Four-point renormalized coupling constant in O(N) models
- 格式:pdf
- 大小:107.44 KB
- 文档页数:4
求变系数椭圆形偏微分方程的非齐次柯西问题近似特解的一种正则化方法李明陈文 C. H. Tsai z2011年7月摘要用径向基函数(RBFs)表示函数公认很灵活。
基于模拟方程法的概念和径向基函数。
在本文,首次考虑使用近似特解方法(MAPS)求解变系数椭圆形偏微分方程(PDEs)的不适定柯西问题。
我们证明,使用Tikhonov 正则化,近似特解方法会给椭圆形偏微分方程及不规则解空间带来一个有效的、准确的数值算法。
有效且准确。
比较上面提出的近似特解方法和Kansa 方法,计算结果表明用上面提出的近似特解方法求解不适定柯西问题是有效的、准确的且稳定的。
1 引言根据给定的便接受或者内部的信息,椭圆偏微分方程(PDEs) 大致可以分为以下五个主要问题:1.边界值问题[2,6]。
这些问题已经发展和应用很长一段时间。
例如:Dirichlet, Neumann 或者 Robin 混合问题。
2.Cauchy问题[23]。
这些问题也被称为边值的确定问题。
对于椭圆形Cauchy问题,Dirichlet和Neumann边界条件只在解空间边界的一部分给定。
3.边界的确定问题[11]。
这些是工程上典型的非破坏性测试问题。
这些问题确定解空间的未知边界。
4.系数的重建问题[26]。
5.潜在源的确定问题。
上述问题中。
只有第一个问题是适定的。
适定问题的定义是由Hadamard【7】给出的。
他认为,为某物理现象建立的合适的数学模型应具有以下三个属性:存在,唯一且稳定。
如若其中之一不满足,则建立在物理现象之上的这个数学模型就是不适定的。
然而,越来越多的不适定问题正出现于科学cs,中国香港特别行政区,香港城市大学相关作者,中国南京河海大学工程力学系型的逆问题,从Hadamard角度上来说,他们是不适定的,因为测量数据任何小误差都可能导致解的大差距。
偏微分方程的系数通常对应于问题的材料参数。
在非均匀介质中,材料参数可能会随位置而变化。
因此在非均匀介质的物理问题的控制方程中很可能会涉及到变系数。
平面上的近似连续积分(英文)
叶国菊
【期刊名称】《数学研究》
【年(卷),期】1999(32)3
【摘要】无
【总页数】1页(P238)
【作者】叶国菊
【作者单位】无
【正文语种】中文
【相关文献】
1.辨识连续模型的高阶近似积分法 [J], 黄新生
2.模糊数值函数的可测性、近似连续性及积分原函数的可导性 [J], 巩增泰
3.关于绝对连续函数的黎曼-斯蒂尔切斯积分的近似计算 [J], 卢国富;廉换霞
4.连续态数值波函数归一化的近似计算及TRK求和中余项的积分处理 [J], 曹伟;朱云霞;陆慧;贺黎明
5.用于发酵过程多目标优化的几何支持向量回归Pareto前沿的连续近似方法(英文) [J], 吴佳欢;王建林;于涛;赵利强
因版权原因,仅展示原文概要,查看原文内容请购买。
CHAPTER 2 BASIC PARAFAC MODELINGContents1.Fit a PARAFAC model2.Determining the propernumber of components3.Checking convergence4.Summaryments Data used: claus.mat contains fluorescence excitation emission data from five samples containing tryptophan, phenylalanine, and tyrosine.Purpose: Learning to fit and interpret a PARAFAC modelInformation: R. Bro, PARAFAC: Tutorial & applications. Chemom. Intell. Lab. Syst., 1997, 38, 149-171.Prerequisites: Be sure to understand the basics of handling multi-way arrays in MATLAB (Chapter 1), and have a vague idea about what PARAFAC is.1. Fit a PARAFAC modelFluorescence data of dilute samples behave approximately according to a PARAFAC model (A mathematical model of fluorescence excitation-emission data). For these data it is known that a three-component PARAFAC model should be adequate since there are three analytes in the samples and each can ideally be described by one PARAFAC component.Task: Fit a three-component PARAFAC model and investigate the model. To fit the PARAFAC model simply type[Factors] = parafac(X,3);and to convert the output parameters to scores and loadings type[A,B,C] = fac2let(Factors);The output Factors is actually a cell array (type help cell) of size 1x3. Cell element one holds A, element two B and element three C and you can access those directly e.g. by typing A = Factors{1}. Note the curly brackets used for cells. You can also plot all loadings by entering plotfac(Factors).The scores/loadings in A are the sample mode loadings, the loadings in B are the emission mode loadings and the loadings in C are the excitation mode loadings. For example, use plot(B) or plot(EmAx,B) to investigate the emission mode loadings. Use plot(ExAx,C) to plot the excitation mode loadings.See a graphicalexplanation/illustration of the PARAFAC model of these data.From the loading plots of B and C, it can be verified, that the PARAFAC model is unique. These loadings are not just some orthogonal parameters as in ordinary PCA. The loadings resemble closely, the true pure spectra of the three chemical analytes. So what does unique mean? It means that the scores and loadings can not be rotated. In PCA you can rotate the scores and loadings and still the model will fit the data just as well as before. Hence, there is no way that you can estimate, for example, pure spectra from PCA, because there is an infinity of different scores and loadings that all give the same fit. In PARAFAC this is not so. The only thing that can be varied is the order and scale of the components. There is no way to say, from the decomposition whether component one is rightfully the first, second or fifth component. So the order of the components is unidentified. There is also no way to define the scale. This is intrinsic to bi- and multilinear models. If X = tp', then we can equally well let t be twice the original t if we just let p be half the original p.What is the implication of these two unidentifiabilities? That there is no intrinsic order, means that the specific components must be identified after fitting. There is no way to guarantee that, say tyrosine, will come out as component one (in second-order calibration, tricks can be used to automatically identify which factor is the analyte of interest if a pure sample is included. If the scores of that sample are forced to be zero for all but one factor, then naturally this factor must be the one pertaining to the analyte of interest).That the scale is unidentified means that we can only determine spectra, concentrations etc. up to a scaling. In the above example we can agree that the second and third mode loadings are pure emission and excitation spectra. Then the scores (amounts of the latent variables) must be concentrations, because the latent variables in this case are real chemical variables. So we can find the concentrations in the samples from the PARAFAC model. But what is the scale? mM, M?? Because of the scale indeterminacy there is no way to tell. This is natural. We can not measure the absorption of a fluid and tell the concentration from that. We need a reference to fix the scale. So if the concentration is known in one sample we can scale the corresponding column so that this score equals the known concentration. Then the remaining scores of that factor will be estimates of the concentrations in the other samples.Task: Evaluate if the scores provide reasonable estimates of the concentrations. Assume that you know the concentrations in, say, the fifth sample. If the model is unique this should provide sufficient information to estimate the concentrations in the first four samples. Use the reference concentrations (given in the matrix y and described in the file readme) to scale the scores such that estimates of the concentrations of tryptophan is obtained usingthe known concentration of tryptophan in the fifth sample (y(5,1)). Do the same for tyrosine and phenylalanine. This is the basis for the so-called second-order calibration.How to do it2. Determining the proper number of componentsIt is difficult to decide the best rank, i.e., the column-dimension of the loading matrices, of a PARAFAC model. However, it is by far easier than for two-way problems because of the uniqueness properties of PARAFAC. In general, the same tools are available as are used for two-way analysis: Looking at histograms of residuals, assessing the interpretability of the solution, comparing residual variation to the intrinsic noise-level and using resampling techniques such as cross-validation. But there are also additional very powerful tools that we will discuss after the first exercisesTask: Investigate the fits of a one-, two- and three-component PARAFAC model of the data. Try also to estimate a four-component model. Note that an increased number of iterations are mostly necessary when fitting the four-component model. This is a typical sign of either too many components being extracted or an ill-defined problem (loadings are very correlated).An important difference between two-way PCA and the multi-way PARAFAC model is that the PARAFAC model is not nested. Hence the parameters of a three-component model do not equal the parameters of a two-component model plus one additional component. The reason for this is that the components are not required to be orthogonal; hence independent. Therefore, every model has to be calculated specifically with all its components.In estimating the model.note some of the options available in the PARAFAC m-file (type help parafac): The input options makes it possible to, e.g., have the interim loadings being plotted during the iterations (options(3) = 2), or only allow for, say, 100 iterations (options(6) = 100).Fitting the PARAFAC the modelConverting model parameters to loadingsCalculating the model of the dataCalculating the model fitAdditionally to the above-mentioned tools, one may use the split-half analysis for determining the proper number of components. If two sample sets are available that should describe the same common variation, then it holds that for the proper number of components they should give the same loading vectors up to scaling and permutation (more on this). Thus, if this is not the case, it is a clear indication that too many components are being extracted.A new approach called the core consistency diagnostic (CORCONDIA) is very helpful in determining the right number of components. The details will not be given here (but here in a pdf-file) but the principle is as follows. For a given number of components fit the PARAFAC model to the data. Use the thereby found solution to calculate the so-called core consistency. If the PARAFAC model is valid then the core consistency is close to 100%. If the data can not approximately be described by a trilinear model or too many components are used the core consistency will be close to zero (or even negative). If the consistency is in-between (around 50%) the model is unstable in which case imposing valid constraints may help stabilize the model. In practice the core consistency levels off slowlyfor an increasing number of components and then sharply when the correct number of components is exceeded. The number of components corresponding to the last high consistency value should be chosen.Important: The core consistency is just a tool. It does not prove anything. It is based on some assumptions and may as any other tool be misleading from time to time. So do not argue for a specific model using only the core consistency as an argument. Use several tools and visualizations to provide evidence that you are using the right number of components.Task: Use different tools for assessing the proper number of components for the fluorescence data. For models of dimension one to five∙Look at residuals (mesh plots and alike. Check the size of the residuals compared to the data and the known error)∙Look at scree-plots (sum-of-squared residuals versus the number of components)∙Look at model parameters (loading vectors)∙Use the core consistency diagnostic (corcond)∙Use cross-validation (ncrossdecomp)How to do itThe multi-way toolbox also provides an m-file called pftest for checking the number of components (type help pftest). The approach adopted there is more or less similar to the one mentioned here, but additionally each model corresponding to a given number of components is fitted several times. This provides means for assessing if the model converges to the same minimum every time. This is useful also in determining the proper number of components, since if too many components are used the number of local minima typically increases dramatically.3. Checking convergence of the algorithmThe algorithm for fitting the PARAFAC model is a so-called alternating least squares algorithm. It is iterative and stops when the relative difference in fit between two successive iterations is below a certain limit. For most types of data this limit can be set to 10-6 (default in the algorithm) which will ensure that the model is correct and that not too many iterations are used. For some data the model is very difficult to fit and a lower convergence criterion may therefore be needed. Note that one need not check convergence for the N-PLS and Tucker algorithms as those are very efficient. To assess convergence the following list may be used∙Fit the models several times using random initialization (why?) by setting Options(2)=2;.∙If all models have the same fit (i.e. loss function value) the models have converged (this is common) ∙If all but a small fraction of the fitted models have the same (and best) fit, the model have converged and the few models with lower fit may be discarded as accidental local minima.∙If all models have different fit values, the model is difficult to fit (maybe too many components) and the convergence criterion has to be lowered.∙If the models converge to a few different but distinct fit-values, i.e. there are several models with the same fit values, then there are multiple local minima, which is a tricky situation. Likely, it is possible to circumvent this either by using some additional constraints (e.g., non-negativity) or otherwise slightly re-specifying the model.Task: Fit a three-component model several times and see if the estimated model converges. If so, the fits should be identical every time. This demonstrates how to assess convergence. Do the same for a four- or a five-componentmodel. Likely you will see that the fit differs from model to model if you are using a random initialization. Lower the convergence criterion to circumvent this. You can use pftest for testing convergence.How to do it4. SummaryIn this chapter it has been shown how to fit the PARAFAC model and how to find the appropriate number of components. Fitting the PARAFAC model is simply done by typing[Factors] = parafac(X,Fac);where Fac is the number of components. The parameters of the model are held in the cell Factors and may be converted into ordinary scores and loadings by means of fac2let. In case of a three-way model this would read[A,B,C] = fac2let(Factors);The scores and loadings of a PARAFAC model may be assessed and used just as in ordinary two-way analysis (e.g., use scores for building regression models, plot loadings and make bi-plots for interpretation etc.)It has also been discussed that using the file pftest one may very quickly get a good indication of the appropriate number of components to use. Further exploration and interpretation of feasible models may then help the final decision.Some important aspects that differ from ordinary two-way analysis have been discussed:∙PARAFAC models are not nested; hence one may not fit models by augmenting an existing model by adding an extra component∙Unlike many other decomposition models often used, the PARAFAC algorithm can occasionally havedifficulties in finding the true least squares model. This is mostly the case when too many components are extracted or when the model is otherwise mis-specified∙The PARAFAC model is unique, which means that it may be used e.g., for resolving spectra. However, a unique PARAFAC model does not explicitly imply that the parameters are estimates of the true underlying parameters. Only in the case where these exist and the model is correctly specified can that be the case.Hence, in the above example with fluorescence data, even a two-component model is unique, but it does not reflect pure spectra since there are three chemical analytes in the samples.5. Comments pleasePlease comment here if the above exercises help in understanding the basics of multi-way data, or give suggestions to improvementsNext Chapter: Advanced PARAFAC modeling Previous Chapter: Handling multi-way data First Chapter: ContentsThe N-way tutorialCopyright © 1998R. Bro。
Fourier transformIn mathematics, the Fourier transform is the operation that decomposes a signal into its constituent frequencies. Thus the Fourier transform of a musical chord is a mathematical representation of the amplitudes of the individual notes that make it up. The original signal depends on time, and therefore is called the time domain representation of the signal, whereas the Fourier transform depends on frequency and is called the frequency domain representation of the signal. The term Fourier transform refers both to the frequency domain representation of the signal and the process that transforms the signal to its frequency domain representation.More precisely, the Fourier transform transforms one complex-valued function of a real variable into another. In effect, the Fourier transform decomposes a function into oscillatory functions. The Fourier transform and its generalizations are the subject of Fourier analysis. In this specific case, both the time and frequency domains are unbounded linear continua. It is possible to define the Fourier transform of a function of several variables, which is important for instance in the physical study of wave motion and optics. It is also possible to generalize the Fourier transform on discrete structures such as finite groups. The efficient computation of such structures, by fast Fourier transform, is essential for high-speed computing.DefinitionThere are several common conventions for defining the Fourier transform of an integrable function ƒ: R→ C (Kaiser 1994). This article will use the definition:for every real number ξ.When the independent variable x represents time (with SI unit of seconds), the transform variable ξ representsfrequency (in hertz). Under suitable conditions, ƒ can be reconstructed from by the inverse transform:for every real number x.For other common conventions and notations, including using the angular frequency ω instead of the frequency ξ, see Other conventions and Other notations below. The Fourier transform on Euclidean space is treated separately, in which the variable x often represents position and ξ momentum.IntroductionThe motivation for the Fourier transform comes from the study of Fourier series. In the study of Fourier series, complicated functions are written as the sum of simple waves mathematically represented by sines and cosines. Due to the properties of sine and cosine it is possible to recover the amount of each wave in the sum by an integral. In many cases it is desirable to use Euler's formula, which states that e2πiθ = cos 2πθ + i sin 2πθ, to write Fourier series in terms of the basic waves e2πiθ. This has the advantage of simplifying many of the formulas involved and providing a formulation for Fourier series that more closely resembles the definition followed in this article. This passage from sines and cosines to complex exponentials makes it necessary for the Fourier coefficients to becomplex valued. The usual interpretation of this complex number is that it gives both the amplitude (or size) of the wave present in the function and the phase (or the initial angle) of the wave. This passage also introduces the need for negative "frequencies". If θ were measured in seconds then the waves e2πiθ and e−2πiθ would both complete one cycle per second, but they represent different frequencies in the Fourier transform. Hence, frequency no longer measures the number of cycles per unit time, but is closely related.There is a close connection between the definition of Fourier series and the Fourier transform for functions ƒ which are zero outside of an interval. For such a function we can calculate its Fourier series on any interval that includes the interval where ƒ is not identically zero. The Fourier transform is also defined for such a function. As we increase the length of the interval on which we calculate the Fourier series, then the Fourier series coefficients begin to look like the Fourier transform and the sum of the Fourier series of ƒ begins to look like the inverse Fourier transform. To explain this more precisely, suppose that T is large enough so that the interval [−T/2,T/2] contains the interval onis given by:which ƒ is not identically zero. Then the n-th series coefficient cnComparing this to the definition of the Fourier transform it follows that since ƒ(x) is zero outside [−T/2,T/2]. Thus the Fourier coefficients are just the values of the Fourier transform sampled on a grid of width 1/T. As T increases the Fourier coefficients more closely represent the Fourier transform of the function.Under appropriate conditions the sum of the Fourier series of ƒ will equal the function ƒ. In other words ƒ can be written:= n/T, and Δξ = (n + 1)/T − n/T = 1/T. where the last sum is simply the first sum rewritten using the definitions ξnThis second sum is a Riemann sum, and so by letting T → ∞ it will converge to the integral for the inverse Fourier transform given in the definition section. Under suitable conditions this argument may be made precise (Stein & Shakarchi 2003).could be thought of as the "amount" of the wave in the Fourier series of In the study of Fourier series the numbers cnƒ. Similarly, as seen above, the Fourier transform can be thought of as a function that measures how much of each individual frequency is present in our function ƒ, and we can recombine these waves by using an integral (or "continuous sum") to reproduce the original function.The following images provide a visual illustration of how the Fourier transform measures whether a frequency is present in a particular function. The function depicted oscillates at 3 hertz (if t measures seconds) and tends quickly to 0. This function was specially chosen to have a real Fourier transform which can easily be plotted. The first image contains its graph. In order to calculate we must integrate e−2πi(3t)ƒ(t). The second image shows the plot of the real and imaginary parts of this function. The real part of the integrand is almost always positive, this is because when ƒ(t) is negative, then the real part of e−2πi(3t) is negative as well. Because they oscillate at the same rate, when ƒ(t) is positive, so is the real part of e−2πi(3t). The result is that when you integrate the real part of the integrand you get a relatively large number (in this case 0.5). On the other hand, when you try to measure a frequency that is not present, as in the case when we look at , the integrand oscillates enough so that the integral is very small. The general situation may be a bit more complicated than this, but this in spirit is how the Fourier transform measures how much of an individual frequency is present in a function ƒ(t).Original function showingoscillation 3 hertz.Real and imaginary parts of integrand for Fourier transformat 3 hertzReal and imaginary parts of integrand for Fourier transformat 5 hertz Fourier transform with 3 and 5hertz labeled.Properties of the Fourier transformAn integrable function is a function ƒon the real line that is Lebesgue-measurable and satisfiesBasic propertiesGiven integrable functions f (x ), g (x ), and h (x ) denote their Fourier transforms by, , andrespectively. The Fourier transform has the following basic properties (Pinsky 2002).LinearityFor any complex numbers a and b , if h (x ) = aƒ(x ) + bg(x ), thenTranslationFor any real number x 0, if h (x ) = ƒ(x − x 0), thenModulationFor any real number ξ0, if h (x ) = e 2πixξ0ƒ(x ), then.ScalingFor a non-zero real number a , if h (x ) = ƒ(ax ), then. The case a = −1 leads to the time-reversal property, which states: if h (x ) = ƒ(−x ), then.ConjugationIf , thenIn particular, if ƒ is real, then one has the reality conditionAnd ifƒ is purely imaginary, thenConvolutionIf , thenUniform continuity and the Riemann–Lebesgue lemmaThe rectangular function is Lebesgue integrable.The sinc function, which is the Fourier transform of the rectangular function, is bounded andcontinuous, but not Lebesgue integrable.The Fourier transform of an integrable function ƒ is bounded and continuous, but need not be integrable – for example, the Fourier transform of the rectangular function, which is a step function (and hence integrable) is the sinc function, which is not Lebesgue integrable, though it does have an improper integral: one has an analog to thealternating harmonic series, which is a convergent sum but not absolutely convergent.It is not possible in general to write the inverse transform as a Lebesgue integral. However, when both ƒ and are integrable, the following inverse equality holds true for almost every x:Almost everywhere, ƒ is equal to the continuous function given by the right-hand side. If ƒ is given as continuous function on the line, then equality holds for every x.A consequence of the preceding result is that the Fourier transform is injective on L1(R).The Plancherel theorem and Parseval's theoremLet f(x) and g(x) be integrable, and let and be their Fourier transforms. If f(x) and g(x) are also square-integrable, then we have Parseval's theorem (Rudin 1987, p. 187):where the bar denotes complex conjugation.The Plancherel theorem, which is equivalent to Parseval's theorem, states (Rudin 1987, p. 186):The Plancherel theorem makes it possible to define the Fourier transform for functions in L2(R), as described in Generalizations below. The Plancherel theorem has the interpretation in the sciences that the Fourier transform preserves the energy of the original quantity. It should be noted that depending on the author either of these theorems might be referred to as the Plancherel theorem or as Parseval's theorem.See Pontryagin duality for a general formulation of this concept in the context of locally compact abelian groups.Poisson summation formulaThe Poisson summation formula provides a link between the study of Fourier transforms and Fourier Series. Given an integrable function ƒ we can consider the periodic summation of ƒ given by:where the summation is taken over the set of all integers k. The Poisson summation formula relates the Fourier series of to the Fourier transform of ƒ. Specifically it states that the Fourier series of is given by:Convolution theoremThe Fourier transform translates between convolution and multiplication of functions. If ƒ(x) and g(x) are integrablefunctions with Fourier transforms and respectively, then the Fourier transform of the convolution is given by the product of the Fourier transforms and (under other conventions for the definition of theFourier transform a constant factor may appear).This means that if:where ∗ denotes the convolution operation, then:In linear time invariant (LTI) system theory, it is common to interpret g(x) as the impulse response of an LTI systemwith input ƒ(x) and output h(x), since substituting the unit impulse for ƒ(x) yields h(x) = g(x). In this case, represents the frequency response of the system.Conversely, if ƒ(x) can be decomposed as the product of two square integrable functions p(x) and q(x), then theFourier transform of ƒ(x) is given by the convolution of the respective Fourier transforms and .Cross-correlation theoremIn an analogous manner, it can be shown that if h(x) is the cross-correlation of ƒ(x) and g(x):then the Fourier transform of h(x) is:As a special case, the autocorrelation of function ƒ(x) is:for whichEigenfunctionsOne important choice of an orthonormal basis for L2(R) is given by the Hermite functionswhere are the "probabilist's" Hermite polynomials, defined by Hn(x) = (−1)n exp(x2/2) D n exp(−x2/2). Under this convention for the Fourier transform, we have thatIn other words, the Hermite functions form a complete orthonormal system of eigenfunctions for the Fourier transform on L2(R) (Pinsky 2002). However, this choice of eigenfunctions is not unique. There are only four different eigenvalues of the Fourier transform (±1 and ±i) and any linear combination of eigenfunctions with the same eigenvalue gives another eigenfunction. As a consequence of this, it is possible to decompose L2(R) as a directsum of four spaces H0, H1, H2, and H3where the Fourier transform acts on Hksimply by multiplication by i k. Thisapproach to define the Fourier transform is due to N. Wiener (Duoandikoetxea 2001). The choice of Hermite functions is convenient because they are exponentially localized in both frequency and time domains, and thus give rise to the fractional Fourier transform used in time-frequency analysis (Boashash 2003).Fourier transform on Euclidean spaceThe Fourier transform can be in any arbitrary number of dimensions n. As with the one-dimensional case there are many conventions, for an integrable function ƒ(x) this article takes the definition:where x and ξ are n-dimensional vectors, and x·ξ is the dot product of the vectors. The dot product is sometimes written as .All of the basic properties listed above hold for the n-dimensional Fourier transform, as do Plancherel's and Parseval's theorem. When the function is integrable, the Fourier transform is still uniformly continuous and the Riemann–Lebesgue lemma holds. (Stein & Weiss 1971)Uncertainty principleGenerally speaking, the more concentrated f(x) is, the more spread out its Fourier transform must be. In particular, the scaling property of the Fourier transform may be seen as saying: if we "squeeze" a function in x, its Fourier transform "stretches out" in ξ. It is not possible to arbitrarily concentrate both a function and its Fourier transform.The trade-off between the compaction of a function and its Fourier transform can be formalized in the form of an Uncertainty Principle by viewing a function and its Fourier transform as conjugate variables with respect to the symplectic form on the time–frequency domain: from the point of view of the linear canonical transformation, the Fourier transform is rotation by 90° in the time–frequency domain, and preserves the symplectic form.Suppose ƒ(x) is an integrable and square-integrable function. Without loss of generality, assume that ƒ(x) is normalized:It follows from the Plancherel theorem that is also normalized.The spread around x = 0 may be measured by the dispersion about zero (Pinsky 2002) defined byIn probability terms, this is the second moment of about zero.The Uncertainty principle states that, if ƒ(x ) is absolutely continuous and the functions x ·ƒ(x ) and ƒ′(x ) are square integrable, then(Pinsky 2002).The equality is attained only in the case (hence ) where σ > 0is arbitrary and C 1 is such that ƒ is L 2–normalized (Pinsky 2002). In other words, where ƒ is a (normalized) Gaussian function, centered at zero.In fact, this inequality implies that:for any in R (Stein & Shakarchi 2003).In quantum mechanics, the momentum and position wave functions are Fourier transform pairs, to within a factor of Planck's constant. With this constant properly taken into account, the inequality above becomes the statement of the Heisenberg uncertainty principle (Stein & Shakarchi 2003).Spherical harmonicsLet the set of homogeneous harmonic polynomials of degree k on R n be denoted by A k . The set A k consists of the solid spherical harmonics of degree k . The solid spherical harmonics play a similar role in higher dimensions to the Hermite polynomials in dimension one. Specifically, if f (x ) = e −π|x |2P (x ) for some P (x ) in A k , then. Let the set H k be the closure in L 2(R n ) of linear combinations of functions of the form f (|x |)P (x )where P (x ) is in A k . The space L 2(R n ) is then a direct sum of the spaces H k and the Fourier transform maps each space H k to itself and is possible to characterize the action of the Fourier transform on each space H k (Stein & Weiss 1971). Let ƒ(x ) = ƒ0(|x |)P (x ) (with P (x ) in A k ), then whereHere J (n + 2k − 2)/2 denotes the Bessel function of the first kind with order (n + 2k − 2)/2. When k = 0 this gives a useful formula for the Fourier transform of a radial function (Grafakos 2004).Restriction problemsIn higher dimensions it becomes interesting to study restriction problems for the Fourier transform. The Fourier transform of an integrable function is continuous and the restriction of this function to any set is defined. But for a square-integrable function the Fourier transform could be a general class of square integrable functions. As such, the restriction of the Fourier transform of an L 2(R n ) function cannot be defined on sets of measure 0. It is still an active area of study to understand restriction problems in L p for 1 < p < 2. Surprisingly, it is possible in some cases to define the restriction of a Fourier transform to a set S , provided S has non-zero curvature. The case when S is the unit sphere in R n is of particular interest. In this case the Tomas-Stein restriction theorem states that the restriction of the Fourier transform to the unit sphere in R n is a bounded operator on L p provided 1 ≤ p ≤ (2n + 2) / (n + 3).One notable difference between the Fourier transform in 1 dimension versus higher dimensions concerns the partial sum operator. Consider an increasing collection of measurable sets E R indexed by R ∈ (0,∞): such as balls of radius R centered at the origin, or cubes of side 2R . For a given integrable function ƒ, consider the function ƒR defined by:Suppose in addition that ƒ is in L p (R n ). For n = 1 and 1 < p < ∞, if one takes E R = (−R, R), then ƒR converges to ƒ in L p as R tends to infinity, by the boundedness of the Hilbert transform. Naively one may hope the same holds true forn > 1. In the case that ERis taken to be a cube with side length R, then convergence still holds. Another naturalcandidate is the Euclidean ball ER= {ξ : |ξ| < R}. In order for this partial sum operator to converge, it is necessary that the multiplier for the unit ball be bounded in L p(R n). For n ≥ 2 it is a celebrated theorem of Charles Fefferman that the multiplier for the unit ball is never bounded unless p = 2 (Duoandikoetxea 2001). In fact, when p≠ 2, thisshows that not only may ƒR fail to converge to ƒ in L p, but for some functions ƒ ∈ L p(R n), ƒRis not even an element ofL p.GeneralizationsFourier transform on other function spacesIt is possible to extend the definition of the Fourier transform to other spaces of functions. Since compactly supported smooth functions are integrable and dense in L2(R), the Plancherel theorem allows us to extend the definition of the Fourier transform to general functions in L2(R) by continuity arguments. Further : L2(R) →L2(R) is a unitary operator (Stein & Weiss 1971, Thm. 2.3). Many of the properties remain the same for the Fourier transform. The Hausdorff–Young inequality can be used to extend the definition of the Fourier transform to include functions in L p(R) for 1 ≤ p≤ 2. Unfortunately, further extensions become more technical. The Fourier transform of functions in L p for the range 2 < p < ∞ requires the study of distributions (Katznelson 1976). In fact, it can be shown that there are functions in L p with p>2 so that the Fourier transform is not defined as a function (Stein & Weiss 1971).Fourier–Stieltjes transformThe Fourier transform of a finite Borel measure μ on R n is given by (Pinsky 2002):This transform continues to enjoy many of the properties of the Fourier transform of integrable functions. One notable difference is that the Riemann–Lebesgue lemma fails for measures (Katznelson 1976). In the case that dμ = ƒ(x) dx, then the formula above reduces to the usual definition for the Fourier transform of ƒ. In the case that μ is the probability distribution associated to a random variable X, the Fourier-Stieltjes transform is closely related to the characteristic function, but the typical conventions in probability theory take e ix·ξ instead of e−2πix·ξ (Pinsky 2002). In the case when the distribution has a probability density function this definition reduces to the Fourier transform applied to the probability density function, again with a different choice of constants.The Fourier transform may be used to give a characterization of continuous measures. Bochner's theorem characterizes which functions may arise as the Fourier–Stieltjes transform of a measure (Katznelson 1976). Furthermore, the Dirac delta function is not a function but it is a finite Borel measure. Its Fourier transform is a constant function (whose specific value depends upon the form of the Fourier transform used).Tempered distributionsThe Fourier transform maps the space of Schwartz functions to itself, and gives a homeomorphism of the space to itself (Stein & Weiss 1971). Because of this it is possible to define the Fourier transform of tempered distributions. These include all the integrable functions mentioned above, as well as well-behaved functions of polynomial growth and distributions of compact support, and have the added advantage that the Fourier transform of any tempered distribution is again a tempered distribution.The following two facts provide some motivation for the definition of the Fourier transform of a distribution. First let ƒ and g be integrable functions, and let and be their Fourier transforms respectively. Then the Fourier transform obeys the following multiplication formula (Stein & Weiss 1971),Secondly, every integrable function ƒ defines a distribution Tƒby the relationfor all Schwartz functions φ.In fact, given a distribution T, we define the Fourier transform by the relationfor all Schwartz functions φ.It follows thatDistributions can be differentiated and the above mentioned compatibility of the Fourier transform with differentiation and convolution remains true for tempered distributions.Locally compact abelian groupsThe Fourier transform may be generalized to any locally compact abelian group. A locally compact abelian group is an abelian group which is at the same time a locally compact Hausdorff topological space so that the group operations are continuous. If G is a locally compact abelian group, it has a translation invariant measure μ, called Haar measure. For a locally compact abelian group G it is possible to place a topology on the set of characters so that is also a locally compact abelian group. For a function ƒ in L1(G) it is possible to define the Fourier transform by (Katznelson 1976):Locally compact Hausdorff spaceThe Fourier transform may be generalized to any locally compact Hausdorff space, which recovers the topology but loses the group structure.Given a locally compact Hausdorff topological space X, the space A=C(X) of continuous complex-valued functions on X which vanish at infinity is in a natural way a commutative C*-algebra, via pointwise addition, multiplication, complex conjugation, and with norm as the uniform norm. Conversely, the characters of this algebra A, denoted are naturally a topological space, and can be identified with evaluation at a point of x, and one has an isometric isomorphism In the case where X=R is the real line, this is exactly the Fourier transform. Non-abelian groupsThe Fourier transform can also be defined for functions on a non-abelian group, provided that the group is compact. Unlike the Fourier transform on an abelian group, which is scalar-valued, the Fourier transform on a non-abelian group is operator-valued (Hewitt & Ross 1971, Chapter 8). The Fourier transform on compact groups is a major tool in representation theory (Knapp 2001) and non-commutative harmonic analysis.Let G be a compact Hausdorff topological group. Let Σ denote the collection of all isomorphism classes of finite-dimensional irreducible unitary representations, along with a definite choice of representation U(σ) on theHilbert space Hσ of finite dimension dσfor each σ ∈ Σ. If μ is a finite Borel measure on G, then the Fourier–Stieltjestransform of μ is the operator on Hσdefined bywhere is the complex-conjugate representation of U(σ) acting on Hσ. As in the abelian case, if μ is absolutely continuous with respect to the left-invariant probability measure λ on G, then it is represented asfor some ƒ ∈ L 1(λ). In this case, one identifies the Fourier transform of ƒ with the Fourier –Stieltjes transform of μ.The mapping defines an isomorphism between the Banach space M (G ) of finite Borel measures (see rca space) and a closed subspace of the Banach space C ∞(Σ) consisting of all sequences E = (E σ) indexed by Σ of (bounded) linear operators E σ : H σ → H σ for which the normis finite. The "convolution theorem" asserts that, furthermore, this isomorphism of Banach spaces is in fact an isomorphism of C * algebras into a subspace of C ∞(Σ), in which M (G ) is equipped with the product given by convolution of measures and C ∞(Σ) the product given by multiplication of operators in each index σ.The Peter-Weyl theorem holds, and a version of the Fourier inversion formula (Plancherel's theorem) follows: if ƒ ∈ L 2(G ), thenwhere the summation is understood as convergent in the L 2 sense.The generalization of the Fourier transform to the noncommutative situation has also in part contributed to the development of noncommutative geometry. In this context, a categorical generalization of the Fourier transform to noncommutative groups is Tannaka-Krein duality, which replaces the group of characters with the category of representations. However, this loses the connection with harmonic functions.AlternativesIn signal processing terms, a function (of time) is a representation of a signal with perfect time resolution, but no frequency information, while the Fourier transform has perfect frequency resolution, but no time information: the magnitude of the Fourier transform at a point is how much frequency content there is, but location is only given by phase (argument of the Fourier transform at a point), and standing waves are not localized in time – a sine wave continues out to infinity, without decaying. This limits the usefulness of the Fourier transform for analyzing signals that are localized in time, notably transients, or any signal of finite extent.As alternatives to the Fourier transform, in time-frequency analysis, one uses time-frequency transforms or time-frequency distributions to represent signals in a form that has some time information and some frequency information – by the uncertainty principle, there is a trade-off between these. These can be generalizations of the Fourier transform, such as the short-time Fourier transform or fractional Fourier transform, or can use different functions to represent signals, as in wavelet transforms and chirplet transforms, with the wavelet analog of the (continuous) Fourier transform being the continuous wavelet transform. (Boashash 2003). For a variable time and frequency resolution, the De Groot Fourier Transform can be considered.Applications Analysis of differential equationsFourier transforms and the closely related Laplace transforms are widely used in solving differential equations. The Fourier transform is compatible with differentiation in the following sense: if f (x ) is a differentiable function withFourier transform , then the Fourier transform of its derivative is given by . This can be used to transform differential equations into algebraic equations. Note that this technique only applies to problems whose domain is the whole set of real numbers. By extending the Fourier transform to functions of several variables partial differential equations with domain R n can also be translated into algebraic equations.。
的性质),这就使得不等式约束保证了可行域为凸集;对于等式约束 可以写成:
要使得满足条件的 组成的集合为凸集,就要求 既是一个凸函数,又是一个凹函数,这样 便只能是仿射函数了。
以上便是凸优化问题的一般形式。
常见的线性规划、二次规划、二次约束二次规划等优化问题都是凸优化问题。
无约束的优化,等式约束优化,不等式约束优化
说了凸优化问题之后,我们再从无约束的优化,等式约束优化和不等式约束优化全面了解优化的类型的求解:
无约束的优化问题:我们要求的是,其中,
图中的等高线表示 的值。
此时 在局部极小值点 处的梯度必然为0,比较容易理解。
这个梯度为零的条件是局部极小值点的必要条件。
这样,优化问题的求解变成了对该必要条件解方程组。
这个是很简单的一种优化,直接。
带等式约束的优化问题:
s.t. .
(m×1),c为原始问题的目标函数系数行向量(1×n)。
举个例子(以下来自课程PPT):
例子如上图,也就是说,LP1式和LP2式就是一个经典的对偶问题。
下面再说一些对偶问题的
这节算是SVM数学理论基础吧,如果觉得SVM太难理解,可以查看下这些知识!
终于写完,其实还有一些写的,比如Jensen不等式,但写不下了,下次吧!有什么建议意见,感谢提出,如果有用,点个赞呗~\(≧▽≦)/~。
隐格式近似不可压四面体4节点大变形单元摘要:在本文中,我们介绍了一种新的四面体有限元方法,称为隐格式近似不可压四面体4节点大变形单元。
该方法是一种高效的有限元方法,可以用于模拟各种流体力学问题。
本文将详细介绍该方法的原理、实现和应用,以及该方法的优缺点和未来发展方向。
关键词:四面体有限元,不可压缩流体,隐格式,大变形,高效 1. 引言流体力学是研究流体运动和力学行为的学科。
在工程和科学领域中,流体力学已经成为一个重要的研究领域,广泛应用于各种领域,如航空航天、汽车、船舶、能源、生物医学、环境等。
在流体力学的数值模拟中,有限元方法是一种常用的计算方法。
在有限元方法中,四面体有限元是一种常用的方法,它可以用于模拟各种流体力学问题。
在四面体有限元中,不可压缩流体的模拟是一个重要的问题。
不可压缩流体是一种特殊的流体,其密度在流动过程中保持不变。
在不可压缩流体的模拟中,需要考虑流体的体积不变性,即流体的体积在流动过程中保持不变。
因此,需要使用一种特殊的有限元方法来模拟不可压缩流体。
在本文中,我们介绍了一种新的四面体有限元方法,称为隐格式近似不可压四面体4节点大变形单元。
该方法是一种高效的有限元方法,可以用于模拟各种流体力学问题。
本文将详细介绍该方法的原理、实现和应用,以及该方法的优缺点和未来发展方向。
2. 隐格式近似不可压四面体4节点大变形单元的原理2.1 隐格式隐格式是一种数值方法,可以用于求解偏微分方程。
在隐格式中,未知量的值在下一个时间步长中被计算出来。
与显式格式不同,隐式格式的计算需要解决非线性方程组。
由于隐式格式具有稳定性和精度的优点,因此在求解流体力学问题中得到了广泛的应用。
2.2 不可压四面体4节点大变形单元不可压四面体4节点大变形单元是一种四面体有限元方法,用于模拟不可压缩流体。
该方法是一种高效的有限元方法,可以模拟各种流体力学问题。
在不可压四面体4节点大变形单元中,流体的体积不变性是通过使用拉格朗日乘子法来实现的。
基于三维对流扩散方程四阶紧致差分格式的预条件迭代法袁冬芳;庄昕;葛永斌【摘要】针对三维对流扩散方程,采用四阶紧致差分格式和预条件迭代法进行数值实验,利用带填补数的不完全LU分解(ILUT(r,s))做预处理器,FGMRES(20)做迭代加速器对离散所得方程组进行求解.验证了四阶紧致差分格式的计算精度,通过比较预条件迭代法与高斯-赛德尔迭代法以及超松弛迭代法的迭代次数和CPU时间,充分显示了预条件迭代法的高速求解特性.%The fourth-order compact difference scheme and preconditioned iterative methods are employed to conduct numerical study on three dimensional convection-diffusion equation. The incomplete LU decomposition preconditioner with fill-ins(ILUT(τ,s)) and the FGMRES(20) iterative accelerators are applied to solve the discrete linear equations. The accuracy of the fourth-order compact difference scheme is verified, and the advantages of preconditioned iterative methods are sufficiently demonstrated by comparing the iteration numbers and CPU time with the conventional Gauss-Seidel and successive over relaxation methods.【期刊名称】《宁夏大学学报(自然科学版)》【年(卷),期】2012(033)001【总页数】5页(P1-5)【关键词】三维对流扩散方程;四阶紧致格式;迭代法;预条件技术;不完全LU分解【作者】袁冬芳;庄昕;葛永斌【作者单位】宁夏大学应用数学与力学研究所,宁夏银川 750021;宁夏大学应用数学与力学研究所,宁夏银川 750021;宁夏大学应用数学与力学研究所,宁夏银川750021【正文语种】中文【中图分类】O241.82对于三维问题的数值模拟,由于对计算机存储空间和算法的求解效率都有更高的要求,因此受到了研究者更多的关注.由于传统的计算格式精度低,要想得到精确的计算结果,需要将网格剖分得很细,从而离散所得线性方程组的阶数也较高,以致于在现代计算机上仍然难以实现,甚至是不可能的.解决这一问题的方法之一是利用高精度或谱方法,它们通常可采用较粗的网格离散得到较高的精度,由于所得线性方程组的阶数相对较低,因此可以大大减少计算量,节约计算时间.为此,本文考虑三维对流扩散方程的狄利克雷边值问题:其中∂Ω为Ω的边界.这里假定Ω是R上的单位立方体区域,未知函数u(x,y,z)、对流项系数p(x,y,z)、q(x,y,z)及r(x,y,z)和非齐次项f(x,y,z)具有充分的光滑性.方程(1)是计算流体动力学领域重要的模型方程之一,它可以描述物质、能量和涡量等的输运规律.当对流项系数较大时,方程(1)被认为是对流占优的,否则是扩散占优的.对二维的情形,文献[1—2]已提出了对流扩散方程和Navier-Stokes方程组的一些四阶紧致格式.这些格式有很好的数值稳定性,并且能获得高精度的近似解.文献[3—4]利用多重网格方法求解四阶格式,得到了很好的数值结果.对于扩散占优问题,利用多重网格方法求解,四阶紧致格式比二阶中心差分格式更高效[5].文献[6]构造了非均匀网格上求解定常对流扩散方程的高精度紧致差分格式,数值验证了格式的高精度和高分辨率的优点.为了得到所需精度的计算结果,四阶紧致格式比中心差分格式更省时间,而且只占用较小的内存.对三维对流扩散方程(1),最常用的格式是七点中心差分格式和迎风格式.格式通常采用传统的迭代法进行求解,如Jacobi和Gauss-Seidel迭代法等.然而求解对流占优问题时,传统迭代法可能不收敛.对一阶迎风格式,传统迭代法尽管收敛,但得到的解精度太低.Greif和Varah对三维常系数对流扩散方程运用循环压缩技术预处理离散所得线性方程组,且压缩后的方程组比原始方程组有更好的代数性质[7].文献[8]提出了三维对流扩散方程的四阶19点紧致差分格式,结合传统迭代法得到了稳定、高精度的数值解.本文将采用此格式,结合预处理的FGMRES (20)加速技术对方程(1)进行求解.1 预条件迭代法早期求解离散的对流扩散方程的方法多是直接法,如典型的高斯消去法等.然而对于二维以上(包括二维)及扩散占优问题,已经证明了一些迭代法比直接法更有效,而最为人们熟知的迭代法是松弛型方法,典型的有Jacobi,Gauss-Seidel和SOR方法.其性质高度取决于系数矩阵的对角占优性、离散参数和边界条件,并且大多数用于求解高雷诺数(Re)对流扩散方程的松弛型方法都会遇到收敛性问题.对于SOR方法,最佳松弛因子的选择仍然是一个开放的问题.由于这些原因,近年来迭代法聚焦于探索无参数的方法,如Krylov子空间方法和多重网格方法.本文将借助预条件Krylov子空间方法求解相应的线性方程组.FGMRES是求解非对称线性方程组的一种广义极小残差方法.然而,对于求解高Re对流扩散方程,如果没有合适的预处理器,其收敛会变得异常缓慢.因此,采用FGMRES[9]迭代法和带双阈值的ILU分解作预处理,即ILUT(τ,s)[10].一次预条件计算由一些辅助的过程组成,用于求解近似方程组的系数矩阵,它与迭代加速器FGMRES结合起来可以加速收敛.不完全LU分解(ILU)被认为是最好的预处理器之一,且适合于许多适度的问题,当允许更多的填补数时标准的ILU分解的有效性和稳健性能够得到提高,但成本会更大.Saad运用双截断舍弃策略发展了ILUT预处理器[10].填补数的数量由开始舍弃公差τ和填补数s两个参数控制,所有小于τ的输入值乘以当前行非零元素的绝对值被舍弃.此外,在L和U分解的每一行仅有最大的s被保留.通常运用这个预处理器验证时置τ为固定值,典型的是τ=10-4,此时可改变s得到一个有合适数量填补数的预处理器[11].用这种方法,存储器的使用量可以提前预测,从而更容易平衡存储成本和计算时间.文献[12]运用FGMRES(20)做加速器,ILUT(τ,s)做预处理器求解了二维对流扩散方程,显示出此法在求解精度及处理大Re时的优越性.2 差分格式和迭代算法本文采用如下19点差分格式:式中系数表示如下:其中,h表示均匀网格步长,u0表示函数u(x,y,z)在中心网格点(i,j,k)处的近似值,ul,l=1,2,…,18表示18个点处的近似值,pl,ql,rl,l=0,1,…,6具有类似的意义.FGMRES迭代算法:1)计算r0=b-Ax0,β=r02,v1=v0/β;2)当j=1,…,m时,执行zj∶=M-1jvj,ω∶=Azj;3)当i=1,…,j时,执行hi,j∶=(ω,vi),ω∶=ω-hi,jvi;4)计算hj+1,j=ω2和vj+1=ω/hj+1,j;5)定义Zm∶=[z1,…,zm];6)计算xm=x0+Zmym,其中7)如果满足条件,则停止,否则置x0=xm,转第2步.3 数值结果对方程(1)应用了2个数值算例,所有问题均定义在单位立方体区域Ω=(0,1)×(0,1)×(0,1)内,右端函数f(x,y,z)和狄利克雷边界条件满足给定的精确解u(x,y,z).采用x,y和z方向使用等距网格步长h离散的四阶紧致差分格式.Re由1变化到106,对于Re>106,方程(1)没有过多的物理意义.迭代求解采用预条件FGMRES方法,在此用FGMRES(20)做加速器,ILUT(τ,s)做预处理器,初始猜测u(x,y,z)=0.编写程序采用Fortran 77语言,计算在64位双精度机上运行.问题1其中a=35/180π,b=45/180π,右端函数f(x,y,z)由以下精确解代入方程(1)给出:问题2右端函数f(x,y,z)由以下精确解代入方程(1)给出:首先验证四阶紧致差分格式的计算精度,在ILUT中选择τ和s使计算完全达到收敛.在离散网格点上考察最大误差e(精确解与数值解之差的最大绝对值)及经网格步长加密后该离散格式的收敛阶,这里收敛阶定义为Order=ln(eh=1/32/eh=1/64)/ln 2.表1给出了在不同网格步长h和Re下最大误差和收敛阶的结果,可以看到随着Re的增大,离散格式的精度在降低.在执行中,舍弃公差采用固定值τ=10-4,每一次LU分解中填补数为s=5,如果在2 000次迭代内没有达到收敛,s每次增加5,直到收敛.为了比较预条件方法(PRE)与传统迭代法(Gauss-Seidel和SOR方法)在用于四阶紧致差分格式求解时的收敛效率,表2和表3分别给出了本文2个算例在32等分网格下运用传统迭代法和预条件方法所需迭代次数(ITE)和CPU运行时间,对于SOR方法,尽量选择最佳松弛因子(RF)下的结果.可以看到,松弛因子的选择可以改变收敛效率,但选择最佳松弛因子是一个很麻烦的问题,而预条件迭代法比传统迭代法有明显的优势,尤其对于高雷诺数问题,预条件方法相对于传统迭代法极大地提高了求解效率.对于预条件迭代法,由表2至表3容易发现,Re越大通常需要越多的迭代次数.当网格步长很小时,即使是在扩散占优的情况下,迭代次数也会增多,这表明预条件FGMRES方法的收敛性是依赖于网格步长的.对于步长较小的情况可以增加填补数以减少迭代次数,从计算有效性和存储空间方面考虑是合适的.而应用多层结构构造ILU预处理器可以使格式的收敛阶不依赖于网格步长.图1至图2分别给出了问题1和问题2在Re=103,105,h=1/32时预条件迭代法和传统迭代法的收敛效率曲线.从图中可见,在Re一定时四阶紧致格式下基于FGMRES和ILU分解的预条件迭代法比传统迭代法的收敛速度快得多.即使在对流占优的情况下,预条件迭代法的收敛速度也有可能超过传统迭代法在低雷诺数时的收敛速度.这样就大大减少了工作量,节约了计算成本,因此,预条件迭代法结合高精度紧致差分格式无疑是一种高效的求解偏微分方程的数值方法.表1 不同网格等分数下的最大误差和收敛精度比较Re 问题1问题2 Order 1 9.45×10-7 5.91×10-8 4.00 1.01×10-5 6.31×10-7 e1/32 e1/64Ordere1/32 e1/64 1.85 4.00 10 3.59×10-6 2.24×10-7 4.00 1.95×10-51.22×10-6 4.00 102 1.03×10-4 6.45×10-6 4.002.72×10-4 1.72×10-53.98 103 1.15×10-3 8.36×10-5 3.78 2.60×10-3 1.92×10-4 3.76 104 3.02×10-3 5.67×10-4 2.41 9.05×10-3 1.30×10-3 2.80 105 3.12×10-3 8.52×10-4 1.87 1.11×10-2 2.81×10-3 1.98 106 3.13×10-3 8.57×10-4 1.87 1.14×10-2 3.16×10-3表2 问题1在32等分网格下预条件迭代法与传统迭代法的迭代次数和CPU运行时间比较Re G-S SOR PRE ITE CPU RF ITE CPU ITE CPU 4 359 120.00 1.7 954 23.39 78 2.89 1 1 580 42.17 1.8 124 3.44 80 2.86 10 910 23.09 1.8 102 2.88 88 3.03 102 58 1.88 1.2 19 0.84 30 1.63 103 583 15.22 1.5 207 5.42 33 1.84 104 4 055 103.22 1.7 909 22.28 75 2.83 105 4 355 111.36 1.7 953 22.36 77 2.84 106表3 问题2在32等分网格下预条件迭代法与传统迭代法的迭代次数和CPU运行时间比较Re G-S SOR PRE ITE CPU RF ITE CPU ITE CPU 1 1 279 34.53 1.8 124 3.44 91 3.08 10 1 112 33.25 1.8 133 3.64 90 3.03 102 393 10.03 1.6 111 3.13 94 3.14 103 225 5.95 1.4 122 3.38 54 2.36 104 1 805 44.70 1.5 678 16.52 83 3.03 105 2 553 73.69 1.4 1 144 27.95 101 3.44 1062 509 61.97 1.3 1 445 35.33 101 3.45图1 问题1在32等分网格下不同迭代法的收敛效率比较图2 问题2在32等分网格下不同迭代法的收敛效率比较4 结论本文研究了三维对流扩散方程的四阶紧致差分格式的计算精度,利用带填补数的不完全LU分解(ILUT(τ,s))做预处理器,FGMRES(20)做迭代加速器对离散所得线性方程组进行求解.数值结果显示,随着网格步长的减小,即使是扩散占优的问题,其迭代次数仍然会增加,这表明预条件方法的收敛性是依赖于网格步长的.但是可以通过增加填补数和改变舍弃公差来减少迭代次数,降低成本.预条件迭代法比传统迭代法有明显的优势,尤其对于高雷诺数问题,预条件方法相对于传统迭代法极大地提高了求解效率.参考文献:[1] LI Ming,TANG Tao,FORNBERG B.A compact fourth-order finite difference scheme for the steady incompressible Navier-Stokes equations [J].Int J Numer Meth Fluids,1995,20(10):1137-1151.[2] SPOTZ W F,CAREY G F.High-order compact scheme for the steady stream-function vorticity equations[J].Int J Numer Methods Eng,1995,38(20):3497-3512.[3] ZHANG Jun.On convergence of iterative methods for a fourth-order discretization schemes[J].Appl Math Lett,1997,10(2):49-55. [4] ZHANG Jun.Accelerated multigrid high accuracy solution of the convection-diffusion equation with high Reynolds number[J].Number Meth Partial Differential Equation,1997,13(1):77-92.[5] GUPTA M M,KOUATCHOU J,ZHANG parison of second-and fourth-order discretizations for multigrid poisson solvers[J].J Comput Phys,1997,132(2):226-232.[6]田芳,田振夫.定常对流扩散反应方程非均匀网格上高精度紧致差分格式[J].工程数学学报,2009,26(2):219-225.[7] GREIF C,VARAH J.Iterative solution of cyclically reduced systems arising from discretization of the three dimensional convection-diffusion equation[J].SIAM J Sci Comput,1998,19(6):1918-1940[8] ZHANG Jun.An explicit fourth-order compact finite difference scheme for three-dimensional convectiondiffusion equation[J].Communications in Numerical Methods in Engineering,1998,14(3):209-218.[9] SAAD Y.A flexible inner-outer preconditioned GMRES algorithm [J].SIAM J Sci Stat Comput,1993,14(2):461-469.[10] SAAD Y.ILUT:a dual threshold incomplete LU factorization [J].Number Linear Algebra Appl,1994,1(4):387-402.[11] CHAPMAN A,SAAD Y,WIGTON L.High-order ILU preconditioners for CFD problems[J].Int J Numer Meth Fluids,2000,33(6):768-788.[12] ZHANG Jun.Preconditioned iterative methods and finite difference schemes for convection-diffusion[J].Appl Math Comput,2000,109(1):11-30.。
fourier-motzkin elimination原理-回复Fourier-Motzkin elimination(傅立叶-莫扎金消元)是一种用于解决线性不等式组的算法。
它的主要思想是通过一系列的消元操作,将原始的不等式组转化为等价但更简单的形式。
这一过程继续进行直到求解出唯一解或证明无解。
傅立叶-莫扎金消元的过程可以分为以下几个步骤:1. 建立不等式组:首先,我们将给定的线性不等式组写成标准形式,即形如a1x1 + a2x2 + ... + anx <= b的形式。
其中,x1, x2, ..., xn是变量,a1, a2, ..., an是系数,b是常数。
对于不等式组的每个不等式,我们将其转化为标准形式。
2. 选择一对不等式:在消元过程中,我们需要选择两个不等式来操作。
这两个不等式可以是原始的不等式组中的任意两个不等式。
3. 消去一个变量:选择的两个不等式中,若一个包含了待消去的变量(假设为x1),而另一个不包含x1,则我们可以通过对两个不等式进行相应的运算,将其中一个不等式中的x1消去。
这一步我们可以通过将两个不等式分别乘以适当的系数并相减来实现。
4. 生成新的不等式:消去x1后,我们将得到一个新的不等式,它包含了原始不等式组中的其他变量,但没有x1。
这个新的不等式称为生成不等式。
5. 更新不等式组:我们将生成的不等式添加到不等式组中,同时从原始不等式组中移除已消去的两个不等式。
这样,我们得到一个新的不等式组,其中的不等式数量比原始的不等式组要少。
6. 重复消元过程:将上述步骤循环进行,直到无法再选择两个不等式进行消元为止。
这时,我们得到了一个等价的简化不等式组。
7. 解决不等式组:最后,我们需要判断简化的不等式组是否有解。
如果不存在不一致的不等式,即不等式组中没有不等式同时满足和不满足某个给定的点,则该不等式组是可满足的。
傅立叶-莫扎金消元的关键在于选择合适的不等式进行消元,并使用适当的运算将变量消去。
原始图与三次图的可圈度(英文)
宝升;王海荣
【期刊名称】《数学研究》
【年(卷),期】1996(000)002
【摘要】无
【总页数】1页(P5)
【作者】宝升;王海荣
【作者单位】无
【正文语种】中文
【相关文献】
1.共点双圈并图度距离的最值及极图 [J], 郭海丽;景翔宇
2.三次图的完全扩容图的连通度 [J], 萨如拉;阿勇嘎
3.给定度序列的三圈图的极值图 [J], 杨杨;邵燕灵
4.三圈图和四圈图的最大无符号拉普拉斯分离度 [J], 剧宏娟;雷英杰
5.图的圈边连通度和圈弧连通度 [J], 朱虹州;孟吉翔
因版权原因,仅展示原文概要,查看原文内容请购买。
泛函分析试题及答案### 泛函分析试题及答案#### 一、选择题(每题5分,共20分)1. 泛函分析中,下列哪个概念不是线性空间的概念?A. 线性组合B. 线性映射C. 线性泛函D. 非线性变换答案:D2. 在Banach空间中,以下哪个条件不是完备性的必要条件?A. 空间中的每个Cauchy序列都收敛于空间内B. 空间是完备的C. 空间中存在一个完备的度量D. 空间中的每个有界序列都有一个收敛的子序列答案:C3. 泛函分析中,Hilbert空间的完备性是相对于哪种范数?A. 欧几里得范数B. 赋范范数C. 内积诱导的范数D. 以上都是答案:C4. 下列哪个定理不是泛函分析中的基本定理?A. Hahn-Banach定理B. Riesz表示定理C. 闭图定理D. 微积分基本定理答案:D#### 二、填空题(每题5分,共20分)1. 线性泛函在定义域上的连续性等价于其在定义域的原点处的连续性,这是基于泛函分析中的________定理。
答案:Hahn-Banach2. 在Hilbert空间中,任意两个向量的内积满足平行四边形法则,即对于任意向量\( u \)和\( v \),有\( \|u+v\|^2 + \|u-v\|^2 =2(\|u\|^2 + \|v\|^2) \),这是基于________定理。
答案:平行四边形3. 线性算子的谱半径公式为\( r(T) = \lim_{n \to \infty}\|T^n\|^{1/n} \),其中\( T \)是Banach空间上的有界线性算子,这是基于________定理。
答案:Gelfand公式4. 在泛函分析中,紧算子的定义是:如果对于空间中的每一个有界序列,其在算子下的像序列都有一个收敛的子序列,则称该算子为紧算子,这是基于________定理。
答案:Arzelà-Ascoli#### 三、简答题(每题15分,共30分)1. 简述Riesz表示定理的内容及其在泛函分析中的意义。
凸优化理论与应用_逼近与拟合引言:在实际的科学与工程问题中,我们常常需要通过已知的数据点来建立一个数学模型来描述现象并进行预测与分析。
逼近与拟合就是解决这一问题的方法之一,通过寻找合适的函数形式来近似地表示已知的数据点,从而实现对未知数据点的预测与分析。
凸优化理论提供了一种有效的数学工具,可以帮助我们解决逼近与拟合的问题。
一、凸优化理论的基础:凸优化理论是一种研究目标函数为凸函数,约束条件为凸集的优化问题的数学理论。
在逼近与拟合的问题中,我们通常希望找到一个凸函数来近似地描述已知的数据点。
凸函数具有很好的性质,在优化过程中可以保证得到全局最优解,而不会陷入局部最优解。
二、逼近与拟合方法:1.线性回归:线性回归是一种广泛应用于逼近与拟合问题中的方法。
通过寻找一条直线来近似地表示已知的数据点集合,从而实现对未知数据点的预测与分析。
在线性回归中,目标函数是一个关于线性参数的凸函数,因此可以应用凸优化理论来解决这个问题。
2.多项式拟合:多项式拟合是一种将数据点通过多项式函数进行逼近与拟合的方法。
通过选取合适的多项式次数,可以实现对不同复杂度的数据进行拟合。
在多项式拟合中,目标函数是一个关于多项式系数的凸函数,因此可以利用凸优化理论来解决这个问题。
3.样条插值:样条插值是一种通过多个分段多项式来逼近与拟合数据点的方法。
通过选取合适的样条节点和插值条件,可以得到一个光滑的插值曲线。
在样条插值中,目标函数是一个关于样条插值系数的凸函数,因此可以使用凸优化理论来解决这个问题。
三、凸优化在逼近与拟合中的应用:1.数据拟合:在数据拟合问题中,我们通常需要找到一个函数来最好地逼近已知的数据点集合。
通过应用凸优化理论,可以确保得到全局最优的逼近函数,以最好地匹配数据点。
2.数据插值:在数据插值问题中,我们常常需要通过已知的数据点来构建一个函数,使得它在这些数据点上具有特定的性质。
凸优化理论可以帮助我们设计出一个光滑的插值函数,以最好地满足插值条件。
Allowable stress:许用应力Allowable load:许用荷载Buckling:失稳Flexural rigidity:弯曲刚度,bending 弯曲,normal stress in bending 弯曲正应力Shear stress in bending 弯曲切应力Bending moment :弯曲Bending moment diagram:弯矩图Critical stress :临界应力,critical load :临界荷载Eccentric tension 偏心拉伸Limit load:极限荷载,ultimate stress 极限应力,ultimate stress in tension 抗拉强度Normal Principal stress 主应力,principal stress trajectory 主应力迹线Theorem of conjugate shearing stress切应力互等定律,reciprocal-displacement theorem位移互等定律Torsion :扭转弹性力学elasticity弹性理论theory of elasticity均匀应力状态homogeneous state of stress应力不变量stress invariant应变不变量strain invariant应变椭球strain ellipsoid均匀应变状态homogeneous state of strain应变协调方程equation of strain compatibility 拉梅常量Lame constants各向同性弹性isotropic elasticity旋转圆盘rotating circular disk楔wedge开尔文问题Kelvin problem 布西内斯克问题Boussinesq problem艾里应力函数Airy stress function克罗索夫--穆斯赫利什维利法Kolosoff- Muskhelishvili method基尔霍夫假设Kirchhoff hypothesis板Plate矩形板Rectangular plate圆板Circular plate环板Annular plate波纹板Corrugated plate加劲板Stiffened plate,reinforced Plate中厚板Plate of moderate thickness弯[曲]应力函数Stress function of bending壳Shell扁壳Shallow shell旋转壳Revolutionary shell球壳Spherical shell[圆]柱壳Cylindrical shell锥壳Conical shell环壳Toroidal shell封闭壳Closed shell波纹壳Corrugated shell扭[转]应力函数Stress function of torsion翘曲函数Warping function半逆解法semi-inverse method瑞利--里茨法Rayleigh-Ritz method松弛法Relaxation method莱维法Levy method松弛Relaxation量纲分析Dimensional analysis自相似[性] self-similarity影响面Influence surface接触应力Contact stress赫兹理论Hertz theory协调接触Conforming contact滑动接触Sliding contact滚动接触Rolling contact压入Indentation各向异性弹性Anisotropic elasticity颗粒材料Granular material散体力学Mechanics of granular media 热弹性Thermoelasticity超弹性Hyperelasticity粘弹性Viscoelasticity对应原理Correspondence principle褶皱Wrinkle塑性全量理论Total theory of plasticity 滑动Sliding微滑Microslip粗糙度Roughness非线性弹性Nonlinear elasticity大挠度Large deflection突弹跳变snap-through有限变形Finite deformation格林应变Green strain阿尔曼西应变Almansi strain弹性动力学Dynamic elasticity运动方程Equation of motion准静态的Quasi-static气动弹性Aeroelasticity水弹性Hydroelasticity颤振Flutter弹性波Elastic wave简单波Simple wave 柱面波Cylindrical wave水平剪切波Horizontal shear wave竖直剪切波Vertical shear wave体波body wave无旋波Irrotational wave畸变波Distortion wave膨胀波Dilatation wave瑞利波Rayleigh wave等容波Equivoluminal wave勒夫波Love wave界面波Interfacial wave边缘效应edge effect塑性力学Plasticity可成形性Formability金属成形Metal forming耐撞性Crashworthiness结构抗撞毁性Structural crashworthiness拉拔Drawing破坏机构Collapse mechanism回弹Springback挤压Extrusion冲压Stamping穿透Perforation层裂Spalling塑性理论Theory of plasticity安定[性]理论Shake-down theory运动安定定理kinematic shake-down theorem 静力安定定理Static shake-down theorem率相关理论rate dependent theorem载荷因子load factor加载准则Loading criterion加载函数Loading function加载面Loading surface塑性加载Plastic loading塑性加载波Plastic loading wave简单加载Simple loading比例加载Proportional loading卸载Unloading卸载波Unloading wave冲击载荷Impulsive load阶跃载荷step load脉冲载荷pulse load极限载荷limit load中性变载nentral loading拉抻失稳instability in tension加速度波acceleration wave本构方程constitutive equation完全解complete solution名义应力nominal stress过应力over-stress真应力true stress等效应力equivalent stress流动应力flow stress应力间断stress discontinuity应力空间stress space主应力空间principal stress space静水应力状态hydrostatic state of stress 对数应变logarithmic strain工程应变engineering strain等效应变equivalent strain应变局部化strain localization应变率strain rate应变率敏感性strain rate sensitivity应变空间strain space 有限应变finite strain塑性应变增量plastic strain increment累积塑性应变accumulated plastic strain永久变形permanent deformation内变量internal variable应变软化strain-softening理想刚塑性材料rigid-perfectly plasticMaterial刚塑性材料rigid-plastic material理想塑性材料perfectl plastic material材料稳定性stability of material应变偏张量deviatoric tensor of strain应力偏张量deviatori tensor of stress应变球张量spherical tensor of strain应力球张量spherical tensor of stress路径相关性path-dependency线性强化linear strain-hardening应变强化strain-hardening随动强化kinematic hardening各向同性强化isotropic hardening强化模量strain-hardening modulus幂强化power hardening塑性极限弯矩plastic limit bending Moment塑性极限扭矩plastic limit torque弹塑性弯曲elastic-plastic bending弹塑性交界面elastic-plastic interface弹塑性扭转elastic-plastic torsion粘塑性Viscoplasticity非弹性Inelasticity理想弹塑性材料elastic-perfectly plastic Material极限分析limit analysis极限设计limit design极限面limit surface上限定理upper bound theorem上屈服点upper yield point下限定理lower bound theorem下屈服点lower yield point界限定理bound theorem初始屈服面initial yield surface后继屈服面subsequent yield surface屈服面[的]外凸性convexity of yield surface 截面形状因子shape factor of cross-section沙堆比拟sand heap analogy屈服Yield屈服条件yield condition屈服准则yield criterion屈服函数yield function屈服面yield surface塑性势plastic potential能量吸收装置energy absorbing device能量耗散率energy absorbing device塑性动力学dynamic plasticity塑性动力屈曲dynamic plastic buckling塑性动力响应dynamic plastic response塑性波plastic wave运动容许场kinematically admissible Field静力容许场statically admissible Field流动法则flow rule速度间断velocity discontinuity滑移线slip-lines滑移线场slip-lines field移行塑性铰travelling plastic hinge塑性增量理论incremental theory of Plasticity 米泽斯屈服准则Mises yield criterion普朗特--罗伊斯关系prandtl- Reuss relation 特雷斯卡屈服准则Tresca yield criterion洛德应力参数Lode stress parameter莱维--米泽斯关系Levy-Mises relation亨基应力方程Hencky stress equation赫艾--韦斯特加德应力空间Haigh-Westergaard stress space洛德应变参数Lode strain parameter德鲁克公设Drucker postulate盖林格速度方程Geiringer velocity Equation 结构力学structural mechanics结构分析structural analysis结构动力学structural dynamics拱Arch三铰拱three-hinged arch抛物线拱parabolic arch圆拱circular arch穹顶Dome空间结构space structure空间桁架space truss雪载[荷] snow load风载[荷] wind load土压力earth pressure地震载荷earthquake loading弹簧支座spring support支座位移support displacement支座沉降support settlement超静定次数degree of indeterminacy机动分析kinematic analysis结点法method of joints截面法method of sections结点力joint forces共轭位移conjugate displacement影响线influence line三弯矩方程three-moment equation单位虚力unit virtual force刚度系数stiffness coefficient柔度系数flexibility coefficient力矩分配moment distribution力矩分配法moment distribution method力矩再分配moment redistribution分配系数distribution factor矩阵位移法matri displacement method单元刚度矩阵element stiffness matrix单元应变矩阵element strain matrix总体坐标global coordinates贝蒂定理Betti theorem高斯--若尔当消去法Gauss-Jordan elimination Method屈曲模态buckling mode复合材料力学mechanics一.综合类1.geotechnical engineering岩土工程2.foundation engineering基础工程3.soil, earth土4.soil mechanics土力学cyclic loading周期荷载unloading卸载reloading再加载viscoelastic foundation粘弹性地基viscous damping粘滞阻尼shear modulus剪切模量5.soil dynamics土动力学6.stress path应力路径7.numerical geotechanics 数值岩土力学二. 土的分类1.residual soil残积土groundwater level地下水位2.groundwater 地下水groundwater table地下水位3.clay minerals粘土矿物4.secondary minerals次生矿物ndslides滑坡6.bore hole columnar section钻孔柱状图7.engineering geologic investigation工程地质勘察8.boulder漂石9.cobble卵石10.gravel砂石11.gravelly sand砾砂12.coarse sand粗砂13.medium sand中砂14.fine sand细砂15.silty sand粉土16.clayey soil粘性土17.clay粘土18.silty clay粉质粘土19.silt粉土20.sandy silt砂质粉土21.clayey silt粘质粉土22.saturated soil饱和土23.unsaturated soil非饱和土24.fill (soil)填土25.overconsolidated soil超固结土26.normally consolidated soil正常固结土27.underconsolidated soil欠固结土28.zonal soil区域性土29.soft clay软粘土30.expansive (swelling) soil膨胀土31.peat泥炭32.loess黄土33.frozen soil冻土三. 土的基本物理力学性质 compression index2.cu undrained shear strength3.cu/p0 ratio of undrained strength cu to effective overburden stress p0(cu/p0)NC ,(cu/p0)oc subscripts NC and OC designated normally consolidated and overconsolidated, respectively4.cvane cohesive strength from vane test5.e0 natural void ratio6.Ip plasticity index7.K0 coefficient of “at-rest ”pressure ,for total stressesσ1 andσ28.K0‟ domain fo r effective stressesσ1 … andσ2‟9.K0n K0 for normally consolidated state10.K0u K0 coefficient under rapid continuous loading ,simulating instantaneous loading or an undrained condition11.K0d K0 coefficient under cyclic loading(frequency less than 1Hz),as a pseudo- dynamic test for K0 coefficient12.kh ,kv permeability in horizontal and vertical directions, respectively13.N blow count, standard penetration test14.OCR over-consolidation ratio 15.pc preconsolidation pressure ,from oedemeter test16.p0 effective overburden pressure17.p s specific cone penetration resistance, from static cone test18.qu unconfined compressive strength19.U, Um degree of consolidation ,subscript m denotes mean value of a specimen20.u ,ub ,um pore (water) pressure, subscriptsb and m denote bottom of specimen and mean value, respectively21.w0 wL wp natural water content, liquid and plastic limits, respectively22.σ1,σ2principal stresses, σ1 … andσ2‟ denote effective principal stresses23.Atterberg limits阿太堡界限24.degree of saturation饱和度25.dry unit weight干重度26.moist unit weight湿重度27.saturated unit weight饱和重度28.effective unit weight有效重度29.density密度pactness密实度31.maximum dry density最大干密度32.optimum water content最优含水量33.three phase diagram三相图34.tri-phase soil三相土35.soil fraction粒组36.sieve analysis筛分37.hydrometer analysis比重计分析38.uniformity coefficient不均匀系数39.coefficient of gradation级配系数40.fine-grained soil(silty and clayey)细粒土41.coarse- grained soil(gravelly and sandy)粗粒土42.Unified soil classification system土的统一分类系统43.ASCE=American Society of Civil Engineer 美国土木工程师学会44.AASHTO= American Association State Highway Officials美国州公路官员协会45.ISSMGE=International Society for Soil Mechanics and Geotechnical Engineering 国际土力学与岩土工程学会四. 渗透性和渗流1.Darcy‟s law达西定律2.piping管涌3.flowing soil流土4.sand boiling砂沸5.flow net流网6.seepage渗透(流)7.leakage渗流8.seepage pressure渗透压力9.permeability渗透性10.seepage force渗透力11.hydraulic gradient水力梯度12.coefficient of permeability渗透系数五. 地基应力和变形1.soft soil软土2.(negative) skin friction of driven pile打入桩(负)摩阻力3.effective stress有效应力4.total stress总应力5.field vane shear strength十字板抗剪强度6.low activity低活性7.sensitivity灵敏度8.triaxial test三轴试验9.foundation design基础设计10.recompaction再压缩11.bearing capacity承载力12.soil mass土体13.contact stress (pressure)接触应力(压力)14.concentrated load集中荷载15.a semi-infinite elastic solid半无限弹性体16.homogeneous均质17.isotropic各向同性18.strip footing条基19.square spread footing方形独立基础20.underlying soil (stratum ,strata)下卧层(土)21.dead load =sustained load恒载持续荷载22.live load活载23.short。
SierPinski四面体的调和扩张和法向导数冯志刚;宋艳丽【摘要】构造一个Sierpinski四面体(简记为ST),并分析该四面体结构的后置临界自相似性.在此基础上,研究ST上函数的调和扩张问题,给出调和扩张的方法.对该四面体边界点处的连续函数,尤其是调和函数,讨论它们的法向导数问题,给出法向导数的具体计算方法.%A Sierpinski tetrahedron (ST for short) was constructed and its structure was analyzed that it was a post critically finite self-similar structure. Base on it, the problem of harmonic extension of a function on the ST was investigated and the method was given for getting the harmonic extension. Finally, on the boundary points of the ST, the normal derivative of continuous functions, especially of the harmonic functions was discussed and a specific computation method for the normal derivative was given.【期刊名称】《兰州理工大学学报》【年(卷),期】2011(037)003【总页数】5页(P159-163)【关键词】Sierpinski四面体;调和扩张;法向导数【作者】冯志刚;宋艳丽【作者单位】江苏大学理学院,江苏镇江,212013;江苏大学理学院,江苏镇江,212013【正文语种】中文【中图分类】O174分形分析研究的一个重要问题是把分形的一些具有良好结构的自相似集推广到高维上面,讨论其相应的自相似集的一些性质.如把[0,1]区间推广到Sierpinski垫片上,Sierpinski垫片也是分形集,具有严格的自相似性,可讨论它的调和函数,格林函数,法向导数等问题.Kigami[1-3]和Strichartz[4-5]对这些问题进行详细的讨论.把Sierpinski垫片由二维推广到三维空间得到一个充满孔洞的四面体,称为Sierpinski四面体集,记作ST.本文主要在ST上进行讨论,给出ST上调和扩张的方法,并提出ST边界点上法向导数的概念,给出调和函数法向导数的具体的计算方法.由于篇幅的原因,本文所涉及到的有些符号和概念未能一一解释,请参考文献[1~4].1 Sierpinski四面体的结构1.1 Sierpinski四面体的构造从等边四面体(图1)出发,令{p1,p2,p3,p4}是该四面体的顶点集.定义R3→R3的映射F j:图1 等边四面体Fig.1 Equilateral tetrahedron则有(图2).图2 Sierpinski四面体Fig.2 Sierpinski tetrahedron1.2 后置临界自相似结构2 调和扩张3 法向导数4 结论参考文献:[1] KIGAMI J.Analysis on fractals[M].London:Cambridge University Press,2001.[2] KIGAMI J.Harmonic analysis for resistance forms[J].Funct Anal,2003,204:399-444.[3] KIGAMI J,LAPIDUS M.Self-similarity of volume measures for laplacians on P.C.F self-similar fractals [J].Commun Math Phys,2001,217:165-180.[4] STRICHARTZ R S.Differential equations on fractals[M].New Jersey:Princeton University Press,2001.[5] STANLEY J,STRICHARTZ R S,ALEXANDER T.Energy partition on fractals[J].Indiana University Mathematics Journal,2003,52:133-156. [6]王兵.一类分形集上的形式Dirichlet研究[D].广州:广东工业大学,2007.。
Fréchet空间上的一些等距逼近问题
向淑晃;谭立云
【期刊名称】《数学研究与评论:英文版》
【年(卷),期】2002(22)1
【摘要】本文主要讨论Frechet空间上ε-等距线性算子的等距逼近问题,证明了任意有限维Frechet空间之间的等距逼近问题都是肯定的;无穷维Frechet空间(s)空间上的等距逼近问题也是肯定的.
【总页数】6页(P107-112)
【关键词】Fréchet空间;(s)空间;等距逼近;Banach空间;有界线性算子空间
【作者】向淑晃;谭立云
【作者单位】中南大学应用数学与应用软件系;石油大学基础系
【正文语种】中文
【中图分类】O177.2
【相关文献】
1.集值映射空间上的κ-Fréchet Urysohn性质 [J], 郭先一;李祖泉
2.Frechet空间上的一些等距逼近问题 [J], 向淑晃;谭立云
3.集值映射空间上的Fréchet性质 [J], 郭先一;李祖泉
4.Fréchet空间上的非游荡算子的遗传超循环分解 [J], 周江波;卢殿臣;田立新
5.局部凸空间上连续规函数Gateaux可微性与Fréchet可微性 [J], 孙钰;魏文展因版权原因,仅展示原文概要,查看原文内容请购买。