大学物理3章作业
- 格式:doc
- 大小:477.00 KB
- 文档页数:9
第3章 能量定理和守恒定律3-5一圆锥摆的摆球在水平面上作匀速圆周运动。
已知摆球质量为m ,圆半径为R ,摆球速率为υ,当摆球在轨道上运动一周时,作用在摆球上重力冲量的大小为多少?解:如3-5题图所示,一周内作用在摆球上重力冲量的大小为 3-6用棒打击质量为0.3Kg 、速率为20m/s 的水平飞来的球,球飞到竖直上方10 m 的高度。
求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力。
解:设球的初速度为1υ,球与棒碰撞后球获得竖直向上的速度为2υ,球与棒碰撞后球上升的最大高度为h ,如3-6题图所示,因球飞到竖直上方过程中,只有重力作功,由机械能守恒定律得 由冲量的定义可得棒给予球的冲量为 其冲量大小为 球受到的平均冲力为t F I ⋅=__()N tIF 366__==3-7质量为M 的人,手里拿着一个质量为m 的球,此人用与水平线成θ角的速度0υ向前跳去。
当他达到最高点时,将物体以相对人的速度μ水平向后抛出,求由于物体的抛出,跳的距离增加了多少?(假设人可视为质点) 解:如3-7题图所示,把人与物视为一系统,当人跳跃到最高点处,在向后抛物的过程中,满足动量守恒,故有式中υ为人抛物后相对地面的水平速率,υμ-为抛出物对地面的水平速率,得人的水平速率的增量为而人从最高点到地面的运动时间为所以,人由于向后抛出物体,在水平方向上增加的跳跃后距离为 3-8 一质量为m =2kg 的物体按()m t x 2213+=的规律作直线运动,求当物体由m x 21=运动到m x 62=时,外力做的功。
解:由2213+=t x ,可得 232dx t dt υ== 当物体在m x 21=处时,可得其时间、速度分别为()2113002m s υ-=⨯=⋅ (1)当物体在m x 62=处时,可得其时间、速度分别为()2123262m s υ-=⨯=⋅ (2)则由(1)、(2)式得外力做的功 3-9求把水从面积为250m 的地下室中抽到街道上来所需作的功。
大学物理第三章 课后习题答案3-1 半径为R 、质量为M 的均匀薄圆盘上,挖去一个直径为R 的圆孔,孔的中心在12R 处,求所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量。
分析:用补偿法〔负质量法〕求解,由平行轴定理求其挖去部分的转动惯量,用原圆盘转动惯量减去挖去部分的转动惯量即得。
注意对同一轴而言。
解:没挖去前大圆对通过原圆盘中心且与板面垂直的轴的转动惯量为:2112J MR =① 由平行轴定理得被挖去部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2222213()()2424232c M R M R J J md MR =+=⨯⨯+⨯= ②由①②式得所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2121332J J J MR =-=3-2 如题图3-2所示,一根均匀细铁丝,质量为M ,长度为L ,在其中点O 处弯成120θ=︒角,放在xOy 平面内,求铁丝对Ox 轴、Oy 轴、Oz 轴的转动惯量。
分析:取微元,由转动惯量的定义求积分可得 解:〔1〕对x 轴的转动惯量为:2022201(sin 60)32Lx M J r dm l dl ML L ===⎰⎰ 〔2〕对y 轴的转动惯量为:20222015()(sin 30)32296Ly M L M J l dl ML L =⨯⨯+=⎰〔3〕对Z 轴的转动惯量为:22112()32212z M L J ML =⨯⨯⨯=3-3 电风扇开启电源后经过5s 到达额定转速,此时角速度为每秒5转,关闭电源后经过16s 风扇停止转动,已知风扇转动惯量为20.5kg m ⋅,且摩擦力矩f M 和电磁力矩M 均为常量,求电机的电磁力矩M 。
分析:f M ,M 为常量,开启电源5s 内是匀加速转动,关闭电源16s 内是匀减速转动,可得相应加速度,由转动定律求得电磁力矩M 。
解:由定轴转动定律得:1f M M J β-=,即11252520.50.5 4.12516f M J M J J N m ππβββ⨯⨯=+=+=⨯+⨯=⋅ 3-4 飞轮的质量为60kg ,直径为0.5m ,转速为1000/min r ,现要求在5s 内使其制动,求制动力F ,假定闸瓦与飞轮之间的摩擦系数0.4μ=,飞轮的质量全部分布在轮的外周上,尺寸如题图3-4所示。
第三章 刚体的定轴转动3-1掷铁饼运动员手持铁饼转动1.25圈后松手,此刻铁饼的速度值达到125-⋅=s m v 。
设转动时铁饼沿半径为R=1.0 m 的圆周运动并且均匀加速。
求: (1)铁饼离手时的角速度; (2)铁饼的角加速度;(3)铁饼在手中加速的时间(把铁饼视为质点)。
解:(1)铁饼离手时的角速度为(rad/s)250125===.//R v ω(2)铁饼的角加速度为)(rad/s 83925122252222..=⨯⨯==πθωα(3)铁饼在手中加速的时间为(s)628025251222..=⨯⨯==πωθt3-2一汽车发动机的转速在7.0s 内由2001min -⋅r 均匀地增加到3001min -⋅r 。
(1)求在这段时间内的初角速度和末角速度以及角加速度; (2)求这段时间内转过的角度和圈数;(3)发动机轴上装有一半径为r=0.2m 的飞轮,求它的边缘上一点在第7.0s 末的切向加速度、法向加速度和总加速度。
解:(1)初角速度为(rad/s)9206020020./=⨯=πω末角速度为(rad/s)3146030002=⨯=/πω角加速度为)(rad/s 9410792031420...=-=-=tωωα(2)转过的角度为)186(rad 1017172314920230圈=⨯=⨯+=+=..t ωωθ(3)切向加速度为)(m/s 388209412t ...=⨯==R a α法向加速度为)(m /s 10971203142422n ⨯=⨯==..R a ω总加速度为)(m/s 10971)10971(378242422n 2t ⨯=⨯+=+=...a a a总加速度与切向的夹角为9589378101.97arctan arctan 4t n '︒=⨯==.a a θ3-3 如图所示,在边长为a 的六边形顶点上分别固定有质量都是m 的6个小球(小球的直径a d <<)。
3章79页]3-4 质量为m 的小球与桌面相碰撞,碰撞前、后小球的速率都是v ,入射方向和出射方向与桌面法线的夹角都是α,如图3-3所示。
若小球与桌面作用的时间为δt ,求小球对桌面的平均冲力。
解 设桌面对小球的平均冲力为f ,并建立如图所示的坐标系,根据动量定理,对于小球可列出,.由第一个方程式可以求得,由第二个方程式可以求得.根据牛顿第三定律,小球对桌面的平均冲力为,负号表示小球对桌面的平均冲力沿y 轴的负方向。
.3-7 求一个半径为r 的半圆形均匀薄板的质心。
解 将坐标原点取在半圆形薄板的圆心上,并建立如图3-5所示的坐标系。
在这种情况下,质心c 必定处于y 轴上,即,.质量元是取在y 处的长条,如图所示。
长条的宽度为d y ,长度为2x 。
根据圆方程,故有.如果薄板的质量密度为σ,则有图3-3 图3-5.令, 则,对上式作变量变换,并积分,得...3-10 如图3-9所示,一个质量为1.240 kg 的木块与一个处于平衡位置的轻弹簧的一端相接触,它们静止地处于光滑的水平桌面上。
一个质量为10.0 g 的子弹沿水平方向飞行并射进木块,受到子弹撞击的木块将弹簧压缩了2.0 cm 。
如果轻弹簧的劲度系数为2000 n ⋅m -1 ,求子弹撞击木块的速率。
解 设木块的质量为m ;子弹的质量为m ,速度为v ;碰撞后的共同速度为v 。
此类问题一般分两步处理:第一步是子弹与木块作完全非弹性碰撞,第二步是子弹在木块内以共同的速度压缩弹簧。
第一步遵从动量守恒,故有. (1)第二步是动能与弹力势能之间的转换,遵从机械能守恒,于是有. (2)有式(2)解得.将v 值代入式(1),就可求得子弹撞击木块的速率,为.3-11 质量为5.0 g 的子弹以500 m ⋅s -1 的速率沿水平方向射入静止放置在水平桌面上的质量为1245 g 的木块内。
木块受冲击后沿桌面滑动了510 cm 。
求木块与桌面之间的摩擦系数。
大学物理第3章-刚体力学习题解答第3章 刚体力学习题解答3.13 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。
求t 时刻的角速度和角加速度。
解:23212643ct bt ct bt a dt d dtd -==-+==ωθβω3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。
显然,汽车前进的速度就是驱动轮边缘的线速度,909.0/2212Rn Rn v ππ==,所以:min/1054.1/1024.93426.014.3210166909.02909.013rev h rev n R v ⨯=⨯===⨯⨯⨯⨯π3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。
解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为:2..dm h r dr ρπ=对其轴线的转动惯量dI z 为232..z dI r dm h r dr ρπ==212222112..()2r z r I h r r dr m r r ρπ==-⎰ 3.17 如题3-17图所示,一半圆形细杆,半径为,质量为,求对过细杆二端轴的转动惯量。
解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过轴的转动惯量为12mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:214AA I mR '=3.18 在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。
习题答案3-1 运动员手持铁饼转动1.25圈后松手,此刻铁饼的速度值达到v=25m/s 。
设转动时铁饼沿半径为R=1.0m 的圆周运动并且均匀加速。
求: (1)铁饼离手时的角速度; (2)铁饼的角加速度;(3)铁饼在手中加速的时间(视铁饼为质点).解:(1)铁饼离手时的角速度为s rad R v /250.1/25/===ω(2)铁饼的角加速度为222/8.3925.122252s rad =⨯⨯==πθωα (3)铁饼在手中加速的时间为s t 628.02525.1222=⨯⨯==πωθ3-2 汽车发动机的转速在7.0s 内由2000r/min 均匀增加到3000r/min 。
求 (1)角加速度;(2)这段时间转过的角度;(3)发动机轴上半径为0.2m 的飞轮边缘上的一点在第 7.0s 末的加速度。
解:(1)初角速度为s rad /20960/20020=⨯=πω 末角速度为s rad /31460/30002=⨯=πω 角加速度为20/150.7209314s rad t=-=-=ωωβ (2)转过的角度为rad t 301083.1723142092⨯=⨯+=+=ωωθ (3)切向加速度为2/32.015s m R a t =⨯==α 法向加速度为2422/1097.12.0314s m R a n ⨯=⨯==ω总加速度为2422/1097.1s m a a a nt ⨯=+= 总加速度与切向的夹角为998931097.1arctan arctan 4'=⨯==︒t n a a θ3-3 一飞轮以等角加速度2 rad /s 2转动,在某时刻以后的5s 内飞轮转过了100 rad .若此飞轮是由静止开始转动的,问在上述的某时刻以前飞轮转动了多少时间?解:设某时刻后的角速度为1ω,某时刻前飞轮转动了t 秒。
t t 21==βω某时刻后't s 内飞轮转过θ∆。
则有10025105221522122''1=+=⨯⨯+⨯=+=∆t t t t βωθ s t 5.7=∴3-4 一个哑铃由两个质量为m ,半径为R 的铁球和中间一根长为l 连杆组成,如图所示。
第三章 习题解答(仅供参考)3.2 一根直杆在S 系中观察,其静止长度为l ,与x 轴的夹角为θ,S`系沿S 系的x 轴正向以速度v 运动,问S`系中观察到杆子与x `轴的夹角若何?[解答]直杆在S 系中的长度是本征长度,两个方向上的长度分别为l x = l cos θ和l y = l sin θ.在S`系中观察直杆在y 方向上的长度不变,即l`y = l y ;在x 方向上的长度是运动长度,根据尺缩效应得`x l l =因此``tan `yx l l θ==,可得夹角为 21/2`a r c t a n {[1(/)]t a n }v c θθ-=-3.3 在惯性系S 中同一地点发生的两事件A 和B ,B 晚于A 4s ;在另一惯性系S`中观察,B 晚于A 5s 发生,求S`系中A 和B 两事件的空间距离?[解答]在S 系中的两事件A 和B 在同一地点发生,时间差Δt = 4s 是本征时,而S`系中观察A 和B 两事件肯定不在同一地点,Δt ` = 5s 是运动时,根据时间膨胀公式`t ∆=, 即5=, 可以求两系统的相对速度为 v = 3c /5.在S`系中A 和B 两事件的空间距离为 Δl = v Δt ` = 3c = 9×108(m).3.5 S 系中观察到两事件同时发生在x 轴上,其间距为1m ,S`系中观察到这两个事件间距离是2m ,求在S`系中这两个事件的时间间隔.[解答]根据洛仑兹变换,得两个事件的空间和时间间隔公式`x ∆=2`t ∆= (1) 由题意得:Δt = 0,Δx = 1m ,Δx` = 2m .因此`x ∆=,2`t ∆=.(2)由(2)之上式得它们的相对速度为v = (3)将(2)之下式除以(2)之上式得 2``t v x c∆=-∆, 所以`t ∆==10-8(s).[注意]在S `系中观察到两事件不是同时发生的,所以间隔Δx` = 2m 可以大于间隔Δx = 1m .如果在S `系中观察到两事件也是同时发生的,那么Δx`就表示运动长度,就不可能大于本征长度Δx ,这时可以用长度收缩公式`x ∆=∆3.6 一短跑运动员,在地球上以10s 的时间跑完了100m 的距离,在对地飞行速度为0.8c 的飞船上观察,结果如何?[解答]以地球为S 系,则Δt = 10s ,Δx = 100m .根据洛仑兹坐标和时间变换公式`x =2`t =,飞船上观察运动员的运动距离为`x ∆=10=-4×109(m). 运动员运动的时间为 2`t ∆=100.8100/0.6c -⨯=≈16.67(s). 在飞船上看,地球以0.8c 的速度后退,后退时间约为16.67s ;运动员的速度远小于地球后退的速度,所以运动员跑步的距离约为地球后退的距离,即4×109m .3.8 已知S`系以0.8c 的速度沿S 系x 轴正向运动,在S 系中测得两事件的时空坐标为x 1 = 20m ,x 2 = 40m ,t 1 = 4s ,t 2 = 8s .求S`系中测得的这两件事的时间和空间间隔.[解答]根据洛仑兹变换可得S`系的时间间隔为2``21t t -=840.8(4020)/0.6c ---=≈6.67(s). 空间间隔为``21x x -=40200.8(84)0.6c --⨯-=≈-1.6×109(m).3.11 一粒子动能等于其非相对论动能二倍时,其速度为多少?其动量是按非相对论算得的二倍时,其速度是多少?[解答](1)粒子的非相对论动能为 E k = m 0v 2/2,相对论动能为 E`k = mc 2 – m 0c 2, 其中m 为运动质量m =.根据题意得22200m c m v =, 设x = (v/c )2,方程可简化为1x =+, 或1(1x =+ 平方得 1 = (1 – x 2)(1 - x ),化简得 x (x 2 – x -1) = 0.由于x 不等于0,所以 x 2 – x -1 = 0.解得x =, 取正根得速率为v == 0.786c . (2)粒子的非相对论动量为 p = m 0v , 相对论动量为`p mv ==根据题意得方程02m v =.很容易解得速率为2v c == 0.866c .3.12.某快速运动的粒子,其动能为4.8×10-16J ,该粒子静止时的总能量为1.6×10-17J ,若该粒子的固有寿命为2.6×10-6s ,求其能通过的距离.[解答]在相对论能量关系中E = E 0 + E k ,静止能量E 0已知,且E 0 = m 0c 2,总能量为22E mc ===,所以00k E E E +=, 由此得粒子的运动时为0`k E E t t E +∆==∆. 还可得00kE E E =+, 解得速率为v =∆=∆=∆粒子能够通过的距离为l v t c t8=⨯⨯⨯.310 2.610-3.14静止质子和中子的质量分别为m p = 1.67285×10-27kg,m n = 1.67495×10-27kg,质子和中子结合变成氘核,其静止质量为m0 = 3.34365×10-27kg,求结合过程中所释放出的能量.[解答]在结合过程中,质量亏损为Δm = m p + m n - m0 = 3.94988×10-30(kg),取c = 3×108(m·s-1),可得释放出的能量为ΔE = Δmc2 =3.554893×10-13(J).如果取c = 2.997925×108(m·s-1),可得释放出的能量为ΔE = 3.549977×10-13(J).。
大学物理上册第3章习题解答第3章角动量定理和刚体的转动一、内容提要1、质点的角动量定理⑴质点对于某一定点的角动量和角动量定理:角动量L r mv =? 角动量定理 dL M dt=⑵质点对于z 轴的角动量和角动量定理:角动量z L r mv τ⊥=? 角动量定理 zz dL M dt=2、质点系的角动量定理刚体的转动惯量和定轴转动定理⑴质点系的角动量定理 i i iidM L dt =∑∑ ⑵刚体的转动惯量 2z iiiI r m =∑ 或2zI r dm =?⑶刚体的定轴转动定理 z z zd M I I dtωβ== 3、刚体的定轴转动动能定理⑴力矩的功z A M d θ=?⑵刚体的转动动能 212k z E I ω=⑶刚体的定轴转动动能定理 22211122z z z A M d I I θωω==-?4、角动量守恒定律⑴质点的角动量守恒定律:若0M =,则21L L = ⑵刚体的对轴角动量守恒定律:刚体对轴的角动量也可写为2z izizL r m I ωω=?=∑,若0iziM =∑,则0z z I I ωω=,即有0ωω=二、习题解答3.1 一发动机的转轴在7s 内由200/min r 匀速增加到3000/min r . 求:(1)这段时间内的初末角速度和角加速度. (2)这段时间内转过的角度和圈数. (3)轴上有一半径为2.0=r m 的飞轮, 求它边缘上一点在7s 末的切向加速度、法向加速度和总加速度.解:(1)初的角速度1200220.9/60rad s πω?=≈ 末的角速度230002314/60rad s πω?=≈角加速度231420.941.9/7rad s t ωβ?-==≈?(2)转过的角度为2211120.9741.97117622t t rad θωβ=+=?+??=117618622 3.14n r θπ===? (3)切向加速度241.90.28.38/a r m s τβ==?=法向加速度为:22423140.2 1.9710/n a r m s ω==?=?总的加速度为:421.9710/a m s ===?3.3 地球在1987年完成365次自转比1900年长14.1s. 求在1900年到1987年间, 地球自转的平均角加速度.解:平均角加速度为0003652365287T t T a t T ππωω??--+?==212373036523652 1.140.9610/8787(3.1510)t rad s T ππ-≈=-=-3.4一人手握哑铃站在转盘上, 两臂伸开时整个系统的转动惯量为22kgm . 推动后, 系统以15/min r 的转速转动. 当人的手臂收回时, 系统的转动惯量为20.8kgm . 求此时的转速.解:由刚体定轴转动的角动量守恒定律,1122I I ωω=121221537.5/min 0.8I r I ωω==?=3.5 质量为60kg , 半径为0.25m 的匀质圆盘, 绕其中心轴以900/min r 的转速转动. 现用一个闸杆和一个外力F 对盘进行制动(如图所示), 设闸与盘之间的摩擦系数为4.0. 求:(1)当100F N =, 圆盘可在多长时间内停止, 此时已经转了多少转?(2)如果在2s 内盘转速减少一半, F 需多大?图3-5 习题1.4图解:(1)设杆与轮间的正压力为N ,10.5l m =,20.75l m =,由杠杆平衡原理得121()F l l Nl +=121()F l l N l +=闸瓦与杆间的摩擦力为: 121()F l l f N l μμ+== 匀质圆盘对转轴的转动惯量为212I mR =,由定轴转动定律,M I β=,有 ()122112F l l R mR l μβ+-= 21212()40/3F l l rad s mRl μβ+=-=-停止转动所需的时间: 0900200607.06403t s πωβ--===- 转过的角度201532332.762t t rad rad θωβπ?=+=?≈532n θπ==圈(2)030ωπ=,在2s 内角速度减小一半,知0227.5/23.55/rad s rad s tωωβπ-=-=-=-()1222112F l l R mR l μβ+-= 112600.250.5(23.55)1772()20.4 1.25mRl F N l l βμ-=-=-≈+??3.6 发动机带动一个转动惯量为250kgm 的系统做定轴转动. 在0.5s 内由静止开始匀速增加到120/min r 的转速. 求发动机对系统施加的力矩.解:由题意,250I kgm =,00ω=,120/min 4/r rad s ωπ==系统角加速度为:20825.12/rad s t tωωωβπ-?====?? 由刚体定轴转动的转动定理,可知M I β=5025.121256M Nm =?=3.7一轻绳绕于半径为R 的圆盘边缘, 在绳端施以mg F =的拉力, 圆盘可绕水平固定光滑轴在竖直平面内转动. 圆盘质量为M , 并从静止开始转动. 求:(1)圆盘的角加速度及转动的角度和时间的关系. (2)如以质量为m 的物体挂在绳端, 圆盘的角加速度及转动的角度和时间的关系又如何?解:(1)由刚体转动定理可知:M I β= 上题可知: M FR mgR ==212I MR =代入上式得2mgMRβ=, 2212mg t t MRθβ==(2)对物体受力分析'mg F ma -= 'F R I β= a R β=,212I MR =由上式解得22mgMR mR β=+22122mg t t MR mRθβ==+3.8某冲床飞轮的转动惯量为32410kgm ?. 当转速为30/min r 时, 它的转动动能是多少?每冲一次, 其转速下降10/min r . 求每冲一次对外所做的功.解:由题意,转速为:()030/min /r rad s ωπ== 飞轮的转动动能为:232411410 1.9721022E I J ωπ===? 第一次对外做功为:22011122A I I ωω=- 1220/min 3r πω==()2422222301011111515410 3.14 1.0910*******A I I I I J ωωωωπ=-=-=?==?3.9半径为R , 质量为M 的水平圆盘可以绕中心轴无摩擦地转动. 在圆盘上有一人沿着与圆盘同心, 半径为R r <的圆周匀速行走, 行走速度相对于圆盘为v . 设起始时, 圆盘静止不动, 求圆盘的转动角速度.解:设圆盘的转动角速度为2ω,则人的角速度为12vrωω=-,圆盘的转动惯量为212MR ,人的转动惯量为2mr ,由角动量守恒定律, 222212v mr MR r ωω??-=即22222mrvmr MRω=+3.10 两滑冰运动员, 质量分别为60kg 和70kg , 他们的速率分别为7/m s 和6/m s , 在相距1.5m 的两平行线上相向滑行. 当两者最接近时, 互相拉手并开始绕质心做圆周运动. 运动中, 两者间距离保持m 5.1不变. 求该瞬时:(1)系统的总角动量. (2)系统的角速度.(3)两人拉手前后的总动能.解:⑴ 设1m 在原心,质心为c r70 1.50.87060c r m ?=≈+120.8, 1.50.810.7c r r m r m ===-=21112226070.870607630./J m v r m v r kg m s =+=??+??=⑵ 系统的转动惯量为: 222221122600.8700.772.7I m r m r kgm =+=?+?=6308.66/72.7J rad s I ω==≈ 222201122111160770627302222E m v m v J =+=??+??=221172.78.66272622E I J ω==??≈3.11半径为R 的光滑半球形碗, 固定在水平面上. 一均质棒斜靠在碗缘, 一端在碗内, 一端在碗外. 在碗内的长度为c , 求棒的全长.解:棒的受力如图所示本题属于刚体平衡问题,由于碗为光滑半球形,A 端的支持力沿半径方向,而碗缘B 点处的支持力方向不能确定,两个支持力和重力三者在竖直平面内。
第3章 力学基本定律与守恒律 习题及答案1.作用在质量为10 kg 的物体上的力为i t F)210(+=N ,式中t 的单位是s ,(1)求4s 后,这物体的动量和速度的变化.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j6-m ·s -1的物体,回答这两个问题. 解: (1)若物体原来静止,则i t i t t F p t 1401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向,ip I imp v111111s m kg 56s m 6.5--⋅⋅=∆=⋅=∆=∆ 若物体原来具有6-1s m -⋅初速,则⎰⎰+-=+-=-=t tt F v m t m F v m p v m p 000000d )d (,于是⎰∆==-=∆t p t F p p p 0102d,同理, 12v v ∆=∆,12I I=这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理. (2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t 解得s 10=t ,(s 20='t 舍去)2.一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得ba t =(2)子弹所受的冲量⎰-=-=tbt at t bt a I 0221d )(将bat =代入,得 ba I 22= (3)由动量定理可求得子弹的质量202bv a v I m == 3.如图所示,一质量为m 的球,在质量为M 半径为R 的1/4圆弧形滑槽中从静止滑下。
学号:姓名:教师评语:第3章功和势能机械能守恒定律一.选择题1.在由两个物体组成的系统不受外力作用而发生非弹性碰撞的过程中,系统的( )(A) 动能和动量都守恒; (B) 动能和动量都不守恒;(C) 动能不守恒,动量守恒; (D) 动能守恒,动量不守恒。
2.一子弹以水平速度v0射入一静止于光滑水平面上的木块后,随木块一起运动,对于这一过程正确的分析是( )(A)子弹、木块组成的系统机械能守恒;(B)子弹、木块组成的系统水平方向动量守恒;(C)子弹所受的冲量等于木块所受的冲量;(D)子弹动能的减少等于木块动能的增加。
3.对功的概念有以下几种说法:(1) 保守力做正功时,系统内相应的势能增加;(2) 质点运动经一闭合路径,保守力对质点做的功为零;(3) 作用力和反作用力大小相等、方向相反,所以两者所做功的代数和必为零.下列上述说法中判断正确的是( )(A) (1)、(2)是正确的 (B) (2)、(3)是正确的(C) 只有(2)是正确的 (D) 只有(3)是正确的4.如图所示,质量分别为m1和m2的物体A和B,置于光滑桌面上,A和B之间连有一轻弹簧.另有质量为m1和m2的物体C和D分别置于物体A与B 之上,且物体A 和C、B和D之间的摩擦因数均不为零.首先用外力沿水平方向相向推压A和B,使弹簧被压缩,然后撤掉外力,则在A和B弹开的过程中,对A、B、C、D 以及弹簧组成的系统,有( )(A) 动量守恒,机械能守恒 (B) 动量不守恒,机械能守恒(C) 动量不守恒,机械能不守恒 (D) 动量守恒,机械能不一定守恒5.一质量为0.02 kg的子弹以200m/s的速率射入一固定墙壁内,设子弹所受阻力与其进入墙壁的深度x的关系如图所示,则该子弹能进入墙壁的深度为()(A)0.02m; (B) 0.04 m; (C) 0.21m; (D)0 .23m。
二、填空题1. 质量为m = 1 kg 物体,从静止出发在水平面内沿X 轴运动,其受力方向与运动方向相同,合力大小为x 23F += ,那么,物体在开始运动的3 m 内,合力做功 ; x = 3 m 时,其速率 。
习题3-1 一汽车发动机曲轴的转速在12s 内由每分钟1200转匀加速地增加到每分钟2700转,求:(1)角加速度;(2)在此时间内,曲轴转了多少转?解:(1))/(401s rad πω= )/(902s rad πω=)/(1.13)/(6251240902212s rad s rad t≈=-=∆-=πππωωβ匀变速转动(2))(78022122rad πβωωθ=-= )(3902圈==πθn 3-2 一飞轮的转动惯量为J ,在0=t 时角速度为0ω,此后飞轮经历制动过程。
阻力矩M 的大小与角速度ω的平方成正比,比例系数0>K 。
求:(1)当30ωω=时,飞轮的角加速度;(2)从开始制动到30ωω=所需要的时间。
解:(1)依题意 2ωβK J M -== )/(92202s rad JK J K ωωβ-=-= (2)由J K dt d 2ωωβ-== 得 ⎰⎰-=32000ωωωωK Jd dt t ωK Jt 2=3-3 如图所示, 发电机的轮A 由蒸汽机的轮B 通过皮带带动。
两轮半径A R =30cm ,=B R 75cm 。
当蒸汽机开动后,其角加速度π8.0=B βrad/s 2,设轮与皮带之间没有滑动。
求(1)经过多少秒后发电机的转速达到A n =600rev/min ?(2)蒸汽机停止工作后一分钟内发电机转速降到300rev/min ,求其角加速度。
解:(1)t A A βω= t B B βω=因为轮和皮带之间没有滑动,所以A 、B 两轮边缘的线速度相同,即B B A A R R ωω=又)/(20606002s rad A ππω=⨯=联立得)(10s R R t B B A A ==βω(2))/(10603002s rad A ππω=⨯=)/(62s rad t A A A πωωβ=-'= 3-4 一个半径为=R 1.0m 的圆盘,可以绕过其盘心且垂直于盘面的转轴转动。
第三章刚体的定轴转动选择题3-1 如图所示,四个质量相同、线度相同而形状不同的物体,它们对各自的几何对称轴的转动惯量最大的是( A )(A) (B) (C) (D)3-2 在上题中,它们对各自的几何对称轴的转动惯量最小的是( C )3-3 如图所示,P、Q、R、S是附于刚体轻细杆上的四个质点,它们的质量分别为4m、3m、2m和m,PQ QR RS l===,该系统对O O'轴的转动惯量为( A )(A) 29m l.10m l; (D) 214m l; (C) 250m l; (B) 23-4 均匀细棒O A,可绕通过点O与棒垂直的光滑水平轴转动,如图所示.如果使棒从水平位置开始下落,在棒到竖直位置的过程中,下列陈述正确的是( A )(A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.3-5 几个力同时作用在一个具有固定转轴的刚体上.如果这几个力的矢量和为零,则下列陈述正确的是( D )(A) 刚体必然不会转动; (B) 刚体的转速必然不变;(C) 刚体的转速必然会变; (D) 刚体的转速可能变,也可能不变.3-6 在光滑的桌面上开一个小孔,把系在绳的一端质量为m的小球置于桌面上,绳的另一端穿过小孔而执于手中.设开始时使小球以恒定的速率v 在水平桌面上作半径为1r 的圆周运动,然后拉绳使小球的轨道半径缩小为2r ,新的角速度2ω和原来的角速度1ω的关系为( B ) (A) 1212r r ωω⎛⎫ ⎪⎝⎭=; (B) 21212r r ωω⎛⎫⎪⎝⎭=;(C) 2211r r ωω⎛⎫ ⎪⎝⎭=; (D) 22211r r ωω⎛⎫⎪⎝⎭=.3-7 在上题中,新的动能和原来的动能之比为 ( A )(A) 212r r ⎛⎫ ⎪⎝⎭; (B) 12r r ; (C) 21rr ; (D) 221r r ⎛⎫ ⎪⎝⎭.3-8 刚体绕定轴高速旋转时,下列陈述正确的是 ( D )(A) 它受的外力一定很大; (B) 它受的外力矩一定很大;(C) 它的角加速度一定很大; (D) 它的角动量和转动动能一定很大. 3-9 芭蕾舞演员绕通过脚尖的竖直轴旋转,当她伸长手臂时的转动惯量为J ,角速度为ω.她将手臂收回至前胸时,转动惯量减小为3J ,此时她的角速度为 ( A )(A) 3ω; (D) 13ω.3-10 三个完全相同的转轮绕一公共轴旋转.它们的角速度大小相同,但其中一轮的转动方向与另外两个轮相反.今沿轴的方向施力,将三者靠在一起,使它们获得相同的角速度.此时靠在一起后系统的动能与原来三转轮的总动能相比是 ( B )(A) 减少到13; (B) 减少到19;(C) 增大到3倍; (D) 增大到9倍.计算题3-11 一电动机的电枢转速为11800r min -⋅,当切断电源后,电枢经20s 停下.求:(1) 切断电源后电枢转了多少圈;(2) 切断电源后10s 时,电枢的角速度以及电枢边缘上一点的线速度、切向加速度和法向加速度(设电枢半径为10cm ).解 (1) 切断电源时,电枢的转速为11018002πrad s60πrad s60ω--⨯=⋅=⋅电枢的平均角加速度为22060πrad s3.0πrad s20tωα----==⋅=-⋅∆由2202ωωαθ-=∆,且0ω=,可得切断电源后电枢转过的角度为()()22060πrad 600πrad 223πωθα--∆===⨯-转过的圈数为600πr 300r 2π2πN θ∆===(2) 切断电源后10s 时,电枢的角速度为()11060π 3.0π10rad s30πrad s t ωωα--=+=-⨯⋅=⋅此时电枢边缘上一点的线速度、切向加速度和法向加速度分别为()111222t 222222n 0.1030πm s3.0πm s9.42m s0.10 3.0πm s0.30πm s0.942m s0.1030πm s90πm s888m sr a r a r ωαω---------==⨯⋅=⋅=⋅==-⨯⋅=-⋅=-⋅==⨯⋅=⋅=⋅v3-12 一飞轮由直径为0.30m 、厚度为22.010m -⨯的圆盘和两个直径为0.10m 、长为28.010m -⨯的圆柱体组成.设飞轮的密度为337.810kg m -⨯⋅,求飞轮对转轴的转动惯量.解 飞轮上的圆盘的半径为10.15m r =,圆柱体的半径为20.05m r =. 飞轮上的圆盘质量为2322111π7.810π0.15 2.010kg 11.0kg m r h ρ-==⨯⨯⨯⨯=圆柱体的质量为2322222π7.810π0.058.010kg 4.90kgm r h ρ-==⨯⨯⨯⨯⨯=飞轮的转动惯量是圆盘和两个圆柱体的转动惯量之和为22222211221111.00.15 4.900.05kg m 0.136kg m 22J m r m r ⎛⎫=+=⨯⨯+⨯⋅=⋅ ⎪⎝⎭3-13 如图所示,质量分别为2m 、3m 和4m 的三个小球,用长均为l 、质量均为m 的三根均匀细棒相连,如图所示(小球的半径r l <<,可视为质点).求该物件对通过点O 垂直于图面的转轴的转动惯量.解 该物件的转动惯量是三个小球和三根细棒的转动惯量之和为2222212343103J m l m l m l m l m l =+++⨯=3-14 细棒长为l ,质量为m ,设转轴通过棒上离中心为h 的一点并与棒垂直.求棒对此轴的转动惯量.解 由平行轴定理,细棒的转动惯量为22222c 111212J J m h m l m h m l h ⎛⎫=+=+=+ ⎪⎝⎭3-15 一个半径为R 质量为m 的均匀圆盘,挖去直径为R 的一个圆孔,如图所示.求剩余部分对通过圆心O 且与盘面垂直的轴的转动惯量.解 开孔圆盘的转动惯量等于完整圆盘的转动惯量减去位于圆孔部位的被挖去的小圆盘的转动惯量:2222111322424232m R m R J m R m R ⎡⎤⎛⎫⎛⎫=-+=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ 3-16 如图所示,某飞轮的直径为0.50m 、转动惯量为22.4k g m ⋅、转速为311.010r min-⨯⋅.如果制动时闸瓦对轮的压力为490N ,闸瓦与轮之间的滑动摩擦因数为0.4,求制动后飞轮转多少圈才停止.解 制动前,飞轮的转速为31102π 1.010rad s105rad s60ω--⨯⨯=⋅=⋅飞轮所受的制动力矩为n 0.44900.25N m 49N m M F R μ=-=-⨯⨯⋅=-⋅根据转动定律,M J α=,可得制动后飞轮的角加速度为2249rad s20.4rad s2.4M J α---==⋅=-⋅由2202ωωαθ-=∆,且0ω=,可得制动后飞轮转过角度为220105rad 270rad 22(20.4)ωθα--∆===⨯-转过的圈数为270r 43.0r 2π2πN θ∆===3-17 如图所示,一物体质量为5kg ,从一倾角为o 37的斜面滑下,物体与斜面的摩擦因数为0.25.一滑轮装在固定轴O 处,轻绳的一端绕在滑轮上,另一端与物体相连.若滑轮可视为是实心圆盘,其质量为20kg 、半径为0.2m ,绳与轮间无相对滑动,且轮轴的摩擦阻力矩忽略不计.求:(1) 物体沿斜面下滑的加速度; (2) 绳中的张力.解 物体和滑轮的示力图以及坐标选取如图所示.图中P 为重力,N F 为正压力,r F 为摩擦力,T F 为张力,T T F F '=.O x 轴沿斜面向下,Oy 垂直于斜面.设物体的质量为1m ,滑轮的质量为2m ,滑轮的半径为r .对物体,根据牛顿第二定律,在O x 和Oy 方向分别有o1T r 1sin 37m g F F m a --=oN 1cos 370F m g -=重力2P 和轮轴对滑轮的压力N 2F 均通过转轴,对转轴的力矩为零.以垂直纸面向里为正方向,滑轮所受的力矩为T T M F r F r '=⋅=⋅.对滑轮,根据转动定律,有T F r J α⋅=而a r α=r N F F μ=2212J m r =联立解以上方程,可得物体沿斜面下滑的加速度和绳中的张力分别为()oo11222sin 37cos 3712345 0.259.8 m s 1.31 m s1555202m a gm m μ--=-+⎛⎫=-⨯⨯⨯⋅=⋅ ⎪⎝⎭+⨯T 21120 1.31 N 13.1 N 22F Jm a rα===⨯⨯=3-18 如图所示,长为l 、质量为m 的均匀细棒可绕点O 转动.此棒原先静止在竖直位置,受微小扰动而倒下.若不计摩擦和空气阻力,求细棒倒至与竖直位置成θ角时的角加速度和角速度.解 细棒的倒下,可看成定轴转动,其转轴通过地面上细棒端点,垂直于细棒的转动平面.在细棒倒下的过程中,细棒与地球组成的系统机械能守恒.以地面为势能零点,设细棒倒至与竖直方向成θ角时,角速度为ω,有21cos 222l l J m gm gωθ+=而213J m l =由此可得,角速度为ω=只有细棒所受的重力对转轴有力矩.以垂直纸面向里为正方向,细棒倒至与竖直方向成θ角时,重力对转轴的力矩为sin 2l M m g θ=.设此时的角加速度为α,则对细棒,根据转动定律,有sin 2l m gJ θα= 将213J m l =代入上式,可得角加速度为3sin 2g lαθ=3-19 如图所示,两个物体质量分别为1m 和2m .定滑轮的质量为m 、半径为R ,可视为圆盘.已知2m 与桌面间的摩擦因数为μ.设轻绳与轮间无相对滑动,且可不计滑轮轴的摩擦力矩,求1m 下落的加速度和滑轮两边绳中的张力.解 两个物体和滑轮的示力图以及坐标选取如图所示.图中P 为重力,N F 为正压力,r F 为摩擦力,T F 为张力,T1T1F F '=,T 2T 2F F '=.O x 轴水平向右,Oy 轴竖直向下.两个物体的加速度虽方向不同,但大小相同,12a a a ==.对物体1m ,根据牛顿第二定律,在Oy 方向有1T 11m g F m a -=对物体2m ,根据牛顿第二定律,在O x 方向有T 2r 2F F m a -=滑轮所受的重力和转轴对滑轮的压力都通过转轴,对转轴的力矩为零.以垂直纸面向里为正方向,滑轮所受的力矩为T 1T 2M F R F R =-.对滑轮,根据转动定律,有T 1T 2F R F R J α-=而212J m R =a R α=r 2F m gμ=联立解以上方程,可得物体的加速度与绳中的张力分别为()1212222m m a g m m mμ-=++()2T 11122122m m F m gm m m μ++=++()1T 22122122m m F m gm m mμ++=++3-20 一圆盘状的均匀飞轮,其质量为100kg 、半径为0.5m ,绕几何中心轴转动.在30s 内,由起始转速13000r m in-⋅均匀地减速至11000r m in -⋅.求阻力矩所做的功.解 飞轮初、末角速度分别为1102π3000rad s100πrad s60ω--⨯=⋅=⋅112π1000100rad sπrad s603ω--⨯=⋅=⋅飞轮的转动惯量为2222111000.5kg m 12.5kg m 22J m R ==⨯⨯⋅=⋅根据动能定理理,外力矩对飞轮所做的功等于飞轮转动动能的增量,可得在飞轮减速的过程中,阻力矩对飞轮所做的功为()222200225111()2221100π 12.5100πJ 5.4810J23A J J J ωωωω=-=-⎡⎤⎛⎫=⨯⨯-=-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦3-21 质量为m '、半径为R 的转台,可绕过中心的竖直轴转动.质量为m 的人站在转台的边缘.最初人和转台都静止,后来人在转台的边缘开始跑动.设人的角速度(相对于地面)为ω,求转台转动的角速度(转台可看成质量均匀分布的圆盘,并忽略转轴处的摩擦力矩和空气的阻力).解 人和转台组成的系统对中心轴角动量守恒.以人的角速度的方向为正方向,设转台的角速度为1ω,有210J m R ωω+=而212J m R '=由此可得12m m ωω-='式中的负号表明,转台的转动方向与人的转动方向相反.3-22 如图所示,一个转动惯量为J 、半径为R 的圆木盘,可绕通过中心垂直于圆盘面的轴转动.今有一质量为m 的子弹,在距转轴2R 的水平方向以速度0v 射入,并嵌在木盘边缘.求子弹嵌入后木盘转动的角速度.解 子弹和木盘组成的系统,对转轴角动量守恒.以垂直于纸面向外为正方向,设子弹嵌入后,木盘转动的角速度为ω,有2()2R J m R m ω+=v由此可得022()m R J m R ω=+v3-23 如图所示,一均匀细棒长为l 、质量为m ,可绕经过端点O 的水平轴转动.棒被拉到水平位置由静止轻轻放开,下落至竖直位置时,下端与放在地面上的静止物体相撞.若物体的质量也为m ,物体与地面间的摩擦因数为μ,物体滑动s 距离后停止.求: (1) 棒与物体碰撞后,物体的速度;(2) 棒与物体碰撞后,棒的角速度.解 (1)根据动能定理,摩擦力对滑块所做的功等于滑块动能的增量.设物体因碰撞而获得的速度为v ,有2102m gs m μ-=-v由此可得=v (2) 细棒下落的过程中,细棒与地球组成的系统机械能守恒定律.以地面为势能零点,设细棒下落至竖直位置时的角速度为0ω,有20122l J m gω=而213J m l =由此可得0ω=.碰撞过程中角动量守恒.以垂直纸面向外为正方向,设碰撞后,细棒的角速度为ω,有0J m l J ωω+=v将213J m l =、=v 和0ω=代入上式,可得lω=若0ω>,碰撞后细棒继续向右转动, 若0ω<,碰撞后细棒向左转动.。
《大学物理》第3章作业题解答1.在杨氏实验装置中,光源波长为0.64μm ,两缝间距为0.4mm ,光屏离缝的距离为50 cm 。
(1)试求光屏上第一亮条纹与中央亮条纹之间的距离;(2)若P 点离中央亮条纹为0.1 mm ,则两束光在P 点的相位差是多少?(3)求P 点的光强度和中央点的光强度之比。
解:(1)由D x k dλ=得第一亮条纹(k=1)与中央亮条纹(k=0)之间的距离 631030.50.64100.810m =0.8mm 0.410D x x x d λ---⨯⨯∆=-===⨯⨯ (2)光程差m D xd 8331085.0104.0101.0---⨯=⨯⨯⨯==δ 相应的位相差4104.61082278ππδλπϕ=⨯⨯⨯==∆-- (3)两束相干光在空间某点相遇时合成光矢量的光强为ϕ∆++=cos 22121I I I I I因21I I =,有2cos 421ϕ∆=I I 中央明纹相位差0=∆ϕ,光强104I I =P 点相位差4πϕ=∆,该点的光强度和中央明纹的光强度之比8536.08cos 2cos 220==∆=πϕI I2.在杨氏实验装置中,两小孔的间距为0.5 mm ,光屏离小孔的距离为50 cm 。
当以折射率为1.60的透明薄片贴住小孔2S 时(如图3-21所示),发现屏上的条纹移动了1cm ,试确定该薄片的厚度。
图3-21解:未插入透明薄片时,由1S 、2S 发出的光程差为Dd x r r 1121=-=δ 设透明薄片的厚度为e ,覆盖上透明薄片后光程差为()D d x r ne e r 2122=-+-=δ 由此带来的附加光程差为()211n e δδδ∆=-=-=Dd x x )(12- 得: ()()mm D n d x xe 24121067.15.016.110501.01)(--⨯=⨯-⨯⨯=--=6.试求能产生红光(0.7λ=μm)的二级反射干涉条纹的肥皂薄膜厚度。
第三章刚体力学
一.选择题
1. 刚体的转动惯量较大,则
(A) 该刚体的质量较大
(B) 该刚体转动的角速度较大
(C) 该刚体转动的角加速度较大
(D) 该刚体转动惯性较大
2.匀质细棒可绕通过其一端并与棒垂直的水平光滑轴在竖直面内转动,今使棒从水平位置开始自由下摆,在摆动到竖直位置的过程中,下述说法正确的是
(A) 角速度从大到小,角加速度从大到小
(B) 角速度从大到小,角加速度从小到大
(C) 角速度从小到大,角加速度从大到小
(D) 角速度从小到大,角加速度从小到大
3.几个力同时作用在一个有固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体
(A) 必不会转动 (B) 转速必不变
(C) 转速必改变 (D) 转速可能变,也可能不变
4.半径均为R的匀质圆盘和圆环,质量都为m,都围绕通过圆心垂直于圆平面的轴转动,在相同外力矩作用下,获得的角加速度分别是、,则
(A) (B)
(C) (D) 无法确定
5. 两小球质量为m及2m,由长为的轻杆相连,系统绕通过杆中心垂直于杆的轴以恒定角速度转动,则系统的转动惯量和转动动能为
(A) ,
(B) ,
(C),
(D) ,
6. 质点作匀速率圆周运动时
(A) 它的动量不变,对圆心的角动量也不变
(B) 它的动量不变,对圆心的角动量不断变化
(C) 它的动量不断改变,对圆心的角动量不变
(D) 它的动量不断改变,对圆心的角动量也不断改变
7.人造地球卫星绕地球做椭圆运动(地球在椭圆一个焦点上),则卫星的
(A) 动量不守恒,角动量不守恒
(B) 动量不守恒,角动量守恒
(C) 动量守恒,角动量守恒
(D) 动量守恒,角动量不守恒
8.一转盘绕固定水平轴O匀速转动,沿同一水平直线从相反方
向射入两颗质量相同、速率相等的子弹,并留于盘中,则子弹射入
后的瞬时转盘的角速度
(A) 增大 (B) 减小
(C) 不变 (D) 无法确定
三.填空题
9. 一飞轮做匀减速运动,在5s内角速度由减至,则角加速度为__________,该飞轮在这5s内总共转过了__________圈.
10. 如图,长为l质量为m的匀质细杆,绕端点轴O在竖直面内旋转,
今使杆从水平位置开始自由下摆,当杆与水平方向夹45o角时,所受重力矩为_____
______,角加速度为___________.
11. 质量为m的小球以速率v做匀速圆周运动,圆周半径为R,此球相对圆心的转动惯量
为______________,转动动能为______________,角动量为____________.
12. 滑冰运动员绕自身竖直轴做旋转动作,当她收缩四肢时,转速会_____增大_________,这一过程运动员______角动量_______守恒.
13.飞轮以角速度ω0绕光滑固定轴旋转,飞轮对轴的转动惯量为J0,另一转动惯量为3J0的静止飞轮突然和上述转动的飞轮啮合在一起,它们绕同一转轴转动,则啮合后整个系统的角速度为_______________.
三.计算题
14.如图所示,圆柱形定滑轮质量为M,半径为R,转动惯量为,
一质量为m的物体与绕在滑轮上的轻绳相连,摩擦不计. 求物体由静止下落
过程中,下落速度与时间的关系.
解:设物体下落加速度为a,滑轮转动角加速度为β.
由牛顿第二定律、转动定律列方程如下
三式联立,可求得
下落速度与时间的关系为
15. 如图,两重物质量分别为m1和m2,且,定滑轮的半径
为r,对转轴的转动惯量为J,轻绳与滑轮间无滑动,不计摩擦,设开
始时系统静止 . 求t时刻滑轮的角加速度和角速度.
解:设物体加速度为a,滑轮转动角加速度为β.
由牛顿第二定律、转动定律列方程如下
解得:
16. 如图所示,一质量为m的小球系于轻绳的一端,以角速度
ω
在光滑水平面作半径为r0的圆周运动. 若绳的另一端穿过中
心小孔后受一铅直向下的拉力作用,使小球做圆周运动的半径变
为r0/2,试求:(1)小球此时的速率;(2)拉力在此过程中做
的功.
解:(1)小球所受重力、支持力、及绳的拉力对通过中心且与平面垂直的轴的力矩均为零,故小球对该轴的角动量守恒.
设小球圆周运动的半径变为r0/2时,角速度为ω,则
得,此时小球的速率为
(2)拉力做的功等于小球动能增量
17. 如图所示,质量为m、长为l的细棒,可绕通过棒中心且与棒垂直的竖直光滑轴O在水平面内自由转动,转动惯量,开始时棒静止,现有一质量也为m的子弹,在水平面内以速度v0垂直射入棒端.(1)若子弹嵌于棒中,求棒获得的角速度;(2)若子弹沿穿入方向穿出,且穿出时速度减半,再求棒的角速度.
解:(1)子弹和细棒系统角动量守恒,碰前棒静止,子弹对轴的角动量为
碰后子弹与棒系统角动量为
(2)碰后子弹与棒角动量之和为
(注:可编辑下载,若有不当之处,请指正,谢谢!)。