湖北省武昌区2010-2011学年七年级数学第一学期期末调研考试试题 人教新课标版
- 格式:doc
- 大小:387.00 KB
- 文档页数:9
青山区2010-2011学年度第一学期七年级期末测试数学试卷一、你一定能选对l (本题共有12小题,每小题3分,共36分)下列各题附有四个备选答案,其中有且只有一个是正确的,请将正确答案填在上面的答题卡内 L .-31的相反数是( ) A .-31B . 31C .-3D .3 2、海关总署11月10日公布今年前10个月我国外贸进出口情况,据海关统计,1至10月, 我国进出口总值为23934.1亿美元,将“23934.1”保留二个有效数字约为( ) A .2.3×104 B .0.23×l05 C .2.4×104 D .2.4×1053、下列各组中的两个单项式不是同类项的是( )A .o 和1B .2x 2y 和3xy 2c .-322xy 和 xy 2 D .3x 2y 和4yx 24、若k 是方程2x+l=3的解,则6k+3的值是( ) A .9 B .-9 C . 15 D .-35、下列变形正确的是( ) A .由3x+9=24,得3x=24+9 B .由5x-1=2,得x-l=10 C .由3x=O ,得x=3 D .由8x+4=8,得2x+l=2 6、下列算式中,与a-b-c 的值不相等的是( ) A . a- (b -c) B . a-(b+c)C . (a-6)+(-c )D . (-b )十(a -c) ,7、己知A 、B 两点在数轴上表示的数分别为a ,b ,且a 与b 的积小于0,则A 、B 两点在数轴上的位置是( )A .A 、B 两点均在原点的左边 B .A 、B 两点均在原点的右边C .点A 在原点的左边,点B 在原点的右边D .以上说法都不对BEAC DABD(1)8、如图,从正上方看下列各几何体,得到图形(1)的几何体是( )x 份(x<500),未销售完的报纸又以每份0.1元的价格由报社收同,这次买卖中该老板赚 钱( )A .(0. 7x-200)元B .(0. 8x-200)元 、C .(0. 7x-180)元D .(0. 8x-250)元 10下列图形中,不是正方体展开图形的是( )11、足球比赛的计分规则为:胜一场积3分,平一场积1分,负一场积0分,一支球队打14场,负5场,共积19分,那么这支球队胜了( ) A . 6 B . 5 C . 4 D . 312、如图,D 、E 在线段BC 上.下列说法:①以A 为顶点的角共有6个:②图中有2对互补 的角;③若∠BAE=m °,∠CAD= n °,则∠BAC-ZDAE= (m+ n)°;④若BC=11,BD:CE=2:l,DE=21BD+3,则S ∆ABD:S ∆ADE:S ∆ACE =4:5:2. 是( )A .①②③ B.①③④ C.①②④ D.②③④AO二、你能填得又快又准吗?(本题共有4题,每小题3分,共12分) 13、如图,,若∠AOC = 90°,∠AOB=∠COD , 则∠BOD 的度数为_________14、已知关于x 的一元一次方程kx=5,k 的值为单项式-22ab 的系数与次数之和,则这个方程的解为x=_____15、10个棱长为m 的正方体摆放成如图的形状,当m=5时, 这个图形的表面积为________ .16、老师布置了下列一道题:“已知∠AOB =m °,过点O 做射线OC ,使得∠BOC=n ° (m>n),OE 、OF 分别为∠AOB 和∠BOC 的平分线,求∠EOF 的度数?”小斌同学的答案是 115 °,小玲同!学的答案是50°,经询问得知这两个同学的计算过程都没有出错,请你依此探究m 的值为_______三、解下列各题(本题共9题,共72分)1 7、(本小题6分)25÷(-25)2-8 18、(本小题6分)解方程:53-x -34-x =119、(本题6分)先化简,再求值:25(2a 2b - ab 2)-(21ab 2+ 3a 2b ),其中a=3,b=-3120、(本题7分)一个锐角的补角比它的余角的3倍少10°,求这个锐角的大小.C21、(本题7分)如图,已知∠AOB=50°,OC 平分∠(1)请在图中∠AOB 的外部画出它的一个余角∠BOD; (2)求∠COD 的度数.22、(本题8分) (1)已知:3x1+m y 3与-x 4y2+n 是同类项,则m=_____, n=_______;(2)如图,A 、M 、B 、C 、N 、D 在一条直线上,在(1)的条件,若AB :BC :CD=2n :3n :m ,AB 的中点M 与CD 的中点N 的距离是llcm ,求AD 的长.A BC M N23、(本题10分)某人型超市元旦假期举行促销活动,规定一次购物不超过100元的不给优 惠;超过100元而不超过300元时,按该次购物全额9折优惠;超过300元的其中300 元仍按9折优惠,超过部分按8折优惠;小美第第一次购物用了94.5元,第二次购物用了282.8元.(1)小美第一次购物的原价为多少? (2)小美第二次购物的原价为多少元?24、(本题10分)已知:0为直线AB 上的一点,射线OA OC 在北偏东m °的方向,射线OE 在南偏东n °的方向,射线OF 平分∠且2m+2n=180.B西东北B(1)如图1,∠COE=______°,∠COF 和∠BOE 之间的数量关系为________________.(2)若将∠COE 绕点O 旋转至图2的位置,射线OF 仍然平分∠AOE 时,试问(1)中∠COF 和∠BOE 之间的数量关系是否发生变化?若不发生变化,请你加以证明,若发生变化,请你说明(3)若将∠COE 绕点0旋转至图3的位置,射线OF 仍然平分∠AOE 时, 则2 ∠COF+∠BOE= __________°.25、(本题12分)已知A 、B 两点在数轴上表示的数为a 和b ,M 、N 均为数轴上的点, 且OA<OB .(1)若A 、B 的位置如图l 所示,试化简: a -b +b a ++b a -OA B(2)如图2,若a +b =8.9,MN=3,求图中以A 、N 、O 、M 、B 这5个点为端点的所O D EN M O D EN M 有线段长度的和;(3)如图3,M 为AB 中点,N 为OA 中点,且MN=2AB-15,a=-3,若点P 为数轴上一点,且PA=32AB,试求点P 所对应的数为多少?青山区2010—2011学年度第一学期七年级期末测试数学试题评分标准一、二、你能填得又快又准吗?(本题共有4题,每小题3分,共12分) 13.90°;14.2;15.180;16. 165°.三、解下列各题(本题共9题,共72分) 17、解:825252--÷)(=842525-÷……3分 =4-8 ……5分=-4 ……6分18、解:去分母,得:15)4(533=---x x )(……1分去括号,得:1520593=+--x x ……3分 移向,得:2091553-+=-x x ……4分 合并同类项,得:42=-x……5分系数化为1,得:2-=x ……6分19、解:)321(2252222b a ab ab b a +--)(=b a ab ab b a 2222321255---……2分 =2232ab b a -……4分当a =3,b =31-时 原式=2×32×(31-)-3×3×(31-)2 =-6-1=-7 ……6分20、(本题7分) 解:设这个角为x依题意,得 180°-x=3(90°- x)-10°……4分x=40°……6分答:设这个角为40°. ……7分21、(本题7分)解:(1)(图略)画图正确 ……3分 (2)∠COD=∠COB +∠BOD ……4分 =21∠AOB +90°-∠AOB ……6分 =21×50°+90°-50° =25°+40° =65°……7分22、(本题8分)解:(1)3,1(只对1个给1分) ……3分 (2)由已知有:AB ︰BC ︰CD=2n ︰3n ︰m =2︰3︰3 设AB=2x ,则BC= CD =3x∴MN=MB +BC +=21AB +BC +21CD =x +3x +23x=11∴211x=11 ∴ x=2 ∴AD= AB +BC +CD=8x=1623、(本题10分)解:(1)因为100×0.9=90<94.5<100, 所以小美第一次购物分两种情况:情况1: 小美第一次购物没有优惠,故原价为94.5元; ……1分 ÷0.9=105(元)……3分答:小美第一次购物原价为94.5元或105元. ……4分 (2)设小美第二次购物的原价为x 元 ∵300×0.9=270<282.8∴小美第二次购物超过300元 ……5分 则(x -300)×0.8+300×0.9=282.8 ……7分 解得:x =316 ……9分 答:小美第二次购物的原价为316元. ……10分24、(本题10分)解:(1)90,∠BOE=2∠COF ; ……4分 (2)不发生变化.证明如下:∠COF=90°-∠EOF ……5分=90°-21∠AOE ……6分 =90°-21(180°-∠BOE )=90°-90°+21∠BOE=21∠BOE ……7分∴∠BOE=2∠COF ……8分 (3)360. ……10分25、(本题12分)解:(1)由已知有:a <0,b >0∵OA <OB ∴∣a ∣<∣b ∣∴a +b >0,a -b <0 ∴∣a ∣-∣b ∣+∣a +b ∣+∣a -b ∣=-a -b +a +b +b -a =b -a ……3分(2)∵∣a ∣+∣b ∣=8.9∴AB=8.9 ……4分 又MN=3∴AN +AO +AM +AB +NO +NM +NB +OM +OB +MB ……6分=(AN +NB)+(AO +OB )+(AM +MB )+AB +(NO +OM )+NM =AB +AB +AB +AB +NM +NM=4AB +2NM =4×8.9+2×3答:所有线段长度的和为41.6 ……8分(3)∵a =-3∴OA=3∵M 为AB 的中点,N 为OA 的中点 ∴AM=21AB ,AN=21OA ∴MN= AM -AN=21AB -21OA =21AB -23……9分又MN=2AB -15∴2AB -15=21AB -23解得:AB=9 ∴PA=32AB=6 ……10分 若点P 在点A 的左边时,点P 在原点的左边(图略) OP=9故点P 所对应的数为-9 ……11分word若点P在点A的右边时,点P在原点的右边(图略)OP=3故点P所对应的数为3答:P所对应的数为-9或3. ……12分11 / 11。
武昌区2010—2011学年度上学期期末调研考试七 年 级 数 学 试 卷 答 案一、选择题(本大题共12小题,每小题3分,共36分)二、填空题(本大题共4小题,每题3分,共12分)13.32 14.0 15.150° 16.-117.计算:解:(1)()()()123-+---()()123=-+-+ —————— 3分0= —————— 5分241)32141-÷+( =24)3541(⨯+- ——————2分 =406-+ ——————4分=34 ——————5分18.解:()()1322--+x x x ()()3322--+=x x x ——————1分=33x 2x x 2=-+ —— ————2分 32+-=x x ——————3分当x=-1时,原式()()3112+---= 311++= ——————5分5= ——————6分19.解:(1) 4325x x -=+4253x x -=+ ——2分28x = ——4分4x = ——————5分(2)2131138x x -+-= ()()82124331x x --=+ ——————2分1682493x x --=+ ——————3分1693824x x -=++735x = ——————4分5x = ——————5分20.解:(1)25BC a =+ ——————1分 25AD BC =-()2255a =+-4105a =+-45a =+ ——————2分CD =DA +AB +BC =(4a +5)+a +(2a +5)=7a +10 ——————4分当15a =时,)(11510157cm CD =+⨯= ——————6分21.解:因为OB 是∠AOC 的平分线,∠AOB =35°所以∠AOC =2∠AOB =70° ——————2分 又因为∠AOE =150°所以∠COE =∠AO E ﹣∠AOC =150°﹣70°=80°因为OD 是∠COE 的平分线所以∠COD =21∠COE =40° ——————4分 所以∠AOD =∠AOC +∠COD=70°+40°=110°——————6分22.解:由()2131x m -=-解得312m x += ——————2分 由()1223+-=+m x 解得342--=m x ——————4分 因为两个方程的解互为相反数3124023m m +--∴+= 解得,1m = ——————6分23.解:设A ,B 两地间的距离为x 千米,(1)当C 地在A ,B 两地之间时,依题意得,45.25.7105.25.7=--++x x ——————3分 解这个方程得:20=x (千米) ——————4分(2)当C 地在A 地上游时,依题意得:45.25.7105.25.7=-+++x x ——————6分 解这个方程得:320=x ——————7分 答:A ,B 两地间距离为20千米或320千米 . ——————8分 24.解:(1)设∠COF =α,则∠EOF =90°﹣α因为OF 是∠AOE 的平分线所以∠AOF =90°﹣α所以∠AOC =(90°﹣α)﹣α=90°﹣2α ——————2分 ∠BOE =180°﹣∠COE ﹣∠AOC=180°﹣90°﹣(90°﹣2α)=2α即∠BOE =2∠COF ——————4分(2)成立设∠AOC=β,则∠AOF=290β-︒, 所以∠C OF=45°+2β=21(90°+β) ——————6分 ∠BOE =180°﹣∠AOE=180°﹣(90°﹣β)=90°+β所以∠BOE=2∠C OF ——————8分(3)(30+n 35)° ——————10分25.解:(1)点B 在数轴上表示的数是﹣8设运动t 秒时,BC =8单位长度),①当点B 在点C 的左边时, 24286=++t t2=t (秒) ——————2分 ②当点B 在点C 的右边时,24286=+-t t4=t (秒)答:当t 等于2秒或4秒时BC =8(单位长度). ——————4分(2)4,16 ——————6分(3)存在设运动时间为t (秒)1°当t =3时,点B 与点C 重合,点P 在线段AB 上,0<PC ≤2且 BD=CD =4,AP +3PC =AB +2PC =2+2PC当PC =1时BD =AP +3PC ,即3=-PC AP BD 2°当3<t<413时,点C 在点A 与点B 之间,0<PC <2 ①点P 在线段AC 上时BD=CD ﹣BC=4﹣BC ,AP +3PC =AC +2PC =AB ﹣BC +2PC=2﹣BC +2PC当PC =1时,有BD =AP +3PC 即3=-PCAP BD ②点P 在线段BC 上时BD=CD ﹣BC=4﹣BCAP +3PC = AC +4PC = AB ﹣BC +4PC =2﹣BC +4PC 当21=PC 时,有BD =AP +3PC即3=-PCAP BD 3°当t=413时,点A 与在点C 重合,0<PC ≤2 BD =CD ﹣A B =2AP +3PC = 4PC 当21=PC 时,有BD =AP +3PC 即3=-PC APBD4°当413<t<27时,0<PC <4BD=CD ﹣BC=4﹣BCAP +3PC =AB ﹣BC+4PC =2﹣BC+4PC 当21=PC 时,有BD =AP +3PC 即3=-PC APBD ——————10分。
武昌区2010~2011学年第一学期期末调研考试七年级数学一、选择题(本大题共12小题,每小题3分,共36分)下面各题的四个备选答案中,有且只有一个是正确的1. 32的相反数是( ) A .−32 B .32 C .23 D .−232. 数轴上表示-3和表示2的两点之间的距离是( ) A .3 B .4 C .5 D .63. 用科学记数法表示201000,应记作( )A .2.01×106B .20.1×105C .2.01×104D .2.01×105 4. 下列说法完全正确的是( )A .单项式2xy 2的系数是2,次数是2B .单项式-2xy 的系数是-2,次数是2C .单项式21xy 2的系数是21x ,次数是3 D .单项式-xy 2的系数是1,次数是3 5. 下列计算正确的是( ) A .4x -9x +6x =-x B .21a −21a =0 C .x 3-x 2=x D .xy -2xy =3xy 6. 如图,按照上北下南,左西右东的规定画出东南西北的十字线,其中点A 位于点O 的( )A .南偏东35°方向B .北偏东65°方向C .北偏西65°方向D .南偏西65°方向7. 如果x =1是关于x 的方程ax +1=2的解,则a 的值为( ) A .1 B .-1 C .2 D .-28. 如图,从小明家A 到学校B 原有三条路线:路线①A-D-B ;路线②A-E-B ;路线③A-C-B ,后又开通了一条直道,路线④A-B ,这四条路线中路程最短的是( ) A .路线①B .路线②C .路线③D .路线④9. 如图,直线AB 与直线CD 相交于点O ,E 是∠AOD 内一点,已知OE ⊥AB ,∠BOD=45°,则∠COE 的度数是( )A .125°B .135°C .145°D .155°10. 某商店销售一批服装,每件售价150元,可盈利25%,求该服装每件的成本,设成本为每件x 元,根据题意,下面所列方程正确的是( )A .150-x =x •25%B .150-x =25%C .150×25%=xD .150-150×25%=x 11. 如图,线段AB 和线段CD 的重合部分CB 的长是线段AB 长的三分之一,M ,N 分别是线段AB 和线段CD 的中点,若AB =12cm ,MN =10cm ,则线段AD 的长为( ) A .20cm B .21cmC .22cmD .24cm12. 下列说法:①|a |=-b ,|b |=b ,则a =b =0;②若-a 不是正数,则a 为非负数;③|-a 2|=(-a )2;④若0=+bba a ,则1-=ab ab ;⑤若a +b =0,则a 3+b 3=0;⑥若|a |>b ,则a 2>b 2;其中正确的结论有( )A .2个B .5个C .3个D .4个 二、填空题(本大题共4小题,每小题3分,共12分)13. 有3筐白菜,以每筐10千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后记录如下:1.5,-0.5,1,这3筐白菜共有______千克. 14. 当x =______时,3x +1的值与x +1的值相等.15. 如图,已知∠AOC =∠BOD =90°,∠AOB=150°,则∠COD 的补角等于______度. 16. 若a -1=b -c <0,则|a -2|-|b -c -2|的值为______.三、解答题(共72分)17. 计算: (1) (-1)+(-2)-(-3) (2) 24132141÷⎪⎭⎫ ⎝⎛+-18. 先化简再求值:(x 2+2x )-3(x -1),其中x =-1. 19. 解方程:(1) 4x =2x +8 (2)8131312+=--x x 20. 如图,已知线段AB 的长度是a cm ,线段BC 的长度比线段AB 长度的2倍多5cm ,线段AD 的长度比线段BC 长度的2倍少5cm . (1) 写出用a 表示的线段CD 长的式子;(2) 当a =15cm 时,求线段CD 的长.21. 如图,OB 是∠AOC 的平分线,OD 是∠COE 的平分线,∠AOE=150°,∠AOB=35°,求∠AOD 的度数.22. 关于x 的方程2(x -1)=3m -1与3x +2=-2(m +1)的解互为相反数,求m 的值.23. 盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A 地上船,沿江而下至B 地,然后朔江而上到C 地下船,共乘船4小时.已知A ,C 两地相距10千米,船在静水中的速度为7.5千米/时.求A ,B 两地间的距离.24. 已知点O 是直线AB 上的一点,∠COE =90°,OF 是∠AOE 的平分线. (1) 当点C ,E ,F 在直线AB 的同侧(如图1所示)时.试说明∠BOE =2∠COF ;(2) 当点C 与点E ,F 在直线AB 的两旁(如图2所示)时,(1)中的结论是否仍然成立?请给出你的结论并说明理由;(3) 将图2中的射线OF 绕点O 顺时针旋转m °(0<m <180),得到射线OD .设∠AOC=n °,若∠BOD=⎪⎭⎫ ⎝⎛-3260n ,则∠DOE 的度数是________(用含n 的式子表示).25. 如图,数轴上线段AB=2(单位长度),CD =4(单位长度),点A 在数轴上表示的数是-10,点C 在数轴上表示的数是16.若线段AB 以6个单位长度/秒的速度向右匀速运动,同时线段CD 以2个单位长度/秒的速度向左匀速运动.(1) 问运动多少时BC =8(单位长度)?(2) 当运动到BC =8(单位长度)时,点B 在数轴上表示的数是________; (3) P 是线段AB 上一点,当B 点运动到线段CD 上时,是否存在关系式3=-PCAPBD ,若存在,求线段PD 的长;若不存在,请说明理由.武昌区2010~2011学年第一学期期末调研考试七年级数学参考答案一、选择题(本大题共12小题,每小题3分,共36分) 序号 1 2 3 4 5 6 7 8 9 10 11 12 答案BCDBDCADBADB二、填空题(本大题共4小题,每题3分,共12分) 13. 32 14. 0 15. 150° 16. -117. (1) 0 (2) 34 18. x 2-x +3 5 19. (1) 4 (2) 5 20. (1) BC =2a +5,AD =2BC -5=4a +5 CD =DA +AB +BC =7a +10 当15a =时,CD =115 cm21. 解:∵OB 是∠AOC 的平分线,∠AOB=35° ∴∠AOC=2∠AOB=70° ∵∠AOE=150°∴∠COE=∠AOE ﹣∠AOC=150°﹣70°=80°∵OD 是∠COE 的平分线 ∴∠COD=21∠COE=40° ∴∠AOD=∠AOC+∠COD=70°+40°=110° 22. 解得,1m =23. 解:设A ,B 两地间的距离为x 千米, (1) 当C 地在A ,B 两地之间时,依题意得,45.25.7105.25.7=--++x x 解得:20=x(2) 当C 地在A 地上游时,依题意得:45.25.7105.25.7=-+++x x 解得:320=x 答:A ,B 两地间距离为20千米或320千米24. 解:(1) 设∠COF=α,则∠EOF=90°﹣α ∵OF 是∠AOE 的平分线∴∠AOF=90°﹣α,∠AOC=(90°﹣α)﹣α=90°﹣2α ∠BOE=180°﹣∠COE ﹣∠AOC=180°﹣90°﹣(90°﹣2α)=2α 即∠BOE=2∠COF (2) 成立设∠AOC=β,则∠AOF=290β-︒,所以∠COF=45°+2β=21(90°+β) ∠BOE=180°﹣∠AOE=180°﹣(90°﹣β)=90°+β 所以∠BOE=2∠COF (3)(30+n 35)°25. 解:(1) 点B 在数轴上表示的数是﹣8 设运动t 秒时,BC=8单位长度① 当点B 在点C 的左边时,24286=++t t 2=t (秒)②当点B 在点C 的右边时,24286=+-tt 4=t (秒)答:当t 等于2秒或4秒时BC=8(单位长度). (2) 4,16(3) 存在,设运动时间为t (秒)a. 当t =3时,点B 与点C 重合,点P 在线段AB 上,0<PC≤2且 BD=CD=4,AP+3PC=AB+2PC=2+2PC当PC=1时BD=AP+3PC ,即PCAPBD -=3 b. 当3<t<413时,点C 在点A 与点B 之间,0<PC<2 ①点P 在线段AC 上时,BD=CD ﹣BC=4﹣BC ,AP+3PC=AC+2PC=AB ﹣BC+2PC=2﹣BC+2PC 当PC=1时,有BD=AP+3PC ,即PCAPBD -=3 ②点P 在线段BC 上时,BD=CD ﹣BC=4﹣BC ,AP+3PC= AC+4PC= AB ﹣BC+4PC=2﹣BC+4PC 当PC =21时,有BD=AP+3PC ,即PC AP BD -=3 c. 当t =413时,点A 与在点C 重合,0<PC≤2 BD=CD ﹣AB=2,AP+3PC= 4PC 当PC =21时,有BD=AP+3PC ,即PCAP BD -=3 d. 当413<t<27时,0<PC<4, BD=CD ﹣BC=4﹣BC ,AP+3PC=AB ﹣BC+4PC=2﹣BC+4PC 当PC =21时,有BD=AP+3PC 即PCAPBD -=3。
武汉市人教版七年级上册数学期末考试试卷及答案一、选择题1.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°2.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( )A .49B .59C .77D .1393.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠4.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B 的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或55.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( ) A .23(30)72x x +-= B .32(30)72x x +-= C .23(72)30x x +-= D .32(72)30x x +-= 6.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() mA .21.0410-⨯B .31.0410-⨯C .41.0410-⨯D .51.0410-⨯7.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=40°时,∠BOD 的度数是( ) A .50°B .130°C .50°或 90°D .50°或 130°8.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7B .﹣1C .9D .79.若21(2)0x y -++=,则2015()x y +等于( ) A .-1B .1C .20143D .20143-10.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( )A .(-1)n -1x 2n -1B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +111.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC的中点,则线段MN 的长度是( ) A .6cm B .3cm C .3cm 或6cm D .4cm 12.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣113.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式 14.化简(2x -3y )-3(4x -2y )的结果为( ) A .-10x -3y B .-10x +3y C .10x -9y D .10x +9y 15.已知∠A =60°,则∠A 的补角是( )A .30°B .60°C .120°D .180°二、填空题16.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.17.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________.18.化简:2xy xy +=__________. 19.﹣30×(1223-+45)=_____. 20.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________21.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).22.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.23.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.24.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________.25.五边形从某一个顶点出发可以引_____条对角线.26.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.27.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___. 28.若523m xy +与2n x y 的和仍为单项式,则n m =__________.29.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm . 30.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______.三、压轴题31.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.32.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.33.如图,以长方形OBCD 的顶点O 为坐标原点建立平面直角坐标系,B 点坐标为(0,a ),C 点坐标为(c ,b ),且a 、b 、C 6a +(c ﹣4)2=0.(1)求B、C两点的坐标;(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的13?直接写出此时点P的坐标.34.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数______;点P表示的数______(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P、Q 同时出发,问点P运动多少秒时追上Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.35.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角尺(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)若将图1中的三角尺绕点O以每秒5°的速度,沿顺时针方向旋转t秒,当OM恰好平分∠BOC时,如图2.①求t值;②试说明此时ON平分∠AOC;(2)将图1中的三角尺绕点O顺时针旋转,设∠AON=α,∠COM=β,当ON在∠AOC内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O以每秒5°的速度沿顺时针方向旋转的同时,射线OC也绕点O以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC第一次平分∠MON?请说明理由.36.如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是段AB的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB=15cm,点C是线段AB的“2倍点”.求AC的长;(3)如图②,已知AB=20cm.动点P从点A出发,以2c m/s的速度沿AB向点B匀速移动.点Q从点B出发,以1c m/s的速度沿BA向点A匀速移动.点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s),当t=_____________s时,点Q 恰好是线段AP的“2倍点”.(请直接写出各案)37.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).(4)直接写出点B为AC中点时的t的值.38.已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在∠CON的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;(2)设∠OAP=x°,∠OBP=y°,若∠APB的平分线PQ交OC于点Q,求∠OQP的度数(用含有x、y的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数. 【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=. 故答案为:C. 【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.2.B解析:B 【解析】 【分析】首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b )与ab 表示的形式,然后把已知代入即可求解. 【详解】解:∵(5ab+4a+7b )+(3a-4ab ) =5ab+4a+7b+3a-4ab =ab+7a+7b =ab+7(a+b ) ∴当a+b=7,ab=10时 原式=10+7×7=59. 故选B .3.A解析:A 【解析】 【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可. 【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意, 故选:A. 【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.4.D解析:D 【解析】 【分析】如图,根据点A 、B 表示的数互为相反数可确定原点,即可得出点B 表示的数,根据两点间的距离公式即可得答案. 【详解】如图,设点C 表示的数为m , ∵点A 、B 表示的数互为相反数, ∴AB 的中点O 为原点, ∴点B 表示的数为3,∵点C 到点B 的距离为2个单位, ∴3m -=2, ∴3-m=±2, 解得:m=1或m=5, ∴m 的值为1或5,故选:D. 【点睛】本题考查了数轴,熟练掌握数轴上两点间的距离公式是解题关键.5.A解析:A 【解析】 【分析】设女生x 人,男生就有(30-x )人,再表示出男、女生各种树的棵数,根据题中等量关系式:男生种树棵数+女生种树棵数=72棵,列方程解答即可. 【详解】 设女生x 人, ∵共有学生30名, ∴男生有(30-x )名,∵女生每人种2棵,男生每人种3棵, ∴女生种树2x 棵,男生植树3(30-x )棵,∵共种树72棵,∴2x+3(30-x)=72,故选:A.【点睛】本题考查一元一次方程的应用,正确找准数量间的相等关系是解题关键.6.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000104=1.04×10−4.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.D解析:D【解析】【分析】根据题意画出图形,再分别计算即可.【详解】根据题意画图如下;(1)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠BOD=180°﹣90°﹣40°=50°,(2)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠AOD=50°,∴∠BOD=180°﹣50°=130°,故选D.【点睛】此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.8.D解析:D【解析】【分析】将x与y的值代入原式即可求出答案.【详解】当x=﹣13,y=4,∴原式=﹣1+4+4=7故选D.【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.9.A解析:A【解析】1x (y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代入所求代数式(x+y)2015=(1﹣2)2015=﹣1.故选A10.C解析:C【解析】【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x,指数比所在项序数的2倍多1,由此即可得.观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为21n ,∴第n 个单项式是 (-1)n -1x 2n +1 ,故选C.【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.11.D解析:D【解析】【分析】根据线段的和与差,可得MB 的长,根据线段中点的定义,即可得出答案.【详解】当点C 在AB 的延长线上时,如图1,则MB=MC-BC ,∵M 是AC 的中点,N 是BC 的中点,AB=8cm ,∴MC=11()22AC AB BC =+,BN=12BC , ∴MN=MB+BN ,=MC-BC+BN ,=1()2AB BC +-BC+12BC , =12AB , =4,同理,当点C 在线段AB 上时,如图2,则MN=MC+NC=12AC+12BC=12AB=4, ,故选:D .【点睛】本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.12.D解析:D【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.13.B解析:B【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A .为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意; B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意; C .为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意; D .为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意; 故选:B .【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.14.B解析:B【解析】分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可. 详解:原式=2x ﹣3y ﹣12x +6y=﹣10x +3y .故选B .点睛:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.15.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A 的补角只要用180°﹣∠A 即可.【详解】设∠A 的补角为∠β,则∠β=180°﹣∠A =120°.故选:C .【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.二、填空题16.-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.【详解】解:根据如图所示:当输入的是的时候,,此时结果解析:-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果.【详解】解:根据如图所示:当输入的是1-的时候,1(3)21-⨯--=,此时结果1>-需要将结果返回,即:1(3)25⨯--=-,此时结果1<-,直接输出即可,故答案为:5-.【点睛】本题考查程序设计题,解题关键在于数的比较大小和读懂题意.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n解析:2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n−a=3时,|m-n|=8;当a−m=5, n−a=-3时,|m-n|=2;当a−m=-5,n−a=3时,|m-n|=2;当a−m=-5,n−a=-3时,|m-n|=8故本题答案应为:2或8【点睛】绝对值的性质是本题的考点,熟练掌握其性质、分类讨论是解题的关键18..【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:故填.【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键. 解析:3xy .【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:23.xy xy xy +=故填3xy .本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键. 19.﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(+)=﹣30×+(﹣30)×()+(﹣30)×=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛解析:﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(1223-+45)=﹣30×12+(﹣30)×(23-)+(﹣30)×45=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键. 20.6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.21.36684或36468或68364或68436或43668或46836等(写出一个即可) 【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】=x(解析:36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】32=x(x+2y)(x-2y).4x xy当x=36,y=16时,x+2y=36+32=68x-2y=36-32=4.则密码是36684或36468或68364或68436或43668或46836故答案为36684或36468或68364或68436或43668或46836【点睛】此题考查因式分解的应用,解题关键在于把字母的值代入22.4或36【解析】【分析】分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB的长.【详解】解:,设,,若点C 在线段AB 上,则,点O 为AB 的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键.23.从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图, “横看成岭侧成峰”从数解析:从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.【点睛】本题考查用数学知识解释生活现象,熟练掌握三视图的定义是解题的关键.24.【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-= 9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 25.2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记解析:2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记知识点(从n边形的一个顶点出发有(n−3)条对角线)是解此题的关键.26.72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】解析:72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键. 27.正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考解析:正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查. 28.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9. 解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.29.4000【解析】【分析】设铁块沉入水底后水面高hcm ,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm ,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm ,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm ,由题意得:50×40×8+20×20×h=50×40×h,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.30.2【解析】【分析】根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4yn是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n解析:2【解析】【分析】根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4y n是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n=-1+3=2.故答案为:2.【点睛】本题考查同类项的定义. 所含字母相同,并且相同字母的指数相等的项叫做同类项.三、压轴题31.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN 平分∠AEF ,EM 平分∠BEF ∴∠NEF =12∠AEF ,∠MEF =12∠BEF ∴∠MEN =∠NEF +∠MEF =12∠AEF +12∠BEF =12(∠AEF +∠BEF )=12∠AEB ∵∠AEB =180° ∴∠MEN =12×180°=90° (2)∵EN 平分∠AEF ,EM 平分∠BEG ∴∠NEF =12∠AEF ,∠MEG =12∠BEG ∴∠NEF +∠MEG =12∠AEF +12∠BEG =12(∠AEF +∠BEG )=12(∠AEB ﹣∠FEG ) ∵∠AEB =180°,∠FEG =30° ∴∠NEF +∠MEG =12(180°﹣30°)=75° ∴∠MEN =∠NEF +∠FEG +∠MEG =75°+30°=105° (3)若点G 在点F 的右侧,∠FEG =2α﹣180°, 若点G 在点F 的左侧侧,∠FEG =180°﹣2α. 【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.32.(1)230元;(2) 790元或者810元;(3) 400,55%. 【解析】 【分析】()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦ 故购买一件标价为500元的商品,顾客的实际付款是230元.()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x 203752-=,则x 790=②抵扣金额为30元时,1x303752-=,则x810=故当实际付款375元,那么它的标价为790元或者810元.()3设商品标价为x元,抵扣金额为b元,则优惠率1x b1b 2100%x2x+=⨯=+为了得到最高优惠率,则在每一范围内x均取最小值,可以得到2030405040080012001600>>>∴当商品标价为400元时,享受到最高的优惠率1155% 220=+=故答案为400,55%【点睛】本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.33.(1)B点坐标为(0,﹣6),C点坐标为(4,﹣6)(2)S△OPM=4t或S△OPM=﹣3t+21(3)当t为2秒或133秒时,△OPM的面积是长方形OBCD面积的13.此时点P的坐标是(0,﹣4)或(83,﹣6)【解析】【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a,b,c的值,即可得到B、C两点的坐标;(2)分两种情况:①P在OB上时,直接根据三角形面积公式可得结论;②P在BC上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM的面积为8,根据(2)中的结论分别代入可得对应t的值,并计算此时点P的坐标.【详解】(1)∵|2b+12|+(c﹣4)2=0,∴a+6=0,2b+12=0,c﹣4=0,∴a=﹣6,b=﹣6,c =4,∴B点坐标为(0,﹣6),C点坐标为(4,﹣6).(2)①当点P在OB上时,如图1,OP=2t,S△OPM12=⨯2t×4=4t;②当点P在BC上时,如图2,由题意得:BP=2t﹣6,CP=BC﹣BP=4﹣(2t﹣6)=10﹣2t,DM=CM=3,S△OPM=S长方形OBCD﹣S△0BP﹣S△PCM﹣S△ODM=6×412-⨯6×(2t﹣6)12-⨯3×(10﹣2t)12-⨯4×3=﹣3t+21.(3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4);②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).【点睛】本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键. 34.(1)-12,8-5t ;(2)94或114;(3)10;(4)MN 的长度不变,值为10. 【解析】 【分析】(1)根据已知可得B 点表示的数为8﹣20;点P 表示的数为8﹣5t ;(2)运动时间为t 秒,分点P 、Q 相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P 运动x 秒时追上Q ,根据P 、Q 之间相距20,列方程求解即可;(4)分①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差求出MN 的长即可. 【详解】(1)∵点A 表示的数为8,B 在A 点左边,AB=20, ∴点B 表示的数是8﹣20=﹣12,∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒,∴点P 表示的数是8﹣5t , 故答案为﹣12,8﹣5t ;(2)若点P 、Q 同时出发,设t 秒时P 、Q 之间的距离恰好等于2;。
武汉市人教版七年级上册数学期末考试试卷及答案一、选择题1.如图,直线A8_L直线CD,垂足为0,直线EF经过点0,若N3OE = 35°,则AFOD = ()A. 35°B. 45°C. 55°D, 125°2.已知a+b=7 , Qb=10,则代数式(5ab+4a+7b)+(3a-4ab)的值为()A. 49B. 59C. 77D. 1393.直线%与相交得如图所示的5个角,其中互为对顶角的是()A. N3和N5B. N3和N4C. N1 和N5D. N1 和N44.如图,数轴的单位长度为1,点A、B表示的数互为相反数,若数轴上有一点C到点B 的距离为2个单位,则点C表示的数是()1, ।।। . 1 . A BA.・1或2 B,-1或5 C,1或2 D.1或55.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3 棵,设女生有X人,则可列方程()A. 2x + 3(30-x) = 72B. 3x + 2(30-x) = 72C. 2x + 3(727) = 30D. 3x + 2(727) = 306.一张普通A4纸的厚度约为0.000104m,用科学计数法可表示为0 mA. 1.04x10-2B. 1.04x10-3C. 1.04X1Q-4D. 1.04x10^7.在直线AB上任取一点O,过点O作射线OC、OD,使OC_LOD,当N AOC=40。
时,Z BOD的度数是( )A. 50°B, 130° C. 50。
或90°D, 50°或130°若x= -, y=4,则代数式3x+y - 3xy 的值为()若 J7^T+(),+ 2)2=0,则(x + v 产 5 等于()12 .已知单项式2x 3y U2m与3x0+y 的和是单项式,则m - 〃的值是(13 .以下调查方式比较合理的是( )14 .化简(2%-3历・3(4、-2办的结果为(16 .如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是17 .已知a, m, n 均为有理数,且满足|。
武汉市人教版(七年级)初一上册数学期末测试题及答案一、选择题1.以下选项中比-2小的是( ) A .0 B .1C .-1.5D .-2.52.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .3.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .B .C .D .4.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( ) A .10-B .10C .5-D .55.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( ) A .2B .2C 2D 326.下列说法中正确的有( ) A .连接两点的线段叫做两点间的距离 B .过一点有且只有一条直线与已知直线垂直 C .对顶角相等D .线段AB 的延长线与射线BA 是同一条射线7.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A.171 B.190 C.210 D.3808.一张普通A4纸的厚度约为0.000104m,用科学计数法可表示为() mA.21.0410-⨯B.31.0410-⨯C.41.0410-⨯D.51.0410-⨯9.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程()A.1005006 2x x+=B.1005006 x2x+=C.1004006 2x x+=D.1004006 x2x+=10.下列调查中,最适合采用全面调查(普查)的是( )A.对广州市某校七(1)班同学的视力情况的调查B.对广州市市民知晓“礼让行人”交通新规情况的调查C.对广州市中学生观看电影《厉害了,我的国》情况的调查D.对广州市中学生每周课外阅读时间情况的调查11.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x元,根据题意可列方程为()A.300-0.2x=60 B.300-0.8x=60 C.300×0.2-x=60 D.300×0.8-x=60 12.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( )A.不赔不赚B.赚了9元C.赚了18元D.赔了18元13.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有()A.45人B.120人C.135人D.165人14.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元15.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上 B .BC 上 C .CD 上D .AD 上二、填空题16.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米. 17.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.18.多项式2x 3﹣x 2y 2﹣1是_____次_____项式. 19.若212-my x 与5x 3y 2n 是同类项,则m +n =_____. 20.9的算术平方根是________21.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元. 22.单项式﹣22πa b的系数是_____,次数是_____.23.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.24.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____.25.﹣225ab π是_____次单项式,系数是_____.26.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.27.8点30分时刻,钟表上时针与分针所组成的角为_____度. 28.用度、分、秒表示24.29°=_____.29.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______. 30.若4a +9与3a +5互为相反数,则a 的值为_____.三、压轴题31.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).32.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t 时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.33.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ? 34.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.35.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____; 灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____; (3)若∣a-2∣+∣a+4∣=10,则a =______; 实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
20 10----20 1 1学年度第一学期期末考试七年级数学试卷第1卷(本卷满分100分)一、选择题(共12小题,每小题3分,共36分)下列各题均有四个备选答案,其中有且只有一个正确,请选择正确答案并将答案填写在答题卷的相应位置.1.有理数一2的相反数是( ).A .2B .一2C .21D .一21 2.计算:一2+(一3)×4的结果是( )A ·14B .一14C .一10D .103.一个数比x 的2倍小3,则这个数为( ).A ·2x+3 3.2(x+3) C .2x 一3 D .2(x 一3)4·下列各组中的两个单项式,是同类项的是( ).A ·2a 和2a6B .3xy 和4xyzC 。
一1和a . D. 2z 2y 和一x 2y5. 2010年上海世界博览会官网统计显示:截至10月31日晚,累计人园参观人数约73000000人次,用科学记数法表示73000000正确的是( ).A. 0.73×10。
B .7.3×107 C 。
73×107 D .7.3×1066.下列各式计算正确的是( ).A. x+x=x 2 B .4x 3一2x=2x 2 C .3x 2+2x 2=5x 2 D .x+x 2=x 37.方程2x=3x+4的解为( ).A. 4B.一4 C .54 D .一54 8.多项式6x 一5(3+2x)去括号正确的是( ).A. 6x 一15+10x B .6x 一15+2x C .6x 一15—10x D .6x 一15—2x9·将如图所示的梯形绕直线l 旋转一周,得到的立体图形是( ).10.一个数的绝对值等于它本身,则这个数是( ).A .正数B .正数或0C .负数D .负数或011.一个角的补角等于它的余角的3倍,则这个角的度数是( ).A .30oB .45oC .60oD .67.5o12.足球比赛的计分规则为:胜一场积3分,平一场积1分,负一场积0分.一支球队比赛22场,负8场,共积36分,那么这个队胜了( ).A .8场B .9场C .10场D .11场二、填空题(共4小题,每小题3分,共12分)下列各题不需要写出解答过程,请将结果直接填写在答题卷指定的位置.13.比较大小:101__________ 一10(填“>”、“=”或“<”). 14.单项式一2x 2y 3的次数是__________ .15.一个长方形的周长为26cm ,这个长方形的长减少lcm ,宽增加2cm ,就可成为一个正方形,则长方形的长为__________cm .16.在平面内,∠AOB=60o ,∠BOC=30o ,则∠AOC 为__________ .三、解答题(共6题,共52分)下列各题需要在答题卷指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题满分6分)计算:(一2)2×5+(一2)3÷4.18.(本题满分12分)解方程:(1)6x 一7=4x 一1; (2)213-y + 355-y =1 . 19.(本题满分8分)已知a=2,b= 一1,求(8a 一7b)一(4a 一5b)的值.20.(本题满分8分)如图已知∠AOC=∠BOD=78o ,∠AOD=136o ,求∠BOG 的度数.21.(本题满分8分)列方程解应用题:把一批图书分给某班学生阅读,如果每人分3本,则余20本,如果每人分4本,还缺25本.这个班有多少名学生?22.(本题满分10分)如图,同一平面内有四个点A 、B 、C 、D .(1)点A 、B 、C 、D 位置如图①,按下列要求画图:①画直线AB ;②画射线BC ;③连接DA ,并反向延长DA 至E ,使DE=21AE ; (2)如果点A 、B 、C 、D 代表四个居民小区,若要在四边形ABCD(如图②)内建一个超市。
武汉市人教版(七年级)初一上册数学期末测试题及答案一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b2.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式5h t =,若球的起始高度为102米,则球落地所用时间与下列最接近的是( ) A .3秒 B .4秒C .5秒D .6秒3.对于方程12132x x +-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+4.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒5.某地冬季某天的天气预报显示气温为﹣1℃至8℃,则该日的最高与最低气温的温差为( ) A .﹣9℃ B .7℃C .﹣7℃D .9℃6.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离是( )A .22B .22﹣1C .22+1D .17.下列调查中,适宜采用全面调查的是() A .对现代大学生零用钱使用情况的调查 B .对某班学生制作校服前身高的调查 C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查8.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .1129.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( ) A .(-1)n -1x 2n -1 B .(-1)n x 2n -1 C .(-1)n -1x 2n +1D .(-1)n x 2n +110.化简(2x -3y )-3(4x -2y )的结果为( ) A .-10x -3y B .-10x +3yC .10x -9yD .10x +9y11.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD 等于( )A .15°B .25°C .35°D .45° 12.如果一个有理数的绝对值是6,那么这个数一定是( )A .6B .6-C .6-或6D .无法确定二、填空题13.若|x |=3,|y |=2,则|x +y |=_____.14.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________. 15.已知x=5是方程ax ﹣8=20+a 的解,则a= ________16.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.17.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.18.分解因式: 22xyxy +=_ ___________19.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____. 20.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______. 21.如果一个数的平方根等于这个数本身,那么这个数是_____. 22.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________. 23.A 学校有m 个学生,其中女生占45%,则男生人数为________.24.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.三、压轴题25.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示);②当n a 6188=时,求123n1111a a a a +++⋯⋯+的值.26.已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足(a-1)2+|ab+3|=0,c=-2a+b.(1)分别求a,b,c的值;(2)若点A和点B分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t秒.i)是否存在一个常数k,使得3BC-k•AB的值在一定时间范围内不随运动时间t的改变而改变?若存在,求出k的值;若不存在,请说明理由.ii)若点C以每秒3个单位长度的速度向右与点A,B同时运动,何时点C为线段AB的三等分点?请说明理由.27.如图1,线段AB的长为a.(1)尺规作图:延长线段AB到C,使BC=2AB;延长线段BA到D,使AD=AC.(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB所在的直线画数轴,以点A为原点,若点B对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M 是BC的中点,点N是AD的中点,请求线段MN的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.28.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?29.如图,在平面直角坐标系中,点M 的坐标为(2,8),点N 的坐标为(2,6),将线段MN 向右平移4个单位长度得到线段PQ (点P 和点Q 分别是点M 和点N 的对应点),连接MP 、NQ ,点K 是线段MP 的中点. (1)求点K 的坐标;(2)若长方形PMNQ 以每秒1个单位长度的速度向正下方运动,(点A 、B 、C 、D 、E 分别是点M 、N 、Q 、P 、K 的对应点),当BC 与x 轴重合时停止运动,连接OA 、OE ,设运动时间为t 秒,请用含t 的式子表示三角形OAE 的面积S (不要求写出t 的取值范围); (3)在(2)的条件下,连接OB 、OD ,问是否存在某一时刻t ,使三角形OBD 的面积等于三角形OAE 的面积?若存在,请求出t 值;若不存在,请说明理由.30.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
武汉市七年级(上)期末数学试卷(人教版)一、选择题(每小题3分,共30分)1.(3分)如果收入30元记作+30元,那么支出50元记作()A.﹣50元B.﹣30元C.30元D.50元2.(3分)四个有理数﹣1,2,0,﹣3,其中最小的是()A.﹣1B.2C.0D.﹣33.(3分)下列说法中正确的是()A.0既不是整数也不是分数B.一个数的绝对值一定是正数C.单项式πx2的系数是D.x3﹣2x2y2+3y2是四次三项式4.(3分)下面图形中,不是正方体表面展开图的是()A.B.C.D.5.(3分)下列利用等式的性质,错误的是()A.由a=b,得到1﹣a=1﹣b B.由=,得到a=bC.由a=b,得到ac=bc D.由ac=bc,得到a=b6.(3分)如图,OA表示北偏东25°方向的一条射线,OB表示南偏西50°方向的一条射线,则∠AOB的度数是()A.140°B.145°C.155°D.150°7.(3分)春节来临,各大商场都设计了促进消费增加利润的促销措施,“物美”商场把一类双肩背的书包按进价提高50%进行标价,然后再打出8折的优惠价,这样商场每卖出一个书包就可盈利10元.这种书包的进价是()元.A.40B.35C.50D.388.(3分)如图,点A,B,C顺次在同一直线上,点M是线段AC的中点,点N是线段BC 的中点.若想求出MN的长度,那么只需添加条件()A.BC=12B.AB=4C.AM=5D.CN=29.(3分)据我国古代《易经》记载,远古时期人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满五进一,用来记录采集到的野果的个数.她一共采集到了38个野果,则在第2根绳子上的打结数是()个.A.1B.2C.3D.410.(3分)下列命题:①若|2x|+x=9,则x=3;②若b+c﹣a=0,则关于x的方程ax+b+c=0(a≠0)的解为x=﹣1;③若不论x取何值,ax﹣b﹣3x=2恒成立,则a﹣b=5;④若x,y满足|x﹣1|+|y﹣3|=2+|x﹣5|+|y﹣1|,则x+y的最小值为4.其中,正确命题的个数有()个.A.1B.2C.3D.4二、填空题(每小题3分,共18分)11.(3分)计算40°30′﹣14°42′=.12.(3分)若(m﹣1)x|m|﹣1=5是一元一次方程,则m=.13.(3分)一列火车匀速行驶,经过一条长350m的隧道需要10s的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是2s.设火车的行驶速度为xm/s,依题意列方程是.14.(3分)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数为例进行说明:设,由…可知,10x=7.7777…,所以10x﹣x=7,解方程,得,于是得,将写成分数的形式是.15.(3分)互不重合的A、B、C三点在同一直线上,已知AC=2a+1,BC=a+4,AB=4a,则AC=.16.(3分)如图,90°<∠AOB<180°,0°<∠COD<90°.若∠AOB+∠COD=150°,∠COD在平面内绕点O旋转,分别作∠AOC和∠BOD平分线OP、OQ,则∠POQ的度数为.三、解答题(共9小题,共72分)17.(8分)计算:(1)(﹣1)30×2+(﹣2)3÷4;(2)8a+2b﹣2(3a﹣b).18.(8分)解方程:(1)5x﹣7=29﹣13x;(2).19.(8分)如图,平面上有A,B,C,D四个点,根据下列语句画图.(1)画射线AD、BC交于点F.(2)连接AC,并将其反向延长;(3)取一点P,使点P既在直线AB上又在直线CD上;(4)取一点Q,使点Q到A,B,C,D四点的距离之和最小.20.(8分)下表中有两种移动电话计费方式:主叫超时费/(元/min)被叫月使用费/元主叫限定时间/min方式一58200a免费方式二884000.25免费其中,月使用费固定收费,主叫不超过限定时间不再收费,主叫超过部分加收超时费.(1)如果某月主叫时间440min,按方式二计费应交费元;(2)如果某月的主叫时间为350min时,两种方式收费相同,求a的值;(3)在(2)的条件下,设每月主叫时间为xmin,当x满足时,选择方式二更省钱.21.(4分)如图,已知AB:BC:CD=2:3:4,M,N分别为AB,CD的中点且MN=18.求线段CM的长.22.(4分)如图,将一副三角板摆放在一起,反向延长射线OA到D,OE为∠BOD的平分线,OF为∠BOC的平分线,请按题意画出图形,并求出∠EOF的度数.23.(10分)把一根小木排放在数轴上,木棒左端点与点A重合,右端点与点B重合,数轴的单位长度为1cm,如图所示.(1)若将木棒沿数轴向右移动,当木棒的左端点移动到点B处时、它的右端点在数轴上对应的数为20;若将木棒沿数轴向左移动时,当它的右端点移动到点A处时,木棒左端点在数轴上对应的数为5,由此可得木棒的长为;我们把这个模型记为“木捧摸型”;(2)在(1)的条件下,已知点C表示的数为﹣2.若木棒在移动过程中,当木棒的左端点与点C相距3cm时,求木棒的右端点与点A的距离;(3)请根据(1)的“木棒模型”解决下列问题.某一天,小字问爷爷的年龄,爷爷说:“我若是你现在那么大,你还要41年才出生;你若是我现在这么大,我就有124岁了,世界级老寿星了,哈哈!”请你画出“木棒模型”示意图,求出爷爷现在的年龄.24.(10分)对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如:数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“联盟点”.(1)若点A表示数﹣1,点B表示的数2,下列各数:,0,1,4,5所对应的点分别为C1,C2,C3,C4,C5,其中是点A,B的“联盟点”的是;(2)点A表示的数是﹣1,点B表示的数是3,P是数轴上的一个动点:①若点P在线段AB上,且点P是点A,B的“联盟点”,求此时点P表示的数;②若点P在点A的左侧,点P、A、B中有一个点恰好是其它两个点的“联盟点”,求出此时点P表示的数.25.(12分)(1)如图1.①若∠AOB=90°,∠DOB=30°,射线OC平分∠DOB,射线OE平分∠AOD,求∠EOC度数;②若∠AOB=α,∠DOB=β,射线OC平分∠DOB,射线OE平分∠AOD,求∠EOC的度数;(2)如图2,已知∠AOD=120°,射线OQ从射线OA开始,以每秒10°的速度顺时针向射线OD旋转,同时射线OP以每秒20°的速度,从射线OD开始逆时针向射线OA 旋转,到达射线OA之后又以同样的角速度顺时针返回,直到到达射线OD时两条射线都停止运动,请问当过了多少秒时,∠POQ=∠AOQ?。
武汉市人教版(七年级)初一上册数学期末测试题及答案一、选择题1.以下选项中比-2小的是( ) A .0 B .1C .-1.5D .-2.52.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离是( )A .22B .22﹣1C .22+1D .13.下列分式中,与2x yx y---的值相等的是() A .2x yy x +-B .2x yx y+-C .2x yx y--D .2x yy x-+ 4.下列四个数中最小的数是( ) A .﹣1 B .0 C .2 D .﹣(﹣1) 5.化简(2x -3y )-3(4x -2y )的结果为( )A .-10x -3yB .-10x +3yC .10x -9yD .10x +9y6.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A .14,4B .11,1C .9,-1D .6,-4 7.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱 8.已知∠A =60°,则∠A 的补角是( )A .30°B .60°C .120°D .180°9.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )A .棱柱B .圆锥C .圆柱D .棱锥 10.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=111.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm12.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人二、填空题13.若212-my x 与5x 3y 2n 是同类项,则m +n =_____. 14.若523m xy +与2n x y 的和仍为单项式,则n m =__________.15.﹣30×(1223-+45)=_____. 16.因式分解:32x xy -= ▲ .17.把(a ﹣b )看作一个整体,合并同类项:3()4()2()-+---a b a b a b =_____. 18.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)19.4是_____的算术平方根.20.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.21.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.22.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.23.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.24.若2a﹣b=4,则整式4a﹣2b+3的值是______.三、解答题25.为引导学生“爱读书,多读书,读好书”,某校七(2)班决定购买A、B两种书籍.若购买A种书籍1本和B种书籍3本,共需要180元;若购买A种书籍3本和B种书籍1本,共需要140元.(1)求A、B两种书籍每本各需多少元?(2)该班根据实际情况,要求购买A、B两种书籍总费用不超过700元,并且购买B种书籍的数量是A种书籍的32,求该班本次购买A、B两种书籍有哪几种方案?26.一种股票第一天的最高价比开盘价高0.3元,最低价比开盘价低0.2元;第二天的最高价开盘价高0.2元,最低价比开盘价低0.1元;第三天的最高价等于开盘价,最低价比开盘价低0.13元.计算每天最高价与最低价的差,以及这些差的平均值.27.已知A=3x2+x+2,B=﹣3x2+9x+6.(1)求2A﹣13 B;(2)若2A﹣13B与32C互为相反数,求C的表达式;(3)在(2)的条件下,若x=2是C=2x+7a的解,求a的值.28.根据语句画出图形:如图,已知、、A B C三点.(1)画线段AB;(2)画射线AC;(3)画直线BC;(4)取AB的中点P,连接PC.29.解方程:4x﹣3(20﹣x)+4=030.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣30|+(b+6)2=0.点O是数轴原点.(1)点A表示的数为,点B表示的数为,线段AB的长为.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P 移动到O 点时,点Q 才从B 点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A 点时,点Q 就停止移动,设点P 移动的时间为t 秒,问:当t 为多少时,P 、Q 两点相距4个单位长度?四、压轴题31.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?32.在数轴上,图中点A 表示-36,点B 表示44,动点P 、Q 分别从A 、B 两点同时出发,相向而行,动点P 、Q 的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P 到达原点O ,动点Q 到达点C ,设运动的时间为t (t >0)秒. (1)求OC 的长;(2)经过t 秒钟,P 、Q 两点之间相距5个单位长度,求t 的值;(3)若动点P 到达B 点后,以原速度立即返回,当P 点运动至原点时,动点Q 是否到达A 点,若到达,求提前到达了多少时间,若未能到达,说明理由.33.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时. ①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除1.D 解析:D 【解析】 【分析】根据有理数比较大小法则:负数的绝对值越大反而越小可得答案. 【详解】 根据题意可得:2.52 1.501-<-<-<<, 故答案为:D. 【点睛】本题考查的是有理数的大小比较,解题关键在于负数的绝对值越大值越小.2.D解析:D 【解析】 【分析】根据题意列出算式,计算即可得到结果. 【详解】解:∵A ,B ﹣1,∴A ,B ﹣1)=1; 故选:D . 【点睛】此题考查了实数与数轴,掌握数轴上点的特点,利用数轴,数形结合求出答案.3.A解析:A 【解析】 【分析】根据分式的基本性质即可求出答案. 【详解】 解:原式=22x y x yx y y x++-=--, 故选:A . 【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型.4.A解析:A 【解析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.【详解】解:﹣(﹣1)=1,∴﹣1<0<﹣(﹣1)<2,故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.5.B解析:B【解析】分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.详解:原式=2x﹣3y﹣12x+6y=﹣10x+3y.故选B.点睛:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.6.B解析:B【解析】【分析】把5xy=⎧⎨=⎩x=5代入方程x-2y=3可求得y的值,然后把x、y的值代入2x+y=口即可求得答案.【详解】把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1,把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11,故选B.【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.7.A解析:A【解析】试题分析:根据四棱锥的侧面展开图得出答案.试题解析:如图所示:这个几何体是四棱锥.故选A.考点:几何体的展开图.8.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.9.C解析:C【解析】【分析】根据面动成体可得长方形ABCD绕CD边旋转所得的几何体.【详解】解:将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱,故选:C.【点睛】此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.10.A解析:A【解析】解:A,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A;B,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C,底数为-1,一个负数的偶次方应为正数(-1)2=1;D,底数为1,1的平方的相反数应为-1;即-12=-1,故选A.11.B解析:B【解析】【分析】由CB=4cm,DB=7cm求得CD=3cm,再根据D是AC的中点即可求得AC的长【详解】∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3(cm),∵D是AC的中点,∴AC=2CD=2×3=6(cm).故选:B.【点睛】此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答.12.D解析:D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.二、填空题13.4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则解析:4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则m+n=4.故答案是:4.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.14.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.15.﹣19. 【解析】 【分析】根据乘法分配律简便计算即可求解. 【详解】 解:﹣30×(+)=﹣30×+(﹣30)×()+(﹣30)× =﹣15+20﹣24 =﹣19. 故答案为:﹣19. 【点睛解析:﹣19. 【解析】 【分析】根据乘法分配律简便计算即可求解. 【详解】 解:﹣30×(1223-+45) =﹣30×12+(﹣30)×(23-)+(﹣30)×45=﹣15+20﹣24 =﹣19.故答案为:﹣19. 【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键.16.x (x ﹣y )(x+y ). 【解析】 【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x (x ﹣y )(x+y ). 【解析】 【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式. 【详解】x 3﹣xy 2=x (x 2﹣y 2)=x (x ﹣y )(x+y ), 故答案为x (x ﹣y )(x+y ).17.【解析】 【分析】根据合并同类项,系数相加,字母及指数不变,可得答案. 【详解】 解:, 故答案为:. 【点睛】本题考查合并同类项,熟记合并同类项的法则是解题的关键. 解析:5()-a b【解析】 【分析】根据合并同类项,系数相加,字母及指数不变,可得答案. 【详解】解:3()4()2()(342)()5()-+---=+--=-a b a b a b a b a b , 故答案为:5()-a b . 【点睛】本题考查合并同类项,熟记合并同类项的法则是解题的关键.18.270°-3α 【解析】 【分析】设∠DOE=x,根据OC 平分∠AOD,∠COE=α,可得∠COD=α-x ,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x 的一次方程解析:270°-3α 【解析】 【分析】设∠DOE=x ,根据OC 平分∠AOD ,∠COE =α,可得∠COD=α-x ,由∠BOD =4∠DOE ,可得∠BOD=4x ,由平角∠AOB=180°列出关于x 的一次方程式,求解即可. 【详解】设∠DOE=x ,根据OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α, ∴∠BOD=4x ,∠AOC=∠COD=α-x , 由∠BOD+∠AOD=180°, ∴4x+2(α-x )=180° 解得x=90°-α,∴∠BOE=3x=3(90°-α)=270°-3α,故答案为:270°-3α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.19.【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.解析:【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.20.5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.解析:5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.5.【点睛】本题考查了“正数”和“负数”..解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.依据这一点可以简化数的求和计算.21.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n个图案中的基础图形个数表达式是解题的关键.22.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是-︒解析:18.4C【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.23.【解析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.【详解】单项式系数分别是1、3、5、7、9……,第个单项式的系数是;单解析:()21nn x - 【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第n 个单项式.【详解】单项式系数分别是1、3、5、7、9……,第n 个单项式的系数是21n -;单项式的次数分别是1、2、3、4、5……,第n 个单项式的次数是n ;第n 个单项式是()21nn x -; 故答案为()21nn x -. 【点睛】此题主要考查根据单项式的系数和次数探索规律,熟练掌握,即可解题.24.11【解析】【分析】对整式变形得,再将2a ﹣b=4整体代入即可.【详解】解:∵2a ﹣b=4,∴=,故答案为:11.【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已解析:11【解析】【分析】对整式423a b -+变形得2(2)3a b -+,再将2a ﹣b=4整体代入即可.【详解】解:∵2a ﹣b=4,∴423a b -+=2(2)324311a b -+=⨯+=,【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已知条件对代数式进行适当变形是解决此题的关键.三、解答题25.(1)A 种书籍每本30元,B 种书籍每本50元;(2)三种方案,具体见解析.【解析】【分析】(1)设A 种书籍每本x 元,B 种书籍每本y 元,根据条件建立方程组进行求解即可;(2)设购买A 种书籍a 本,则购买B 种书籍32a 本,根据总费用不超过700元可得关于a 的一元一次不等式,进而求解即可.【详解】(1)设A 种书籍每本x 元,B 种书籍每本y 元,由题意得 31803140x y x y +=⎧⎨+=⎩, 解得:3050x y =⎧⎨=⎩, 答:A 种书籍每本30元,B 种书籍每本50元; (2)设购买A 种书籍a 本,则购买B 种书籍32a 本,由题意得 30a+50×32a ≤700, 解得:a ≤203, 又a 为正整数,且32a 为整数, 所以a=2、4、6,共三种方案,方案一:购买A 种书籍2本,则购买B 种书籍3本,方案二:购买A 种书籍4本,则购买B 种书籍6本,方案三:购买A 种书籍6本,则购买B 种书籍9本.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系或不等式关系是解题的关键.26.第一天到第三天的差价分别为0.5元,0.3元,0.13元,差的平均值为0.31元.【解析】【分析】设开盘价为x 元,分别表示出每天最高价与最低价,并求出差价,再求差的平均值即可.解:设开盘价为x 元,第一天:最高价为(0.3)x +元,最低价(0.2)x -元,差价为:(0.3)(0.2)0.30.20.5x x x x +--=+-+=(元);第二天:最高价(0.2)x +元,最低价(0.1)x -元,差价为:(0.2)(0.1)0.20.10.3x x x x +--=+-+=(元);第三天:最高价x 元,最低价(0.13)x -元,差价为:(0.13)0.130.13x x x x --=-+=(元), 差的平均值为:0.50.30.130.313++=(元), 则第一天到第三天的差价分别为0.5元,0.3元,0.13元,差的平均值为0.31元.【点睛】此题考查了整式的加减,以及列代数式,弄清题意,求出差价是解本题的关键.27.(1)7x 2﹣x+2;(2)﹣14x 2+2x ﹣1;(3)﹣577 【解析】【分析】(1)根据题意列出算式2(3x 2+x+2)﹣13(﹣3x 2+9x+6),再去括号、合并即可求解; (2)由已知等式知2A ﹣13B+32C -=0,将多项式代入,依此即可求解; (3)由题意得出x =2是方程C =2x+7a 的解,从而得出关于a 的方程,解之可得.【详解】解:(1)2A ﹣13B =2(3x 2+x+2)﹣13(﹣3x 2+9x+6) =6x 2+2x+4+x 2﹣3x ﹣2 =7x 2﹣x+2;(2)依题意有:7x 2﹣x+2+32C -=0, 14x 2﹣2x+4+C ﹣3=0,C =﹣14x 2+2x ﹣1;(3)∵x =2是C =2x+7a 的解,∴﹣56+4﹣1=4+7a ,解得:a =﹣577. 故a 的值是﹣577.本题考查了整式的加减、相反数和一元一次方程的解法,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.28.(1)见解析;(2)见解析;(3)见解析;(4)见解析.【解析】【分析】(1)由题意根据线段的画法连接AB即可;(2)由题意根据射线的画法以A为端点画射线AC即可;(3)由题意根据直线的定义画出直线BC即可;(4)由题意测量出AB的长度,取AB的中点为P点,并连接PC即可.【详解】解:(1)如图所示AB是所求线段;(2)如图所示AC是所求射线;(3)如图所示直线BC是所求直线;(4)如图所示P为AB中点,PC为所连接线段.【点睛】本题考查直线、射线、线段,正确区分直线、线段、射线是解题关键.29.x=8【解析】【分析】按照去括号、移项、合并同类项、系数化为1的步骤进行解答即可.【详解】解:4x﹣60+3x+4=0,4x+3x=60﹣4,7x=56,x=8.【点睛】本题考查了一元一次方程的解法,其一般步骤为去分母、去括号、移项、合并同类项、系数化为1.30.(1)30,﹣6, 36;(2)6或﹣42;(3)当t为4秒、7秒和11秒时,P、Q两点相距4个单位长度.【解析】【分析】(1)根据偶次方以及绝对值的非负性即可求出a、b的值,可得点A表示的数,点B表示的数,再根据两点间的距离公式可求线段AB的长;(2)分两种情况:点C在线段AB上,点C在射线AB上,进行讨论即可求解;(3)分0<t≤6、6<x≤9和9<t≤30三种情况考虑,根据两点间的距离公式结合PQ=4即可得出关于t的一元一次方程,解之即可得出结论.【详解】(1)∵|a﹣30|+(b+6)2=0,∴a﹣30=0,b+6=0,解得a=30,b=﹣6,AB=30﹣(﹣6)=36.故点A表示的数为30,点B表示的数为﹣6,线段AB的长为36.(2)点C在线段AB上,∵AC=2BC,∴AC=36×212+=24,点C在数轴上表示的数为30﹣24=6;点C在射线AB上,∵AC=2BC,∴AC=36×2=72,点C在数轴上表示的数为30﹣72=﹣42.故点C在数轴上表示的数为6或﹣42;(3)经过t秒后,点P表示的数为t﹣6,点Q表示的数为6(06){3(6)6(636)tt t-<≤--<≤,(i)当0<t≤6时,点Q还在点A处,∴PQ=t﹣6﹣(﹣6)=t=4;(ii)当6<x≤9时,点P在点Q的右侧,∴(t﹣6)﹣[3(t﹣6)﹣6]=4,解得:t=7;(iii)当9<t≤30时,点P在点Q的左侧,∴3(t﹣6)﹣6﹣(t﹣6)=4,解得:t=11.综上所述:当t为4秒、7秒和11秒时,P、Q两点相距4个单位长度.故答案为:30,﹣6,36;6或﹣42.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离公式、绝对值以及偶次方的非负性,根据两点间的距离公式结合点之间的关系列出一元一次方程是解题的关键.四、压轴题31.(1)﹣4,6﹣5t;(2)①当点P运动5秒时,点P与点Q相遇;②当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【解析】【分析】(1)根据题意可先标出点A,然后根据B在A的左侧和它们之间的距离确定点B,由点P 从点A出发向左以每秒5个单位长度匀速运动,表示出点P即可;(2)①由于点P和Q都是向左运动,故当P追上Q时相遇,根据P比Q多走了10个单位长度列出等式,根据等式求出t的值即可得出答案;②要分两种情况计算:第一种是点P追上点Q之前,第二种是点P追上点Q之后.【详解】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为5t,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣5t,故答案为﹣4,6﹣5t;(2)①点P运动t秒时追上点Q,根据题意得5t=10+3t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+3a﹣5a=8,解得a=1;当P超过Q,则10+3a+8=5a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【点睛】在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.32.(1)20;(2)t=15s或17s (3)4 3 s.【解析】【分析】(1)设P、Q速度分别为3m、2m,根据12秒后,动点P到达原点O列方程,求出P、Q 的速度,由此即可得到结论.(2)分两种情况讨论:①当A、B在相遇前且相距5个单位长度时;②当A、B在相遇后且相距5个单位长度时;列方程,求解即可.(3)算出P运动到B再到原点时,所用的时间,再算出Q从B到A所需的时间,比较即可得出结论.【详解】(1)设P 、Q 速度分别为3m 、2m ,根据题意得:12×3m =36,解得:m =1,∴P 、Q 速度分别为3、2,∴BC =12×2=24,∴OC =OB -BC =44-24=20.(2)当A 、B 在相遇前且相距5个单位长度时:3t +2t +5=44+36,5t =75,∴ t =15(s );当A 、B 在相遇后且相距5个单位长度时:3t +2t -5=44+36,5t =85,∴ t =17(s ). 综上所述:t =15s 或17s .(3)P 运动到原点时,t =3644443++=1243s ,此时QB =2×1243=2483>44+38=80,∴Q 点已到达A 点,∴Q 点已到达A 点的时间为:3644804022+==(s ),故提前的时间为:1243-40=43(s ). 【点睛】 本题考查了一元一次方程的应用-行程问题以及数轴上的动点问题.解题的关键是找出等量关系,列出方程求解.33.(1)16;(2)①t 的值为3或143秒;②存在,P 表示的数为314. 【解析】【分析】(1)由数轴可知,AB=3,则CD=6,所以D 表示的数为16,(2)①当运动时间是t 秒时,在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t, C 点表示的数为10-t ,D 点表示的数为16-t ,分情况讨论两条线段重叠部分是2个单位长度解答即可;②分情况讨论当t=3秒, t=143秒时,满足3BD PA PC -=的点P , 注意P 为线段AB 上的点对x 的值的限制.【详解】(1)16(2)①在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t,C 点表示的数为10-t ,D 点表示的数为16-t.当BC =2,点B 在点C 的右边时,由题意得:32-10-2BC t t =+=(),解得:t =3,当AD=2,点A 在点D 的左边时,由题意得:16--22AD t t ==,解得:t =143. 综上,t 的值为3或143秒 ②存在,理由如下:当t=3时,A 点表示的数为6,B 点表示的数为9,C 点表示的数为7,D 点表示的数为13. 则13-94-6|-7|BD PA x PC x ====,,,-3BD PA PC =,()4--6|-7|x x ∴=, 解得:314x =或112, 又P 点在线段AB 上,则69x ≤≤314x ∴=. 当143t =时,A 点表示的数为283,B 点表示的数为373,C 点表示的数为163,D 点表示的数为343. 则37343816-1-|-|3333BD PA x PC x ====,,, -3BD PA PC =,∴ 28161--|-|33x x ⎛⎫= ⎪⎝⎭, 解得:7912x =或176, 又283733x ≤≤, x ∴无解综上,P 表示的数为314. 【点睛】本题考查了一元一次方程的应用以及数轴,解题的关键是:(1)由路程=速度×时间结合运动方向找出运动t 秒时点A 、B 、C 、D 所表示的数,(2)根据3BD PA PC -=列出关于t 的含绝对值符号的一元一次方程.。
武汉市人教版七年级上册数学期末考试试卷及答案一、选择题1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( ) A .0.65×108B .6.5×107C .6.5×108D .65×1062.下列方程中,以32x =-为解的是( ) A .33x x =+ B .33x x =+ C .23x = D .3-3x x = 3.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( ) A .10-B .10C .5-D .54.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( ) A .2 B .22 C .2 D .32 5.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1)B .(3,3)C .(2,3)D .(3,2)6.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠47.当x=3,y=2时,代数式23x y-的值是( ) A .43B .2C .0D .38.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( ) A .2或2.5B .2或10C .2.5D .29.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人10.如图,4张如图1的长为a ,宽为b (a >b )长方形纸片,按图2的方式放置,阴影部分的面积为S 1,空白部分的面积为S 2,若S 2=2S 1,则a ,b 满足( )A .a =32bB .a =2bC .a =52b D .a =3b11.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( ) A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱12.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟B .42分钟C .44分钟D .46分钟二、填空题13.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.14.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.15.36.35︒=__________.(用度、分、秒表示)16.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.17.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).18.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.19.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号) 20.4是_____的算术平方根.21.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____. 22.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y)2019的值为_____. 23.当12点20分时,钟表上时针和分针所成的角度是___________. 24.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.三、压轴题25.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.26.已知多项式3x6﹣2x2﹣4的常数项为a,次数为b.(1)设a与b分别对应数轴上的点A、点B,请直接写出a=,b=,并在数轴上确定点A、点B的位置;(2)在(1)的条件下,点P以每秒2个单位长度的速度从点A向B运动,运动时间为t 秒:①若PA﹣PB=6,求t的值,并写出此时点P所表示的数;②若点P从点A出发,到达点B后再以相同的速度返回点A,在返回过程中,求当OP=3时,t为何值?27.已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足(a-1)2+|ab+3|=0,c=-2a+b.(1)分别求a,b,c的值;(2)若点A和点B分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t秒.i)是否存在一个常数k,使得3BC-k•AB的值在一定时间范围内不随运动时间t的改变而改变?若存在,求出k的值;若不存在,请说明理由.ii)若点C以每秒3个单位长度的速度向右与点A,B同时运动,何时点C为线段AB的三等分点?请说明理由.28.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.(1)求出数轴上B点对应的数及AC的距离.(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.①当P点在AB之间运动时,则BP=.(用含t的代数式表示)②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数29.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数______;点P表示的数______(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P、Q 同时出发,问点P运动多少秒时追上Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.30.在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.(1)求OC的长;(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.31.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.32.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.详解:65 000 000=6.5×107.故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.A解析:A【解析】【分析】把32x=-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是.【详解】解:A中、把32x=-代入方程得左边等于右边,故A对;B中、把32x=-代入方程得左边不等于右边,故B错;C中、把32x=-代入方程得左边不等于右边,故C错;D中、把32x=-代入方程得左边不等于右边,故D错.故答案为:A.【点睛】本题考查方程的解的知识,解题关键在于把x值分别代入方程进行验证即可.3.D解析:D【解析】【分析】根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k的值.【详解】解:∵方程2k-3x=4与x-2=0的解相同,∴x=2,把x=2代入方程2k-3x=4,得2k-6=4,解得k=5.故选:D.【点睛】本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.4.C解析:C【解析】【分析】把64代入转换器,根据要求计算,得到输出的数值即可.【详解】,是有理数,∴继续转换,,是有理数,∴继续转换,∵2,是无理数,∴输出,故选:C.【点睛】本题考查的是算术平方根的概念和性质,一个正数的平方根有两个,正的平方根是这个数的算术平方根;注意有理数和无理数的区别.5.C解析:C 【解析】 【分析】根据数对(1,2)表示教室里第1列第2排的位置,可知第一个数字表示列,第二个数字表示排,由此即可求得答案. 【详解】∵(1,2)表示教室里第1列第2排的位置, ∴教室里第2列第3排的位置表示为(2,3), 故选C. 【点睛】本题考查了数对表示位置的方法的灵活应用,分析出数对表示的意义是解题的关键.6.D解析:D 【解析】 【分析】根据平行线的判定方法逐一进行分析即可得. 【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b ,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b ,故不符合题意;C. ∠1+∠4=90°,不能判定a//b ,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b ,故符合题意, 故选D. 【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.7.A解析:A 【解析】 【分析】当x=3,y=2时,直接代入代数式即可得到结果. 【详解】23x y -=2323⨯-=43, 故选A 【点睛】本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.8.A解析:A 【解析】【分析】分相遇前相距50千米和相遇后相距50千米两种情况,根据路程=速度×时间列方程即可求出t值,可得答案.【详解】①当甲,乙两车相遇前相距50千米时,根据题意得:120t+80t=450-50,解得:t=2;(2)当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解得t=2.5.综上,t的值为2或2.5,故选A.【点睛】本题考查一元一次方程的应用,能够理解有两种情况、能够根据题意找出题目中的相等关系是解题关键.9.D解析:D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.10.B解析:B【解析】【分析】从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.【详解】由图形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故选B.【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.11.A解析:A【解析】设一件的进件为x元,另一件的进价为y元,则x(1+25%)=200,解得,x=160,y(1-20%)=200,解得,y=250,∴(200-160)+(200-250)=-10(元),∴这家商店这次交易亏了10元.故选A.12.C解析:C【解析】试题解析:设开始做作业时的时间是6点x分,∴6x﹣0.5x=180﹣120,解得x≈11;再设做完作业后的时间是6点y分,∴6y﹣0.5y=180+120,解得y≈55,∴此同学做作业大约用了55﹣11=44分钟.故选C.二、填空题13.80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=解析:80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG 又∠AOB′=20°,可得∠B′OG+∠BOG=160°∴∠BOG=12×160°=80°.故答案为80°.【点睛】本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 14.伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与解析:伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与“中”是相对面,“的”与“梦”是相对面.故答案为:伟.【点睛】本题主要考查了正方体与展开图的面的关系,掌握相对的面之间一定相隔一个正方形是解答本题的关键.15.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点解析:3621'o【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点睛】本题主要考查了度分秒的换算,相对比较简单,注意以60为进制,熟记1°=60′,1′=60″.16.8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为;所以故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解解析:8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为22a b b ab ⊕=-;所以2(1)222(1)28.-⊕=-⨯-⨯=故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 17.36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】=x(解析:36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】32=x(x+2y)(x-2y).x xy4当x=36,y=16时,x+2y=36+32=68x-2y=36-32=4.则密码是36684或36468或68364或68436或43668或46836故答案为36684或36468或68364或68436或43668或46836【点睛】此题考查因式分解的应用,解题关键在于把字母的值代入18.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=解析:(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=1+4×3,……∴摆第n个图案需要火柴棒(4n+1)根,故答案为(4n+1).【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.19.>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>【点睛】本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.20.【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.解析:【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.21.8【解析】【分析】把x=﹣2代入方程2x+a ﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a ﹣4=0,得2×(﹣2)+a ﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一元一次方程的解,解答本题的关键是把x=﹣2代入方程2x+a﹣4=0求解.22.﹣1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,()2019=()201解析:﹣1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,(xy)2019=(22)2019=(﹣1)2019=﹣1.故答案为:﹣1.【点睛】本题考查了非负数的性质.解答本题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.23.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.24.4【解析】【分析】由题意可得,求解即可.【详解】解:解得故答案为:4【点睛】本题属于新定义题型,正确理解{m}和[m]的含义是解题的关键.解析:4【解析】【分析】由题意可得{}[]1,x x x x =+=,求解即可.【详解】解:{}[]323(1)25323x x x x x +=++=+=解得4x =故答案为:4【点睛】本题属于新定义题型,正确理解{m }和[m ]的含义是解题的关键. 三、压轴题25.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.26.(1)﹣4,6;(2)①4;②1319,22或【解析】【分析】(1)根据多项式的常数项与次数的定义分别求出a,b的值,然后在数轴上表示即可;(2)①根据PA﹣PB=6列出关于t的方程,解方程求出t的值,进而得到点P所表示的数;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)P在原点右边;(Ⅱ)P在原点左边.分别求出点P运动的路程,再除以速度即可.【详解】(1)∵多项式3x6﹣2x2﹣4的常数项为a,次数为b,∴a=﹣4,b=6.如图所示:故答案为﹣4,6;(2)①∵PA=2t,AB=6﹣(﹣4)=10,∴PB=AB﹣PA=10﹣2t.∵PA﹣PB=6,∴2t﹣(10﹣2t)=6,解得t=4,此时点P所表示的数为﹣4+2t=﹣4+2×4=4;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)如果P在原点右边,那么AB+BP=10+(6﹣3)=13,t=132;(Ⅱ)如果P在原点左边,那么AB+BP=10+(6+3)=19,t=192.【点睛】本题考查了一元一次方程的应用,路程、速度与时间关系的应用,数轴以及多项式的有关定义,理解题意利用数形结合是解题的关键.27.(1)1,-3,-5(2)i)存在常数m,m=6这个不变化的值为26,ii)11.5s【解析】【分析】(1)根据非负数的性质求得a、b、c的值即可;(2)i)根据3BC-k•AB求得k的值即可;ii)当AC=13AB时,满足条件.【详解】(1)∵a、b满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a,b,c的值分别为1,-3,-5.(2)i)假设存在常数k,使得3BC-k•AB不随运动时间t的改变而改变.则依题意得:AB=5+t,2BC=4+6t.所以m•AB-2BC=m(5+t)-(4+6t)=5m+mt-4-6t与t的值无关,即m-6=0,解得m=6,所以存在常数m,m=6这个不变化的值为26.ii)AC=13 AB,AB=5+t,AC=-5+3t-(1+2t)=t-6,t-6=13(5+t),解得t=11.5s.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.28.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣483 4【解析】【分析】(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC,∴5(x﹣24)+3x=90,解得x=1054,此时P点在数轴上对应的数是:30﹣3×1054=﹣4834.综上,相遇时P点在数轴上对应的数为﹣15或﹣4834.【点睛】本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.29.(1)-12,8-5t;(2)94或114;(3)10;(4)MN的长度不变,值为10.【解析】【分析】(1)根据已知可得B点表示的数为8﹣20;点P表示的数为8﹣5t;(2)运动时间为t秒,分点P、Q相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P运动x秒时追上Q,根据P、Q之间相距20,列方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8﹣20=﹣12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8﹣5t,故答案为﹣12,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=94;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=11 4,答:若点P、Q同时出发,94或114秒时P、Q之间的距离恰好等于2;(3)如图,设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=20,解得:x=10,∴点P运动10秒时追上点Q;(4)线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=10,②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=10,∴线段MN的长度不发生变化,其值为10.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.30.(1)20;(2)t=15s或17s (3)4 3 s.【解析】【分析】(1)设P、Q速度分别为3m、2m,根据12秒后,动点P到达原点O列方程,求出P、Q 的速度,由此即可得到结论.(2)分两种情况讨论:①当A、B在相遇前且相距5个单位长度时;②当A、B在相遇后且相距5个单位长度时;列方程,求解即可.(3)算出P运动到B再到原点时,所用的时间,再算出Q从B到A所需的时间,比较即可得出结论.【详解】(1)设P、Q速度分别为3m、2m,根据题意得:12×3m=36,解得:m=1,∴P、Q速度分别为3、2,∴BC=12×2=24,∴OC=OB-BC=44-24=20.(2)当A、B在相遇前且相距5个单位长度时:3t+2t+5=44+36,5t=75,∴t=15(s);当A、B在相遇后且相距5个单位长度时:3t+2t-5=44+36,5t=85,∴t=17(s).综上所述:t=15s或17s.(3)P 运动到原点时,t =3644443++=1243s ,此时QB =2×1243=2483>44+38=80,∴Q 点已到达A 点,∴Q 点已到达A 点的时间为:3644804022+==(s ),故提前的时间为:1243-40=43(s ). 【点睛】 本题考查了一元一次方程的应用-行程问题以及数轴上的动点问题.解题的关键是找出等量关系,列出方程求解.31.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127t =或6t =. 【解析】【分析】(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.【详解】(1)5 ;(2)∵点A 表示的数是5-∴点B 表示的数是7∵点P 运动3秒是9个单位长度,M 为PB 的中点 ∴PM=12PB=4.5,即点M 表示的数是2.5 ∵FM=2PM∴FM=9∴点F 表示的数是11.5或者-6.5(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM=12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,则PB=2QB ,则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.【点睛】本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解.32.(1)45°;(2)45°;(3)45°或135°.【解析】【分析】(1)由∠BOC 的度数求出∠AOC 的度数,利用角平分线定义求出∠COD 与∠COE 的度数,相加即可求出∠DOE 的度数;(2)∠DOE 度数不变,理由为:利用角平分线定义得到∠COD 为∠AOC 的一半,∠COE 为∠COB 的一半,而∠DOE=∠COD+∠COE ,即可求出∠DOE 度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE 为45°;如图4,则∠DOE 为135°.【详解】(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD 、OE 分别平分∠AOC 和∠BOC ,∴∠COD=∠AOC=10°,∠COE=12∠BOC=35°, ∴∠DOE=∠COD+∠COE=45°; (2)∠DOE 的大小不变,理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB )=12∠AOB=45°; (3)∠DOE 的大小发生变化情况为:如图③,则∠DOE 为45°;如图④,则∠DOE 为135°,分两种情况:如图3所示,∵OD 、OE 分别平分∠AOC 和∠BOC ,∴∠COD=12∠AOC ,∠COE=12∠BOC , ∴∠DOE=∠COD ﹣∠COE=12(∠AOC ﹣∠BOC )=45°; 如图4所示,∵OD 、OE 分别平分∠AOC 和∠BOC ,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD+∠COE=12(∠AOC+∠BOC)=12×270°=135°.【点睛】此题主要考查了角平分线的性质以及角的有关计算,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.。
2010-2011学年湖北省武汉市江岸区七年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2014•烟台)﹣3的绝对值等于()A.﹣3 B.3 C.±3 D.﹣2.(3分)(2010秋•江岸区期末)一个数和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1和0 D.±13.(3分)(2010秋•江岸区期末)2010年长沙市约有44500名应届初中毕业生参加中考.44500用科学记数法表示为()A.0.445×105 B.4.45×104C.44.5×103D.445×1024.(3分)(2012秋•江岸区期末)若a<0<b,则下面式子正确的是()A.a+b<0 B.b﹣a<0 C.ab>0 D.a﹣b<05.(3分)(2014秋•怀集县期末)与﹣2ab是同类项的为()A.﹣2ac B.2ab2C.ab D.﹣2abc6.(3分)(2013秋•通川区期末)下列四个式子中,是方程的是()A.1+2+3+4=10 B.2x﹣3 C.2x=1 D.|2﹣3|=17.(3分)(2010秋•江岸区期末)若∠1=25°12′,∠2=25.12°,∠3=25.2°,则下面说法正确的是()A.∠1=∠2 B.∠2=∠3C.∠1=∠3 D.∠1,∠2,∠3互不相等8.(3分)(2012秋•天津期末)下列说法:①所有直角都相等;②相等的角是直角;③同角的补角相等;④两点之间直线最短.其中正确的有()A.1个B.2个C.3个D.4个9.(3分)(2015•十堰)如图的几何体的俯视图是()A.B. C. D.10.(3分)(2012秋•江岸区期末)如图,已知线段AB=20cm,C为直线AB上一点,且AC=4cm,M,N分别是AC、BC的中点,则MN等于()cm.A.13 B.12 C.10或8 D.1011.(3分)(2010秋•江岸区期末)中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”.若设甲有x只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C. D.x+1=2(x﹣3)12.(3分)(2012秋•江岸区期末)如图,直线AB、CD交于点O,OE⊥AB,∠DOF=90°,OB平分∠DOG,则下列结论:①图中,∠DOE的余角有四个;②∠AOF的补角有2个;③OD为∠EOG的角平分线;④∠COG=∠AOD﹣∠EOF.其中正确的是()A.①②④ B.①③④ C.①④D.②③④二、填空题(共4小题,每小题3分,满分12分)13.(3分)(2012秋•江岸区期末)若单项式﹣x m yz是3次单项式,则m的值等于.14.(3分)(2004•临汾)如图所示,将一副三角板的直角顶点重合摆放在桌面上,若∠AOD=145°,则∠BOC=度.15.(3分)(2012秋•江岸区期末)如图是非常著名的“杨辉三角形”,根据图中数据的规律,试判断第6行的数据之和为.16.(3分)(2012秋•江岸区期末)某种商品进价250元,按标价的九折销售时,利润率为15.2%,则这种商品每件标价是.三、解答题(共9小题,满分72分)17.(12分)(2012秋•江岸区期末)(1)5﹣6﹣(﹣3)+(﹣4)﹣7;(2)计算:;18.(8分)(2012•西藏)解方程:.19.(10分)(2010秋•江岸区期末)先化简,再求值:(5x2y﹣2xy2﹣3xy)﹣(2xy+5x2y﹣2xy2),其中x=﹣1,y=﹣2.20.(10分)(2012秋•江岸区期末)电气机车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电气机车速度的5倍还快20千米/时,半小时后两车相遇.两车的速度各是多少?21.(10分)(2012秋•江岸区期末)已知:如图,∠AOB被分成∠AOC:∠COD:∠DOB=2:3:4,OM平分∠AOC,ON平分∠DOB,且∠MON=90°,求∠AOB的度数.22.(10分)(2012秋•江岸区期末)已知,如图:已知线段AB,点C在AB的延长线上,AC=BC,D在AB的反向延长线上,BD=DC.(1)在图上画出点C和点D的位置;(2)设线段AB长为x,则BC=;AD=;(用含x的代数式表示)(3)若AB=12cm,求线段CD的长.23.(12分)(2012秋•江岸区期末)某同学在中百、家乐福两家超市发现他看中的随身听单价相同,书包的单价也相同.已知随身听和书包的单价之和为580元,且随身听的单价比书包单价的4倍少20元.(1)求随身听和书包的单价各是多少元?(2)某天该同学上街,恰好两家超市都进行促销活动:中百超市所有商品八折销售;家乐福超市全场购物满100元返30元销售(不足100元不返回),请问这个同学想买这两件商品,请你帮他设计出最佳的购买方案,并求出他所付的费用.24.(2012秋•江岸区期末)已知:如图,OB、OC分别为定角∠AOD内的两条动射线(1)当OB、OC运动到如图的位置时,∠AOC+∠BOD=110°,∠AOB+∠COD=50°,求∠AOD 的度数;(2)在(1)的条件下,射线OM、ON分别为∠AOB、∠COD的平分线,当∠COB绕着点O旋转时,下列结论:①∠AOM﹣∠DON的值不变;②∠MON的度数不变.可以证明,只有一个是正确的,请你作出正确的选择并求值.25.(2012秋•江岸区期末)已知线段AB=12,CD=6,线段CD在直线AB上运动(C、A 在B左侧,C在D左侧).(1)M、N分别是线段AC、BD的中点,若BC=4,求MN;(2)当CD运动到D点与B点重合时,P是线段AB延长线上一点,下列两个结论:①是定值;②是定值,请作出正确的选择,并求出其定值.2010-2011学年湖北省武汉市江岸区七年级(上)期末数学试卷参考答案一、选择题(共12小题,每小题3分,满分36分)1.B 2.D 3.B 4.D 5.C 6.C 7.C 8.B 9.C 10.D 11.D 12.C二、填空题(共4小题,每小题3分,满分12分)13.1 14.35 15.32 16.320元三、解答题(共9小题,满分72分)17.18.19.20.21.22.23.24.25.。
武汉市人教版七年级上册数学期末试卷及答案百度文库一、选择题1.下列判断正确的是( ) A .3a 2bc 与bca 2不是同类项B .225m n 的系数是2C .单项式﹣x 3yz 的次数是5D .3x 2﹣y +5xy 5是二次三项式2.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .3.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式5h t =,若球的起始高度为102米,则球落地所用时间与下列最接近的是( ) A .3秒B .4秒C .5秒D .6秒4.-2的倒数是( ) A .-2 B .12- C .12D .25.对于方程12132x x +-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+6.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( ) A .23(30)72x x +-= B .32(30)72x x +-= C .23(72)30x x +-=D .32(72)30x x +-=7.下列方程变形正确的是( ) A .方程110.20.5x x --=化成1010101025x x--= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1 C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2D .方程23t=32,未知数系数化为 1,得t=1 8.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3 B .﹣3 C .1 D .﹣1 9.下列四个数中最小的数是( ) A .﹣1B .0C .2D .﹣(﹣1)10.方程312x -=的解是( ) A .1x =B .1x =-C .13x =-D .13x =11.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元12.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1二、填空题13.已知x=5是方程ax ﹣8=20+a 的解,则a= ________14.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.15.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。
xx 学校xx 学年xx 学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型 选择题填空题简答题xx 题 xx 题 xx 题 总分 得分一、xx 题(每空xx 分,共xx 分)试题1:四个有理数2、1、0、﹣1,其中最小的是( ) A .1 B .0 C .﹣1 D .2 试题2:相反数等于其本身的数是( )A .1B .0C .±1D .0,±1 试题3:据统计部门预测,到2020年武汉市常住人口将达到约14500000人,数14500000用科学记数法表示为( ) A .0.145×108B .1.45×107C .14.5×106D .145×105试题4:如图,一个长方形绕轴l 旋转一周得到的立体图形是( )A .棱锥B .圆锥C .圆柱D .球 试题5:多项式y 2+y+1是( )评卷人得分A.二次二项式 B.二次三项式 C.三次二项式 D.三次三项式试题6:已知x=2是关于x的一元一次方程mx+2=0的解,则m的值为( )A.﹣1 B.0 C.1 D.2试题7:下面计算正确的( )A.3x2﹣x2=3 B.a+b=ab C.3+x=3x D.﹣ab+ba=0试题8:甲厂有某种原料180吨,运出2x吨,乙厂有同样的原料120吨,运进x吨,现在甲厂原料比乙厂原料多30吨,根据题意列方程,则下列所列方程正确的是( )A.(180﹣2x)﹣(120+x)=30 B.(180+2x)﹣(120﹣x)=30C.(180﹣2x)﹣(120﹣x)=30 D.(180+2x)﹣(120+x)=30试题9:如图,数轴上每相邻两点相距一个单位长度,点A、B、C、D对应的位置如图所示,它们对应的数分别是a、b、c、d,且d﹣b+c=10,那么点A对应的数是( )A.﹣6 B.﹣3 C.0 D.正数试题10:如图,有四个大小相同的小长方形和两个大小相同的大长方形按如图位置摆放,按照图中所示尺寸,则小长方形的长与宽的差是( )A.3b﹣2a B. C. D.试题11:如果水库的水位高于标准水位3米时,记作+3米,那么低于标准水位2米时,应记__________米.试题12:34°30′=__________°.试题13:若单项式3xy m与﹣xy2是同类项,则m的值是__________.试题14:如图,∠AOB与∠BOC互补,OM平分∠BOC,且∠BOM=35°,则∠AOB=__________°.试题15:如图,AB=9,点C、D分别为线段AB(端点A、B除外)上的两个不同的动点,点D始终在点C右侧,图中所有线段的和等于30cm,且AD=3CD,则CD=__________cm.试题16:已知x、y、z为有理数,且|x+y+z+1|=x+y﹣z﹣2,则=__________.试题17:7﹣(﹢2)+(﹣4)试题18:(﹣1)2×5+(﹣2)3÷4.试题19:试题20:.试题21:先化简,再求值:ab+(a2﹣ab)﹣(a2﹣2ab),其中a=1,b=2.试题22:某工厂第一车间有x人,第二车间比第一车间人数的少30人,如果从第二车间调出10人到第一车间,那么:(1)两个车间共有__________人?(2)调动后,第一车间的人数为__________ 人,第二车间的人数为__________人;(3)求调动后,第一车间的人数比第二车间的人数多几人?试题23:如图,AD=,E是BC的中点,BE=,求线段AC和DE的长.试题24:下表是2015﹣2016赛季欧洲足球冠军杯第一阶段G组赛(G组共四个队,每个队分别与其它三个队进行主客场比赛各一场,即每个队要进行6场比赛)积分表的一部分.排名球队场次胜平负进球主场进球客场进球积分1 切尔西 6 ?? 1 13 8 5 132 基辅迪纳摩 63 2 1 8 3 5 113 波尔图 6 3 1 2 9 x 5 104 特拉维夫马卡比 6 0 0 6 1 1 0 0备注积分=胜场积分+平场积分+负场积分(1)表格中波尔图队的主场进球数x的值为__________,本次足球小组赛胜一场积分__________,平一场积分__________,负一场积分__________;(2)欧洲冠军杯奖金分配方案为:参加第一阶段小组赛6场比赛每支球队可以获得参赛奖金1200万欧元,以外,小组赛中每获胜一场可以再获得150万欧元,平一场获得50万欧元.请根据表格提供的信息,求出在第一阶段小组赛结束后,切尔西队一共能获得多少万欧元的奖金?已知数轴上,点O为原点,点A对应的数为9,点B对应的数为6,点C在点B右侧,长度为2个单位的线段BC在数轴上移动.(1)如图1,当线段BC在O、A两点之间移动到某一位置时恰好满足线段AC=OB,求此时b的值;(2)当线段BC在数轴上沿射线AO方向移动的过程中,若存在AC﹣0B=AB,求此时满足条件的b值;(3)当线段BC在数轴上移动时,满足关系式|AC﹣OB|=|AB﹣OC|,则此时的b的取值范围是__________.试题26:已知∠AOB=100°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(本题中的角均为大于0°且小于等于180°的角).(1)如图1,当OB、OC重合时,求∠EOF的度数;(2)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<90)时,∠AOE﹣∠BOF的值是否为定值?若是定值,求出∠AOE﹣∠BOF的值;若不是,请说明理由.(3)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<180)时,满足∠AOD+∠EOF=6∠COD,则n=__________.试题1答案:C【考点】有理数大小比较.【分析】根据正数大于零,零大于负数,可得答案.【解答】解:﹣1<0<1<2,最小的是﹣1.【点评】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.试题2答案:B【考点】相反数.【分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:根据相反数的定义,则相反数等于其本身的数只有0.故选B.【点评】主要考查了相反数的定义,要求掌握并灵活运用.试题3答案:B【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将14500000用科学记数法表示为1.45×107.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.试题4答案:C【考点】点、线、面、体.【分析】本题是一个矩形绕着它的一边旋转一周,根据面动成体的原理即可解.【解答】解:如图,一个长方形绕轴l旋转一周得到的立体图形是圆柱.故选:C.【点评】本题主要考查点、线、面、体,圆柱的定义,根据圆柱体的形成可作出判断.试题5答案:B【考点】多项式.【分析】根据几个单项式的和叫做多项式,每个单项式叫做多项式的项,多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【解答】解:多项式y2+y+1是二次三项式,故选:B.【点评】此题主要考查了多项式,关键是掌握与多项式相关的定义.试题6答案:A【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把x=2代入方程计算,即可求出m的值.【解答】解:把x=2代入方程得:2m+2=0,解得:m=﹣1,故选A.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.试题7答案:D【考点】合并同类项.【专题】计算题;整式.【分析】原式各项合并同类项得到结果,即可做出判断.【解答】解:A、原式=2x2,错误;B、原式为最简结果,错误;C、原式为最简结果,错误;D、原式=0,正确,故选D【点评】此题考查了合并同类项,熟练掌握合并同类项法则是解本题的关键.试题8答案:A【考点】由实际问题抽象出一元一次方程.【分析】由题意可知:甲厂现有某种原料180﹣2x吨,乙厂现有同样的原料120+x吨,根据现在甲厂原料比乙厂原料多30吨,列出方程解答即可.【解答】解:由题意可知:(180﹣2x)﹣(120+x)=30.故选:A.【点评】此题考查从实际问题中抽象出一元一次方程,找出题目蕴含的数量关系是解决问题的关键.试题9答案:B【考点】数轴.【专题】探究型.【分析】根据题意可以设点A表示的数为x,从而可以分别表示出点B、C、D,根据d﹣b+c=10,可以求得x的值,从而得到点A对应的数,本题得以解决.【解答】解:设点A对应的数是x,∵数轴上每相邻两点相距一个单位长度,∴点B表示数位:x+3,点C表示的数是:x+6,点D表示的数是:x+10,又∵点A、B、C、D对应的位置如图所示,它们对应的数分别是a、b、c、d,且d﹣b+c=10,∴x+10﹣(x+3)+(x+6)=10,解得x=﹣3.故选B.【点评】本题考查数轴,解题的关键是明确数轴的特点,根据数轴可以分别表示出各个数.试题10答案:B【考点】整式的加减.【专题】计算题;整式.【分析】设小长方形的长为x,宽为y,根据题意求出x﹣y的值,即为长与宽的差.【解答】解:设小长方形的长为x,宽为y,根据题意得:a+y﹣x=b+x﹣y,即2x﹣2y=a﹣b,整理得:x﹣y=,则小长方形的长与宽的差是,故选B【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.试题11答案:﹣2米.【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“高”和“低”相对,若水库的水位高于标准水位3米时,记作+3米,则低于标准水位2米时,应记﹣2米.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.试题12答案:34.5°.【考点】度分秒的换算.【分析】根据小单位化大单位除以进率,可得答案.【解答】解:34°30′=34°+30÷60=34.5°,故答案为:34.5.【点评】本题考查了度分秒的换算,利用小单位化大单位除以进率是解题关键.试题13答案:2.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可求出m的值.【解答】解:∵单项式3xy m与﹣xy2是同类项,∴m=2,故答案为:2.【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.试题14答案:110°.【考点】余角和补角.【分析】根据补角定义可得∠AOB+∠BOC=180°,再根据角平分线定义可得∠BOC的度数,然后可得∠AOB的度数.【解答】解:∵∠AOB与∠BOC互补,∴∠AOB+∠BOC=180°,∵OM平分∠BOC,∴∠BOC=2∠BOM=70°,∴∠AOB=110°,故答案为:110.【点评】此题主要考查了补角和角平分线,关键是掌握两个角和为180°,这两个角称为互为补角.试题15答案:3cm.【考点】两点间的距离.【分析】根据AB与CD之间的关系计算即可.【解答】解:设CD=x,∵AB=9,AD=3CD,∴AD=3x,BD=9﹣3x,AC=2x,BC=9﹣2x,∵AB+AC+CD+BD+AD+BC=40,∴9+2x+x+9﹣3x+3x+9﹣2x=30,∴x=3故答案为:3.【点评】本题考查的是两点间的距离的计算,正确理解题意、灵活运用数形结合思想是解题的关键.试题16答案:0.【考点】绝对值.【专题】计算题;推理填空题.【分析】根据绝对值的意义得到|x+y+z+1|=x+y+z+1或|x+y+z+1|=﹣(x+y+z+1),则x+y+z+1=x+y﹣z﹣2或﹣(x+y+z+1)=x+y﹣z﹣2,解得z=﹣或x+y=,然后把z=﹣或x+y=分别代入中计算即可.【解答】解:∵|x+y+z+1|=x+y+z+1或|x+y+z+1|=﹣(x+y+z+1),∴x+y+z+1=x+y﹣z﹣2或﹣(x+y+z+1)=x+y﹣z﹣2,∴z=﹣或x+y=,当z=﹣时,=(x+y﹣)[2×(﹣)+3]=0;当x+y=时,=(﹣)(2z+3)=0,综上所述,的值为0.故答案为0.【点评】本题考查了绝对值:当a是正数时,a的绝对值是它本身a;当a是负数时,a的绝对值是它的相反数﹣a;当a是零时,a的绝对值是零.试题17答案:原式=7﹣2﹣4=7﹣6=1;试题18答案:原式=1×5﹣8÷4=5﹣2=3.试题19答案:移项合并得:x=5;试题20答案:去分母得:3(3+x)﹣6=2(x+2),去括号得:9+3x﹣6=2x+4,移项合并得:x=1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.试题21答案:【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=ab+a2﹣ab﹣a2+2ab=2ab,当a=1,b=2时,原式=4.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.试题22答案:【考点】整式的加减;列代数式.【专题】计算题.【分析】(1)表示出第二车间的人数,进而表示出两个车间的总人数;(2)表示出调动后两车间的人数即可;(3)根据题意列出算式,计算即可得到结果.【解答】解:(1)根据题意得:x+x﹣30=(x﹣30)人;(2)根据题意得:调动后,第一车间人数为(x+10)人;第二车间人数为(x﹣40)人;(3)根据题意得:(x+10)﹣(x﹣40)=x+50(人),则调动后,第一车间的人数比第二车间的人数多(x+50)人.故答案为:(1)(x﹣30);(2)(x+10);(x﹣40)【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.试题23答案:【考点】两点间的距离.【分析】根据线段中点的性质,可得BC的长,根据线段的和差,可得AC的长,可得关于DB的方程,根据解方程,可得DB的长,再根据线段的和差,可得答案.【解答】解:由E是BC的中点,BE=,得BC=2BE=2×2=4cm,AB=3×2=6cm,由线段的和差,得AC=AB+BC=4+6=10cm;AB=AD+DB,即DB+DB=6,解得DB=4cm.由线段的和差,得DE=DB+BE=6+4=10cm.【点评】本题考查了两点间的距离,利用线段的和差得出关于DB的方程式解题关键.试题24答案:【考点】一元一次方程的应用.【分析】(1)根据波尔图队总进球数=主场进球数+客场进球数,即可求出x的值;由特拉维夫马卡比队负6场积0分,可知负一场积0分.设胜一场积x分,平一场积y分,根据排名2,3的积分数列出方程组,求解即可;(2)设切尔西队胜a场数,则平(6﹣x﹣1)场,根据积分为13列出方程,解方程进而求解即可.【解答】解:(1)由题意得x=9﹣5=4;设胜一场积x分,平一场积y分,根据题意得,解得.即胜一场积3分,平一场积1分,负一场积0分.故答案为4;3分,1分,0分;(2)设切尔西队胜a场数,则平(6﹣a﹣1)场,根据题意得3a+(6﹣a﹣1)=13,解得a=4.切尔西队一共能获奖金:1200+150×4+50×1=1850(万).答:在第一阶段小组赛结束后,切尔西队一共能获得1850万欧元的奖金.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.试题25答案:【考点】一元一次方程的应用;数轴.【专题】几何动点问题.【分析】(1)由题意可知B点表示的数比点C对应的数少2,进一步用b表示出AC、OB之间的距离,联立方程求得b的数值即可;(2)分别用b表示出AC、OB、AB,进一步利用AC﹣0B=AB建立方程求得答案即可;(3)分别用b表示出AC、OB、AB、OC,进一步利用|AC﹣OB|=|AB﹣OC|建立方程求得答案即可.【解答】解:(1)由题意得:9﹣(b+2)=b,解得:b=3.5.答:线段AC=OB,此时b的值是3.5.(2)由题意得:9﹣(b+2)﹣b=(9﹣b),解得:b=.答:若AC﹣0B=AB,满足条件的b值是.(3)由题意可得:|9﹣(b+2)﹣b|=|9﹣b﹣(b+2)|,整理得|7﹣2b|=|7﹣2b|,由|7﹣2b|=|7﹣2b|可知7﹣2b=0,解得b==3.5.故答案为b=3.5.【点评】本题考查了一元一次方程的应用,考查了数轴与两点间的距离的计算,根据数轴确定出线段的长度是解题的关键.试题26答案:【考点】角的计算;角平分线的定义.【分析】(1)首先根据角平分线的定义求得∠EOB和∠COF的度数,然后根据∠EOF=∠EOB+∠COF求解;(2)解法与(1)相同,只是∠AOC=∠AOB+n°,∠BOD=∠COD+n°;(3)利用n表示出∠AOD,求得∠EOF的度数,根据∠AOD+∠EOF=6∠COD列方程求解.【解答】解:(1)∵OE平分∠AOC,OF平分∠BOD,∴∠EOB=∠AOB=×100°=50°,∠COF=∠COD=×40°=20°,∴∠EOF=∠EOB+∠COF=50°+20°=70°;(2)∠AOE﹣∠BOF的值是定值,理由是:∠AOC=∠AOB+n°,∠BOD=∠COD+n°,∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=∠AOC=(100°+n°),∠BOF=∠BOD=(40°+n°),∴∠AOE﹣∠BOF=(100°+n°)﹣(40°+n°)=30°;(3)∠AOD=∠AOB+∠COD+n°=100°+40°+n°=140°+n°,∠EOF=∠EOC+∠COF=∠EOC+∠COD﹣∠DOF=(100°+n°)+40°﹣(40°+n°)=70°,∵∠AOD+∠EOF=6∠COD,∴(140+n)+70°=6×40,∴n=30.故答案是:30.【点评】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.。
武汉市人教版七年级上册数学期末试卷及答案一、选择题1.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是()A.B.C.D.2.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A.B.C.D.3.-2的倒数是()A.-2 B.12-C.12D.24.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .592 5.下列方程变形正确的是( ) A .方程110.20.5x x --=化成1010101025x x --= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2D .方程23t=32,未知数系数化为 1,得t=1 6.方程3x ﹣1=0的解是( ) A .x =﹣3 B .x =3 C .x =﹣13 D .x =137.如果代数式﹣3a 2m b 与ab 是同类项,那么m 的值是( )A .0B .1C .12D .38.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( )A .2或2.5B .2或10C .2.5D .2 9.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( )A .0mB .0.8mC .0.8m -D .0.5m - 10.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是( )A .①②④B .①②③C .②③④D .①③④ 11.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( )A .180元B .200元C .225元D .259.2元12.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 中点个数有 ( ) ①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB .A .1个B .2个C .3个D .4个二、填空题13.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________.14.已知|x |=3,y 2=4,且x <y ,那么x +y 的值是_____.15.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.16.已知关于x 的一元一次方程320202020x x n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 17.已知x=2是方程(a +1)x -4a =0的解,则a 的值是 _______.18.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元.19.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.20.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号)21.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x 人,依题意列方程得_____.22.-2的相反数是__.23.单项式()26a bc -的系数为______,次数为______. 24.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.三、压轴题25.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.26.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.27.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元. (购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价, 请问: ()1购买一件标价为500元的商品,顾客的实际付款是多少元?()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.28.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
武昌区2010—2011学年度上学期期末调研考试
七 年 级 数 学 试 卷 答 案
一、选择题(本大题共12小题,每小题3分,共36分)
二、填空题(本大题共4小题,每题3分,共12分)
13.32 14.0 15.150° 16.-1
17.计算:
解:(1)()()()123-+---
()()123=-+-+ —————— 3分
0= —————— 5分
24
1)32141-÷+( =24)3
541(⨯+- ——————2分 =406-+ ——————4分
=34 ——————5分
18.解:()
()1322--+x x x ()
()3322--+=x x x ——————1分
=33x 2x x 2=-+ —— ————2分 32+-=x x ——————3分
当x=-1时,
原式()()3112
+---= 311++= ——————5分
5= ——————6分
19.解:(1) 4325x x -=+
4253x x -=+ ——2分
28x = ——4分
4x = ——————5分
(2)2131138
x x -+-= ()()82124331x x --=+ ——————2分
1682493x x --=+ ——————3分
1693824x x -=++
735x = ——————4分
5x = ——————5分
20.解:(1)25BC a =+ ——————1分 25AD BC =-
()2255a =+-
4105a =+-
45a =+ ——————2分
CD =DA +AB +BC =(4a +5)+a +(2a +5)
=7a +10 ——————4分
当15a =时,
)(11510157cm CD =+⨯= ——————6分
21.解:因为OB 是∠AOC 的平分线,∠AOB =35°
所以∠AOC =2∠AOB =70° ——————2分 又因为∠AOE =150°
所以∠COE =∠AO E ﹣∠AOC =150°﹣70°=80°
因为OD 是∠COE 的平分线
所以∠COD =2
1∠COE =40° ——————4分 所以∠AOD =∠AOC +∠COD=70°+40°=110°——————6分
22.解:由()2131x m -=-解得
312
m x += ——————2分 由()1223+-=+m x 解得
3
42--=m x ——————4分 因为两个方程的解互为相反数
3124023
m m +--∴+= 解得,1m = ——————6分
23.解:设A ,B 两地间的距离为x 千米,
(1)当C 地在A ,B 两地之间时,依题意得,
45
.25.7105.25.7=--++x x ——————3分 解这个方程得:20=x (千米) ——————4分
(2)当C 地在A 地上游时,依题意得:
45
.25.7105.25.7=-+++x x ——————6分 解这个方程得:3
20=x ——————7分 答:A ,B 两地间距离为20千米或3
20千米 . ——————8分 24.解:(1)设∠COF =α,则∠EOF =90°﹣α
因为OF 是∠AOE 的平分线
所以∠AOF =90°﹣α
所以∠AOC =(90°﹣α)﹣α=90°﹣2α ——————2分 ∠BOE =180°﹣∠COE ﹣∠AOC
=180°﹣90°﹣(90°﹣2α)
=2α
即∠BOE =2∠COF ——————4分
(2)成立
设∠AOC=β,则∠AOF=2
90β-︒, 所以∠C OF=45°+2β=2
1(90°+β) ——————6分 ∠BOE =180°﹣∠AOE=180°﹣(90°﹣β)=90°+β
所以∠BOE=2∠C OF ——————8分
(3)(30+n 3
5)° ——————10分 25.解:(1)点B 在数轴上表示的数是﹣8
设运动t 秒时,BC =8单位长度),
①当点B 在点C 的左边时,
24286=++t t
2=t (秒) ——————2分 ②当点B 在点C 的右边时,
24286=+-t t
4=t (秒)
答:当t 等于2秒或4秒时BC =8(单位长度). ——————4分
(2)4,16 ——————6分
(3)存在
设运动时间为t (秒)
1°当t =3时,点B 与点C 重合,点P 在线段AB 上,0<PC ≤2且 BD=CD =4,AP +3PC =AB +2PC =2+2PC
当PC =1时
BD =AP +3PC ,即
3=-PC AP BD 2°当3<t<4
13时,点C 在点A 与点B 之间,0<PC <2 ①点P 在线段AC 上时
BD=CD ﹣BC=4﹣BC ,
AP +3PC =AC +2PC =AB ﹣BC +2PC=2﹣BC +2PC
当PC =1时,有BD =AP +3PC 即3=-PC
AP BD ②点P 在线段BC 上时
BD=CD ﹣BC=4﹣BC
AP +3PC = AC +4PC = AB ﹣BC +4PC =2﹣BC +4PC 当2
1=PC 时,有BD =AP +3PC
即3=-PC
AP BD 3°当t=4
13时,点A 与在点C 重合,0<PC ≤2 BD =CD ﹣A B =2
AP +3PC = 4PC 当21
=PC 时,有BD =AP +3PC 即3=-PC AP
BD
4°当413<t<27
时,0<PC <4
BD=CD ﹣BC=4﹣BC
AP +3PC =AB ﹣BC+4PC =2﹣BC+4PC 当21
=PC 时,有BD =AP +3PC 即3=-PC AP
BD ——————10分。