同笼〞问题的解题方法假设法:①假设都是兔②假设都是鸡③古人“抬脚法〞:解答思路:假设每只鸡、每只兔各抬起一半的脚,那么每只鸡就变成了“独脚鸡〞,每只兔就变成了“双脚兔〞.这样,鸡和兔的脚的总数就少了一半.这种思维方法叫化归法.3、公式:鸡兔总脚数+ 2—鸡兔总数=兔的只数;鸡兔总数一兔的只数=鸡的只数.。
计算公式1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽 S=ab4、正方形的面积=边长×边长 S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高 S=ah7、梯形的面积=(上底+下底)×高÷ 2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径× 2 c=πd =2πr10、圆的面积=圆周率×半径×半径 ?=πr11、长方体的表面积=(长×宽+长×高+宽×高)× 212、长方体的体积 =长×宽×高 V =abh13、正方体的表面积=棱长×棱长× 6 S =6a14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高 S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2)+2π(d÷2)h=2π(C÷2÷π) +Ch17、圆柱的体积=底面积×高 V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷ 3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3 19、长方体(正方体、圆柱体)的体1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形 C周长 S面积 a边长周长=边长× 4C=4a 面积=边长×边长 S=a×a2 、正方体 V:体积 a:棱长表面积=棱长×棱长× 6 S表=a ×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长 S面积 a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积 s:面积 a:长 b: 宽 h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积 a底 h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积 a底 h高面积=底×高s=ah7 梯形s面积 a上底 b下底 h高面积=(上底+下底)×高÷2s=(a+b)×h÷28 圆形S面积 C周长∏ d=直径 r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积 h:高s;底面积 r:底面半径体积=底面积×高÷ 3总数÷总份数=平均数和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距- 1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距- 1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)时间单位换算1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时 1时=60分1分=60秒 1时=3600秒积=底面积×高 V=Sh第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变.2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变.3、乘法交换律:两数相乘,交换因数的位置,积不变.4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变. O除以任何不是O的数都得O.简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾.7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式.等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立.8、什么叫方程式?答:含有未知数的等式叫方程式.9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式.学会一元一次方程式的例法及计算.即例出代有χ的算式并计算.10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数.11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减. 12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母.15、分数除以整数(0除外),等于分数乘以这个整数的倒数.16、真分数:分子比分母小的分数叫做真分数.17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于 1.18、带分数:把假分数写成整数和真分数的形式,叫做带分数.19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数0除外),分数的大小不变.20、一个数除以分数,等于这个数乘以分数的倒数.21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数. 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.分数的乘法则:用分子的积做分子,用分母的积做分母. 22、什么叫比:两个数相除就叫做两个数的比.如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变.23、什么叫比例:表示两个比相等的式子叫做比例.如3:6=9:1824、比例的基本性质:在比例里,两外项之积等于两内项之积.25、解比例:求比例中的未知项,叫做解比例.如3:χ=9:1826、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系.如:y/x=k(k一定)或kx=y27、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系.如:x×y = k( k一定)或k / x = y28、百分数:表示一个数是另一个数的百分之几的数,叫做百分数.百分数也叫做百分率或百分比.29、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号.其实,把小数化成百分数,只要把这个小数乘以100%就行了.30、把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位.31、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数.其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了. 32、把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数.33、要学会把小数化成分数和把分数化成小数的化发.34、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数.(或几个数公有的约数,叫做这几个数的公约数.其中最大的一个,叫做最大公约数.)35、互质数:公约数只有1的两个数,叫做互质数.36、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数.37、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分.(通分用最小公倍数)38、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分.(约分用最大公约数)39、最简分数:分子、分母是互质数的分数,叫做最简分数.40、分数计算到最后,得数必须化成最简分数.41、个位上是0、2、4、6、8的数,都能被2整除,即能用2进行42、约分.个位上是0或者5的数,都能被5整除,即能用5进行约分.在约分时应注意利用.43、偶数和奇数:能被2整除的数叫做偶数.不能被2整除的数叫做奇数.44、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数).45、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数.1不是质数,也不是合数.46、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)47、利率:利息与本金的比值叫做利率.一年的利息与本金的比值叫做年利率.一月的利息与本金的比值叫做月利率.48、自然数:用来表示物体个数的整数,叫做自然数.0也是自然数.49、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数.如3. 14141450、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数.如圆周率: 3. 14159265451、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数.如3.141592654,,52、什么叫代数? 代数就是用字母代替数.53、什么叫代数式?用字母表示的式子叫做代数式.如:3x =ab+c第二部分:定义定理一、算术方面1.加法交换律:两数相加交换加数的位置,和不变.2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变.3.乘法交换律:两数相乘,交换因数的位置,积不变.4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.如:(2+4)×5=2×5+4×5.6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变.0除以任何不是0的数都得0.7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式.等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立.8.方程式:含有未知数的等式叫方程式.9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式.学会一元一次方程式的例法及计算.即例出代有χ的算式并计算.10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数.11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减. 12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母.15.分数除以整数(0除外),等于分数乘以这个整数的倒数.16.真分数:分子比分母小的分数叫做真分数.17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于 1.18.带分数:把假分数写成整数和真分数的形式,叫做带分数.19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变.20.一个数除以分数,等于这个数乘以分数的倒数.21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数. 第三部分:几何体1.正方形正方形的周长=边长×4 公式:C=4a正方形的面积=边长×边长公式:S=a×a正方体的体积=边长×边长×边长公式:V=a×a×a 2.正方形长方形的周长=(长+宽)×2 公式:C=(a+b)×2长方形的面积=长×宽公式:S=a×b长方体的体积=长×宽×高公式:V=a×b×h3.三角形三角形的面积=底×高÷ 2. 公式:S= a×h÷24.平行四边形平行四边形的面积=底×高公式:S= a×h5.梯形梯形的面积=(上底+下底)×高÷2 公式:S=(a+b)h÷2 6.圆直径=半径×2公式:d=2r半径=直径÷2 公式:r= d÷2圆的周长=圆周率×直径公式:c=πd =2πr圆的面积=半径×半径×π公式:S=πrr7.圆柱圆柱的侧面积=底面的周长×高. 公式:S=ch=πdh=2πrh圆柱的表面积=底面的周长×高+两头的圆的面积. 公式:S=ch+2s=ch+2πr2圆柱的总体积=底面积×高. 公式:V=Sh8.圆锥圆锥的总体积=底面积×高×1/3 公式:V=1/3Sh三角形内角和=180度.平行线:同一平面内不相交的两条直线叫做平行线垂直:两条直线相交成直角,像这样的两条直线,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足.第四部分:计算公式数量关系式:1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数时间单位换算:1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时 1时=60分1分=60秒1时=3600秒。
小学数学技巧有哪些对于小学生来说,掌握一些数学技巧不仅能够提高解题的效率,还能培养他们对数学的兴趣和自信心。
下面就来给大家分享一些实用的小学数学技巧。
一、计算技巧1、加法凑整法在做加法运算时,可以先观察数字,将能够凑成整十、整百、整千的数先相加,例如:28 + 72 = 100,135 + 65 = 200。
这样可以让计算变得更加简便快捷。
2、减法凑整法与加法凑整法类似,在做减法运算时,把减数凑成整十、整百、整千的数再进行计算。
比如:347 98 = 347 100 + 2 = 247 + 2 = 249 。
3、乘法分配律乘法分配律是一个非常重要的运算定律,即 a×(b + c) = a×b +a×c 。
例如:25×(40 + 4) = 25×40 + 25×4 = 1000 + 100 = 1100 。
4、乘法结合律三个数相乘时,可以先把前两个数相乘,再乘以第三个数,或者先把后两个数相乘,再和第一个数相乘,它们的积不变。
比如:25×7×4 = 25×4×7 = 100×7 = 700 。
5、除法的性质一个数连续除以两个数,可以先把后两个数相乘,再用这个数除以它们的积。
即 a÷b÷c = a÷(b×c) 。
例如:360÷25÷4 = 360÷(25×4) =360÷100 = 36 。
二、图形技巧1、认识图形学会观察和辨认各种基本图形,如三角形、正方形、长方形、圆形等。
了解它们的特征,比如三角形有三条边和三个角,正方形四条边都相等,四个角都是直角。
2、图形的周长和面积对于常见图形的周长和面积计算,要牢记公式。
例如,长方形的周长=(长+宽)× 2 ,面积=长 ×宽;正方形的周长=边长 × 4 ,面积=边长 ×边长。
计算公式1、长方形的周长=长+宽×2 C=a+b×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽 S=ab4、正方形的面积=边长×边长 S== a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高 S=ah7、梯形的面积=上底+下底×高÷2 S=a+bh÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径 =πr11、长方体的表面积=长×宽+长×高+宽×高×212、长方体的体积 =长×宽×高 V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×15、圆柱的侧面积=底面圆的周长×高 S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2πd÷2+2πd÷2h=2πC÷2÷π +Ch17、圆柱的体积=底面积×高 V=ShV=πr h=πd÷2 h=πC÷2÷π h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=πd÷2 h÷3=πC÷2÷π h÷319、长方体正方体、圆柱体的体1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形 C周长 S面积 a边长周长=边长×4C=4a 面积=边长×边长 S=a×a2 、正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a ×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长 S面积 a边长周长=长+宽×2C=2a+b面积=长×宽S=ab4 、长方体V:体积 s:面积 a:长 b: 宽 h:高1表面积长×宽+长×高+宽×高×2S=2ab+ah+bh2体积=长×宽×高V=abh5 三角形s面积 a底 h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积 a底 h高面积=底×高s=ah7 梯形s面积 a上底 b下底 h高面积=上底+下底×高÷2s=a+b×h÷28 圆形S面积 C周长∏ d=直径 r=半径1周长=直径×∏=2×∏×半径C=∏d=2∏r2面积=半径×半径×∏9 圆柱体v:体积 h:高 s;底面积 r:底面半径 c:底面周长1侧面积=底面周长×高2表面积=侧面积+底面积×23体积=底面积×高4体积=侧面积÷2×半径10 圆锥体v:体积 h:高s;底面积 r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题和+差÷2=大数和-差÷2=小数和倍问题和÷倍数-1=小数小数×倍数=大数或者和-小数=大数差倍问题差÷倍数-1=小数小数×倍数=大数或小数+差=大数植树问题1非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×株数-1株距=全长÷株数-1⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1全长=株距×株数+1株距=全长÷株数+12 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题盈+亏÷两次分配量之差=参加分配的份数大盈-小盈÷两次分配量之差=参加分配的份数大亏-小亏÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=顺流速度+逆流速度÷2水流速度=顺流速度-逆流速度÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=售出价÷成本-1×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%折扣<1利息=本金×利率×时间税后利息=本金×利率×时间×1-20%时间单位换算1世纪=100年 1年=12月大月31天有:1\3\5\7\8\10\12月小月30天的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时 1时=60分1分=60秒 1时=3600秒积=底面积×高 V=Sh第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变.2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变.3、乘法交换律:两数相乘,交换因数的位置,积不变.4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.如:2+4×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大或缩小相同的倍数,商不变. O除以任何不是O的数都得O.简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾. 7、什么叫等式等号左边的数值与等号右边的数值相等的式子叫做等式.等式的基本性质:等式两边同时乘以或除以一个相同的数,等式仍然成立.8、什么叫方程式答:含有未知数的等式叫方程式.9、什么叫一元一次方程式答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式.学会一元一次方程式的例法及计算.即例出代有χ的算式并计算.10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数.11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母.15、分数除以整数0除外,等于分数乘以这个整数的倒数.16、真分数:分子比分母小的分数叫做真分数.17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于1.18、带分数:把假分数写成整数和真分数的形式,叫做带分数.19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数0除外,分数的大小不变.20、一个数除以分数,等于这个数乘以分数的倒数.21、甲数除以乙数0除外,等于甲数乘以乙数的倒数.分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.分数的乘法则:用分子的积做分子,用分母的积做分母. 22、什么叫比:两个数相除就叫做两个数的比.如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数0除外,比值不变.23、什么叫比例:表示两个比相等的式子叫做比例.如3:6=9:1824、比例的基本性质:在比例里,两外项之积等于两内项之积.25、解比例:求比例中的未知项,叫做解比例.如3:χ=9:1826、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值也就是商k一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系.如:y/x=kk一定或kx=y27、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系.如:x×y = k k一定或k / x = y28、百分数:表示一个数是另一个数的百分之几的数,叫做百分数.百分数也叫做百分率或百分比.29、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号.其实,把小数化成百分数,只要把这个小数乘以100%就行了.30、把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位.31、把分数化成百分数,通常先把分数化成小数除不尽时,通常保留三位小数,再把小数化成百分数.其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了.32、把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数.33、要学会把小数化成分数和把分数化成小数的化发.34、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数.或几个数公有的约数,叫做这几个数的公约数.其中最大的一个,叫做最大公约数.35、互质数:公约数只有1的两个数,叫做互质数.36、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数.37、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分.通分用最小公倍数38、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分.约分用最大公约数39、最简分数:分子、分母是互质数的分数,叫做最简分数.40、分数计算到最后,得数必须化成最简分数.41、个位上是0、2、4、6、8的数,都能被2整除,即能用2进行42、约分.个位上是0或者5的数,都能被5整除,即能用5进行约分.在约分时应注意利用.43、偶数和奇数:能被2整除的数叫做偶数.不能被2整除的数叫做奇数.44、质数素数:一个数,如果只有1和它本身两个约数,这样的数叫做质数或素数.45、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数.1不是质数,也不是合数.46、利息=本金×利率×时间时间一般以年或月为单位,应与利率的单位相对应47、利率:利息与本金的比值叫做利率.一年的利息与本金的比值叫做年利率.一月的利息与本金的比值叫做月利率.48、自然数:用来表示物体个数的整数,叫做自然数.0也是自然数.49、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数.如3. 14141451、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数.如3.……52、什么叫代数代数就是用字母代替数.53、什么叫代数式用字母表示的式子叫做代数式.如:3x =ab+c第二部分:定义定理一、算术方面1.加法交换律:两数相加交换加数的位置,和不变.2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变.3.乘法交换律:两数相乘,交换因数的位置,积不变.4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.如:2+4×5=2×5+4×5.6.除法的性质:在除法里,被除数和除数同时扩大或缩小相同的倍数,商不变.0除以任何不是0的数都得0.7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式.等式的基本性质:等式两边同时乘以或除以一个相同的数,等式仍然成立.8.方程式:含有未知数的等式叫方程式.9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式.学会一元一次方程式的例法及计算.即例出代有χ的算式并计算.10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数.11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减. 12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母.15.分数除以整数0除外,等于分数乘以这个整数的倒数. 16.真分数:分子比分母小的分数叫做真分数.17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于1.18.带分数:把假分数写成整数和真分数的形式,叫做带分数.19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数0除外,分数的大小不变.20.一个数除以分数,等于这个数乘以分数的倒数.21.甲数除以乙数0除外,等于甲数乘以乙数的倒数.第三部分:几何体1.正方形正方形的周长=边长×4 公式:C=4a正方形的面积=边长×边长公式:S=a×a正方体的体积=边长×边长×边长公式:V=a×a×a2.正方形长方形的周长=长+宽×2 公式:C=a+b×2长方形的面积=长×宽公式:S=a×b长方体的体积=长×宽×高公式:V=a×b×h3.三角形三角形的面积=底×高÷2. 公式:S= a×h÷24.平行四边形平行四边形的面积=底×高公式:S= a×h5.梯形梯形的面积=上底+下底×高÷2 公式:S=a+bh÷26.圆直径=半径×2公式:d=2r半径=直径÷2 公式:r= d÷2圆的周长=圆周率×直径公式:c=πd =2πr圆的面积=半径×半径×π公式:S=πrr7.圆柱圆柱的侧面积=底面的周长×高. 公式:S=ch=πdh=2πrh 圆柱的表面积=底面的周长×高+两头的圆的面积. 公式:S=ch+2s=ch+2πr2圆柱的总体积=底面积×高. 公式:V=Sh8.圆锥圆锥的总体积=底面积×高×1/3 公式:V=1/3Sh三角形内角和=180度.平行线:同一平面内不相交的两条直线叫做平行线垂直:两条直线相交成直角,像这样的两条直线,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足.第四部分:计算公式数量关系式:1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数时间单位换算:1世纪=100年 1年=12月大月31天有:1\3\5\7\8\10\12月小月30天的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时 1时=60分1分=60秒1时=3600秒。
乘法公式1.平方差公式(1)平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.(a+b)(a﹣b)=a2﹣b2(2)应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方;③公式中的a和b可以是具体数,也可以是单项式或多项式;④对形如两数和与这两数差相乘的算式,都可以运用这个公式计算,且会比用多项式乘以多项式法则简便.2.平方差公式的几何背景(1)常见验证平方差公式的几何图形(利用图形的面积和作为相等关系列出等式即可验证平方差公式).(2)运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.3.完全平方公式(1)完全平方公式:(a±b)2=a2±2ab+b2.可巧记为:“首平方,末平方,首末两倍中间放”.(2)完全平方公式有以下几个特征:①左边是两个数的和的平方;②右边是一个三项式,其中首末两项分别是两项的平方,都为正,中间一项是两项积的2倍;其符号与左边的运算符号相同.(3)应用完全平方公式时,要注意:①公式中的a,b可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式;③对于三项的可以把其中的两项看做一项后,也可以用完全平方公式.4.完全平方公式的几何背景(1)运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.(2)常见验证完全平方公式的几何图形(a+b)2=a2+2ab+b2.(用大正方形的面积等于边长为a和边长为b的两个正方形与两个长宽分别是a,b的长方形的面积和作为相等关系)5.完全平方式完全平方式的定义:对于一个具有若干个简单变元的整式A,如果存在另一个实系数整式B,使A=B2,则称A是完全平方式.a2±2ab+b2=(a±b)2完全平方式分两种,一种是完全平方和公式,就是两个整式的和括号外的平方.另一种是完全平方差公式,就是两个整式的差括号外的平方.算时有一个口诀“首末两项算平方,首末项乘积的2倍中间放,符号随中央.(就是把两项的乘方分别算出来,再算出两项的乘积,再乘以2,然后把这个数放在两数的乘方的中间,这个数以前一个数间的符号随原式中间的符号,完全平方和公式就用+,完全平方差公式就用﹣,后边的符号都用+)”例题精讲:例1.下列运算正确的是()A.a2•a3=a6 B.(﹣a+b)(a+b)=b2﹣a2C.(a3)4=a7 D.a3+a5=a8【解答】解:∵a2•a3=a5,∴选项A不正确;∵(﹣a+b)(a+b)=b2﹣a2,∴选项B正确;∵(a3)4=a12,∴选项C不正确;∵a3+a5≠a8∴选项D不正确.故选:B.例2.将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b) D.(a+2b)(a﹣b)=a2+ab﹣2b2【解答】解:甲图形的面积为a2﹣b2,乙图形的面积为(a+b)(a﹣b),根据两个图形的面积相等知,a2﹣b2=(a+b)(a﹣b),故选:C.【点评】本题主要考查平方差的几何背景的知识点,求出两个图形的面积相等是解答本题的关键.例3.已知a+b=3,ab=2,则a2+b2的值为()A.3 B.4 C.5 D.6【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选C【点评】本题考查了完全平方公式的应用,注意:a2+b2=(a+b)2﹣2ab.例4.已知a+=4,则a2+的值是()A.4 B.16 C.14 D.15【解答】解:将a+=4两边平方得,a2++=16﹣2=14,故选C.【点评】此题考查完全平方公式问题,关键是把原式两边完全平方后整体代入解答.例5.如图,根据计算正方形ABCD的面积,可以说明下列哪个等式成立()A.(a+b)2=a2+2ab+b2 B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2 D.a(a﹣b)=a2﹣ab选:A.【点评】本题主要考查了完全平方公式的几何背景,解题的关键是通过几何图形之间的数量关系对公式做出几何解释.例6.如果x2﹣(m+1)x+1是完全平方式,则m的值为()A.﹣1 B.1 C.1或﹣1 D.1或﹣3选D.【点评】本题主要考查完全平方公式,根据两平方项确定出这两个数,再根据乘积二倍项求解.例7.已知a+b=3,a﹣b=﹣1,则a2﹣b2的值为﹣3 .例8.已知(x﹣1)2=ax2+bx+c,则a+b+c的值为0 .例9.用乘法公式计算(1)998×1002;(2)(3a+2b﹣1)(3a﹣2b+1)【解答】解:(1)原式=(1000﹣2)(1000+2)=10002﹣22=1000000﹣4=999996(2)(3a)2﹣(2b﹣1)2=9a2﹣4b2+4b﹣1.【点评】本题考查了平方差公式,解决本题的关键是熟记平方差公式.例10.阅读下面的计算过程:(2+1)(22+1)(24+1)=(2﹣1)(2+1)(22+1)(24+1)=(22﹣1)(22+1)(24+1)=(24﹣1)(24+1)=(28﹣1).根据上式的计算方法,请计算(1)(1+) (1+) (1+) (1+)…(1+)(2)(3+1)(32+1)(34+1)…(332+1)﹣.【解答】解:(1)原式=2(1﹣)(1+)(1+) (1+) (1+)…(1+)=2(1﹣)(1+)(1+)…(1+)=2(1﹣)(1+)…(1+)=2(1﹣)=;(2)原式=(3﹣1)(3+1)(32+1)(34+1)…(332+1)﹣=(32﹣1)(32+1)(34+1)…(332+1)﹣=(364﹣1)﹣=﹣.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.例11.如图(1)是一个长为2m,宽为2n的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形.(1)你认为图(2)中的阴影部分的正方形边长是多少?(2)请用两种不同的方法求图(2)阴影部分的面积;(3)观察图(2),你能写出下列三个代数式之间的等量关系吗?三个代数式:(m+n)2,(m﹣n)2,mn.(4)根据(3)题中的等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2的值.【解答】解:(1)阴影部分的正方形边长是m﹣n.(2)阴影部分的面积就等于边长为m﹣n的小正方形的面积,方法1:边长为m+n的大正方形的面积减去长为2m,宽为2n的长方形面积,即(m﹣n)2=(m+n)2﹣4mn;方法2:边长为m+n的大正方形的面积减去长为2m,宽为2n的长方形面积,即(m﹣n)2=(m+n)2﹣2m•2n=(m+n)2﹣4mn;(3)(m+n)2=(m﹣n)2+4mn.(4)(a﹣b)2=(a+b)2﹣4ab=49﹣4×5=29.【点评】本题考查了完全平方公式的几何意义,认真观察图形以及掌握正方形、长方形的面积公式计算是关键.1.已知a+b=4,a﹣b=3,则a2﹣b2=()A.4 B.3 C.12 D.1选C2.能说明图中阴影部分面积的式子是()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2﹣(a﹣b)2=4ab【解答】解:如图原来图中阴影部分面积=(a+b)(a﹣b),右图中把S1移动到S2处,右图中阴影部分面积=a2﹣b2∵原来阴影部分面积=右图中阴影部分面积∴(a+b)(a﹣b)=a2﹣b2.3.在多项式x2+9中添加一个单项式,使其成为一个完全平方式,则添加的单项式可以是()A.x B.3x C.6x D.9x选:C.4.整式A与m2+2mn+n2的和是(m﹣n)2,则A= ﹣4mn .5.图1可以用来解释:(2a)2=4a2,则图2可以用来解释:(a+b)2=a2+2ab+b2.6.用乘法公式计算:(1)(2﹣3x)2﹣(3x+2)2(2)(2x+y+z)(2x﹣y﹣z)【解答】解:(1)原式=4﹣12x+9x2﹣9x2﹣12x﹣4=﹣24x.(2)原式=[2x+(y+z)][2x﹣(y+z)]=(2x)2﹣(y+z)2=4x2﹣y2﹣z2﹣2yz.【点评】本题考查了平方差公式和完全平方公式,解决本题的关键是熟记平方差公式、完全平方公式.7.(1)分解下列因式,将结果直接写在横线上:x2﹣6x+9= (x﹣3)2,25x2+10x+1= (5x+1)2,4x2+12x+9= (2x+3)2.(2)观察上述三个多项式的系数,有(﹣6)2=4×1×9,102=4×25×1,122=4×4×9,于是小明猜测:若多项式ax2+bx+c(a>0)是完全平方式,那么系数a、b、c之间一定存在某种关系.请你用数学式子表示小明的猜想.b2=4ac (说明:如果你没能猜出结果,就请你再写出一个与(1)中不同的完全平方式,并写出这个式中个系数之间的关系.)(3)若多项式x2+ax+c和x2+cx+a都是完全平方式,利用(2)中的规律求ac的值.【解答】解:(1)x2﹣6x+9=(x﹣3)2,25x2+10x+1=(5x+1)2,4x2+12x+9=(2x+3)2;(2)观察得:若多项式ax2+bx+c(a>0)是完全平方式,那么系数a、b、c之间关系为b2=4ac;(3)∵多项式x2+ax+c和x2+cx+a都是完全平方式,∴a2﹣4c=c2﹣4a=0,即a2﹣c2+4(a﹣c)=0,分解因式得:(a﹣c)(a+c+4)=0,由a+c+4≠0,可得a﹣c=0,即a=c,可得a2﹣4a=0,即a(a﹣4)=0,解得:a=0或a=4,即c=0或c=4,则ac=0或16.故答案为:(1)(x﹣3)2;(5x+1)2;(2x+3)2;(2)b2=4ac【巩固练习】1.在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪成两个直角梯形后,再拼成一个等腰梯形(如图),通过计算阴影部分的面积,验证了一个等式,这个等式是()A.a2﹣b2=(a+b)(a﹣b) B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab﹣b2D.a2﹣ab=a(a﹣b)选:A.【点评】本题考查了平方差公式的几何背景,解决本题的关键是求出两图的面积,而两图面积相等,从而推导出了平方差的公式.2.下列运算正确的是()A.a3+a3=a6B.2(a+1)=2a+1 C.(a﹣b)2=a2﹣b2D.a6÷a3=a3选D.【点评】此题考查同类项合并、多项式乘法、完全平方公式和同底数幂的除法,熟练掌握运算法则是解本题的关键.3.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图(1)可以用来解释(a+b)2﹣(a﹣b)2=4ab.那么通过图(2)面积的计算,验证了一个恒等式,此等式是()A.a2﹣b2=(a+b)(a﹣b) B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.(a﹣b)(a+2b)=a2+ab﹣b2选:B.【点评】关键是找出阴影部分面积的两种表达式,化简即可.【点评】本题考查了完全平方式,考虑x2为乘积二倍项和平方项两种情况,加上后是单项式的平方的情况同学们容易漏掉而导致出错.4.已知x2+kxy+64y2是一个完全平方式,则k的值是()A.8 B.±8C.16 D.±16选:D.【点评】本题利用了完全平方公式求解:(a±b)2=a2±2ab+b2.注意k的值有两个,并且互为相反数.5.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证③(填写序号).①(a+b)2=a2+2ab+b2②(a﹣b)2=a2﹣2ab+b2③a2﹣b2=(a+b)(a﹣b)④(a+2b)(a﹣b)=a2+ab﹣2b2.6.填空:x2+10x+ 25 =(x+ 5 )2.7.化简:(a﹣1)(a+1)﹣(a﹣1)2.【考点】平方差公式;完全平方公式.【分析】运用平方差公式和完全平方公式即可解答.【解答】解:(a﹣1)(a+1)﹣(a﹣1)2=a2﹣1﹣a2+2a﹣1=2a﹣2.8.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是a2﹣b2(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是a﹣b ,长是a+b ,面积是(a+b)(a﹣b).(写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式(a+b)(a﹣b)=a2﹣b2.(用式子表达)(4)运用你所得到的公式,计算下列各题:①10.3×9.7②(2m+n﹣p)(2m﹣n+p)【解答】解:(1)利用正方形的面积公式可知:阴影部分的面积=a2﹣b2;故答案为:a2﹣b2;(2)由图可知矩形的宽是a﹣b,长是a+b,所以面积是(a+b)(a﹣b);故答案为:a﹣b,a+b,(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2(等式两边交换位置也可);故答案为:(a+b)(a﹣b)=a2﹣b2;(4)①解:原式=(10+0.3)×(10﹣0.3)=102﹣0.32=100﹣0.09=99.91;②解:原式=[2m+(n﹣p)]•[2m﹣(n﹣p)]=(2m)2﹣(n﹣p)2=4m2﹣n2+2np﹣p2.9.乘法公式的探究及应用.(1)如图1,若大长方形的边长为a,小长方形的边长为b,则阴影部分的面积是a2﹣b2.若将图1中的阴影部分裁剪下来,重新拼成如图2的一个矩形,则它的面积是(a+b)(a﹣b).(2)有(1)可以得到乘法公式(a+b)(a﹣b)=a2﹣b2.(3)若a=18,b=12,则请你求出阴影部分的面积.【解答】解:(1)图①阴影部分的面积为:a2﹣b2,图②长方形的长为a+b,宽为a﹣b,所以面积为:(a+b)(a﹣b),故答案为:a2﹣b2,(a+b)(a﹣b);(2)由(1)可得:(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b)=a2﹣b2;(3)将a=18,b=12,代入得:(18+12)(18﹣12)=180,所以阴影部分的面积为:180.10.化简:(x+1)2﹣(x+2)(x﹣2).【解答】解:原式=x2+2x+1﹣x2+4=2x+5.【点评】本题考查了对完全平方公式和平方差公式的应用,注意:完全平方公式有:(a±b)2=a2±2ab+b2,平方差公式有(a+b)(a﹣b)=a2﹣b2.11.已知:x+y=3,xy=﹣8,求:(1)x2+y2(2)(x2﹣1)(y2﹣1).【解答】解:(1)∵x+y=3,xy=﹣8,∴原式=(x+y)2﹣2xy=9+16=25;(2)∵x+y=3,xy=﹣8,∴原式=x2y2﹣(x2+y2)+1=64﹣25+1=40.12.一个单项式加上多项式x2﹣6x+4后等于一个整式的平方,试求这样的单项式并写出相应的等式(请写3个)【解答】解:①加5,则x2﹣6x+4+5=(x﹣3)2;②加10x,则x2﹣6x+4+10x=(x+2)2;③加2x,则x2﹣6x+4+2x=(x﹣2)2.。
1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?解: 1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?解:3+1=47×4=2837×44=1628注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:口诀:头乘头,头加头,尾乘尾。
例:21×41=?解:2×4=82+4=61×1=121×41=8615.11乘任意数:口诀:首尾不动下落,中间之和下拉。
例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。
6.十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?解:13个位是33×2+6=123×6=1813×326=4238注:和满十要进一。
各种图形计算公式。
第一部分:小学数学图形计算公式1、长方形的周长=长+宽×2 C=a+b×22、2、正方形的周长=边长×4 C=4a3、3、长方形的面积=长×宽S=ab4、4、正方形的面积=边长×边长S=a.a= a5、5、三角形的面积=底×高÷2 S=ah÷26、6、平行四边形的面积=底×高S=ah7、7、梯形的面积=上底+下底×高÷2 S=a+bh÷28、8、直径=半径×2 d=2r半径=直径÷2 r= d÷29、9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、10、圆的面积=圆周率×半径×半径=πr11、11、长方体的表面积=长×宽+长×高+宽×高×212、12、长方体的体积=长×宽×高V =abh13、13、正方体的表面积=棱长×棱长×6 S =6a14、14、正方体的体积=棱长×棱长×棱长15、15、圆柱的侧面积=底面圆的周长×高S=ch16、16、圆柱的表面积=上下底面面积+侧面积17、S=2πr +2πrh=2πd÷2 +2πd÷2h=2πC÷2÷π +Ch18、17、圆柱的体积=底面积×高V=Sh19、V=πr h=πd÷2 h=πC÷2÷π h20、18、圆锥的体积=底面积×高÷321、V=Sh÷3=πr h÷3=πd÷2 h÷3=πC÷2÷π h÷319、长方体正方体、圆柱体的体正方体的体积=边长×边长×边长公式:V=a×a×a长方体的体积=长×宽×高公式:V=a×b×h第二部分:数量关系公式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数第三部分:其它数学公式一、和差问题和+差÷2=大数和-差÷2=小数二、和倍问题和÷倍数-1=小数小数×倍数=大数或者和-小数=大数三、差倍问题差÷倍数-1=小数小数×倍数=大数或小数+差=大数四、植树问题1、非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×株数-1株距=全长÷株数-1⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1 全长=株距×株数+1 株距=全长÷株数+12封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数五、盈亏问题盈+亏÷两次分配量之差=参加分配的份数大盈-小盈÷两次分配量之差=参加分配的份数大亏-小亏÷两次分配量之差=参加分配的份数六、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间七、追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间八、流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=顺流速度+逆流速度÷2 水流速度=顺流速度-逆流速度÷2九、浓度问题十、溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度十一、溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量十二、十、利润与折扣问题十三、利润=售出价-成本十四、利润率=利润÷成本×100%=售出价÷成本-1×100%十五、涨跌金额=本金×涨跌百分比十六、折扣=实际售价÷原售价×100%折扣<1十七、利息=本金×利率×时间税后利息=本金×利率×时间×1-20%十八、十一、时间单位换算十九、1世纪=100年1年=12月大月31天有:1\3\5\7\8\10\12月二十、小月30天的有:4\6\9\11月平年2月28天,闰年2月29天二十一、平年全年365天,闰年全年366天 1日=24小时1时=60分二十二、1分=60秒1时=3600秒积=底面积×高V=Sh第四部分:概念1、加法交换律:两数相加交换加数的位置,和不变.2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变.3、乘法交换律:两数相乘,交换因数的位置,积不变.4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.如:2+4×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大或缩小相同的倍数,商不变.O除以任何不是O的数都得O.简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾.7、什么叫等式等号左边的数值与等号右边的数值相等的式子叫做等式.等式的基本性质:等式两边同时乘以或除以一个相同的数,等式仍然成立.8、什么叫方程式答:含有未知数的等式叫方程式.9、什么叫一元一次方程式答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式.学会一元一次方程式的例法及计算.即例出代有χ的算式并计算.10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数.11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母.15、分数除以整数0除外,等于分数乘以这个整数的倒数.16、真分数:分子比分母小的分数叫做真分数.17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于1.18、带分数:把假分数写成整数和真分数的形式,叫做带分数.19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数0除外,分数的大小不变.20、一个数除以分数,等于这个数乘以分数的倒数.21、甲数除以乙数0除外,等于甲数乘以乙数的倒数.分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.分数的乘法则:用分子的积做分子,用分母的积做分母.22、什么叫比:两个数相除就叫做两个数的比.如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数0除外,比值不变.23、什么叫比例:表示两个比相等的式子叫做比例.如3:6=9:1824、比例的基本性质:在比例里,两外项之积等于两内项之积.25、解比例:求比例中的未知项,叫做解比例.如3:χ=9:1826、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值也就是商k一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系.如:y/x=k k 一定或kx=y27、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系.如:x×y = k k 一定或k / x = y28、百分数:表示一个数是另一个数的百分之几的数,叫做百分数.百分数也叫做百分率或百分比.29、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号.其实,把小数化成百分数,只要把这个小数乘以100%就行了.30、把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位.31、把分数化成百分数,通常先把分数化成小数除不尽时,通常保留三位小数,再把小数化成百分数.其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了.32、把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数.33、要学会把小数化成分数和把分数化成小数的化发.34、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数.或几个数公有的约数,叫做这几个数的公约数.其中最大的一个,叫做最大公约数.35、互质数:公约数只有1的两个数,叫做互质数.36、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数.37、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分.通分用最小公倍数38、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分.约分用最大公约数39、最简分数:分子、分母是互质数的分数,叫做最简分数.40、分数计算到最后,得数必须化成最简分数.41、个位上是0、2、4、6、8的数,都能被2整除,即能用2进行42、约分.个位上是0或者5的数,都能被5整除,即能用5进行约分.在约分时应注意利用.43、偶数和奇数:能被2整除的数叫做偶数.不能被2整除的数叫做奇数.44、质数素数:一个数,如果只有1和它本身两个约数,这样的数叫做质数或素数.45、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数.1不是质数,也不是合数.46、利息=本金×利率×时间时间一般以年或月为单位,应与利率的单位相对应47、利率:利息与本金的比值叫做利率.一年的利息与本金的比值叫做年利率.一月的利息与本金的比值叫做月利率.48、自然数:用来表示物体个数的整数,叫做自然数.0也是自然数.49、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数.如3. 141414……52、什么叫代数代数就是用字母代替数.53、什么叫代数式用字母表示的式子叫做代数式.如:3x =ab+c。
小学数学公式大全1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽 S=ab4、正方形的面积=边长×边长 S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高 S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径 ?=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积 =长×宽×高 V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高 S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 17、圆柱的体积=底面积×高 V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷319、长方体(正方体、圆柱体)的体1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形 C周长 S面积 a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长 S面积 a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积 s:面积 a:长 b: 宽 h:高(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积 a底 h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积 a底 h高面积=底×高s=ah7 梯形s面积 a上底 b下底 h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形S面积 C周长∏ d=直径 r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积 h:高 s;底面积 r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)时间单位换算1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时 1时=60分1分=60秒 1时=3600秒积=底面积×高 V=Sh第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
小学数学公式大全1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径?=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积=长×宽×高V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 17、圆柱的体积=底面积×高V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷319、长方体(正方体、圆柱体)的体1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形C周长S面积a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒积=底面积×高V=Sh第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
初中数学乘法公式编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初中数学乘法公式)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初中数学乘法公式的全部内容。
乘法公式概念总汇1、平方差公式平方差公式:两个数的和与这两个数的差的乘积等于这两个数的平方差,即 (a+b )(a-b)=a —b 说明:(1)几何解释平方差公式如右图所示:边长a 的大正方形中有一个边长为b第一种:用正方形的面积公式计算:a 2-b 2;第二种:将阴影部分拼成一个长方形,这个长方形长为(a +b ),宽为(a -b ), 它的面积是:(a +b )(a -b )结论:第一种和第二种相等,因为表示的是同一块阴影部分的面积。
所以:a 2-b 2=(a +b )(a -b )。
(2)在进行运算时,关键是要观察所给多项式的特点,是否符合平方差公式的形式,即只有当这两个多项式它们的一部分完全相同,而另一部分只有符合不同,才能够运用平方差公式。
平方差公式的a 和b ,可以表示单项式,也可以表示多项式,还可以表示数。
应用平方差公式可以进行简便的多项式乘法运算,同时也可以简化一些数字乘法的运算 2、完全平方公式完全平方公式:两个数和(或差)的平方,等于它们的平方和,加上(或减去)它们积的两倍,即(a+b )=a +2ab+b ,(a-b )=a —2ab+b这两个公式叫做完全平方公式。
平方差公式和完全平方公式也叫做乘法公式 说明:(1)几何解释完全平方(和)公式 如图用多种形式计算右图的面积 第一种:把图形当做一个正方形来看,所以 它的面积就是:(a +b )2第二种:把图形分割成由2个正方形和222222222长方形来看,其中大正方形的的边长是a ,小正方形 的边长是b ,长方形的长是a ,宽是b ,所以它的面积就是:a 2+ab +ab +b 2=a 2+2ab +b 2结论:第一种和第二种相等,因为表示的是同一个图形的面积 所以:(a +b )2=a 2+2ab +b 2(2)几何解释完全平方(差)公式如图用多种形式计算阴影部分的面积 第一种:把阴影部分当做一个正方形来看,所以 它的面积就是:(a —b )2第二种:把图形分割成由2个正方形和2个相同的长方形来看, 其中大正方形的的边长是a ,小正方形的边长是b ,长方形的长是(a —b ),宽是b ,所以它的面积就是: 结论:第一种和第二种相等,因为表示的是同一个图形的面积所以:(3)在进行运算时,防止出现以下错误:(a+b )=a +b ,(a-b)=a -b 。
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 (a+b)(a 2-ab+b 2)=a 3+b 3 (a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,x y y x x 2y 2 ② 符号变化,x y x y x 2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2a b 2a b 4a 2b 2 ⑤ 换式变化,xy z m xy z mxy 2z m 2 x 2y 2z m z m x 2y 2z 2zm zm m 2 x 2y 2z 22zm m 2⑥ 增项变化,x y z x y zx y 2z 2 x y x y z 2 x 2xy xy y 2z 2 x 22xy y 2z 2⑦ 连用公式变化,x y x y x 2y 2x 2y 2x 2y 2 x 4y 4⑧ 逆用公式变化,x y z 2x y z 2x y zx y zx y z x y z2x 2y 2z 4xy 4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
小学二年级公式大全(人教版)work Information Technology Company.2020YEAR小学二年级公式大全一、图形计算公式1、三角形的面积=底×高÷2。
公式 S= a×h÷22、正方形的面积=边长×边长公式 S= a²或S=a×a3、长方形的面积=长×宽公式 S= a×b4、平行四边形的面积=底×高公式 S= a×h5、梯形的面积=(上底+下底)×高÷2 公式 S=(a+b) ×h÷26、内角和:三角形的内角和=180度。
7、长方体的体积=长×宽×高公式:V=a×b×h8、长方体(或正方体)的体积=底面积×高公式:V=S×h9、正方体的体积=棱长×棱长×棱长公式:V=a×a×a=a310、圆的周长=直径×π 公式:L=π×d=2π×r11、圆的面积=半径×半径×π 公式:S=πr212、圆柱的侧面积:圆柱的侧面积等于底面的周长(c)乘高(h)。
公式:S=ch=πdh=2πrh13、圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr214、圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh15、圆锥的体积=1/3底面×积高。
公式:V=1/3*S*h二、数量关系1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加减乘除加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数三、计算法则1、加法交换律:两数相加交换加数的位置,和不变。
1.十几乘十几:
口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
解: 1×1=1
2+4=6
2×4=8
12×14=168
注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):
口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?
解:3+1=4
7×4=28
37×44=1628
注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:
口诀:头乘头,头加头,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5.11乘任意数:
口诀:首尾不动下落,中间之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分别在首尾
11×23125=254375
注:和满十要进一。
6.十几乘任意数:
口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?
解:13个位是3
3×2+6=12
3×6=18
13×326=4238
注:和满十要进一。
各种图形计算公式。