光电编码器和磁敏编码器的区别
- 格式:docx
- 大小:13.37 KB
- 文档页数:1
比较磁电式光电式编码器三种转速传感器测量原理及特点一、前言转速传感器是测量机械设备旋转速度的重要工具,广泛应用于各种机械设备中。
磁电式光电式编码器和霍尔式编码器是常见的转速传感器,本文将分别介绍这三种传感器的测量原理及特点。
二、磁电式编码器1. 原理磁电式编码器是一种基于磁性材料的转速传感器。
其原理是通过在旋转轴上安装一个磁性码盘,当旋转轴旋转时,磁性码盘上的磁极会在传感器内部产生变化。
这个变化会被传感器内部的线圈接收到,并转换成一个模拟信号输出。
2. 特点(1)高分辨率:由于采用了高精度的磁性码盘和线圈,因此可以实现高分辨率的测量。
(2)高精度:由于采用了高精度的材料和制造工艺,因此可以实现高精度的测量。
(3)适用范围广:由于可以根据不同需求定制不同类型和规格的磁性码盘和线圈,因此适用范围广。
三、光电式编码器1. 原理光电式编码器是一种基于光学原理的转速传感器。
其原理是通过在旋转轴上安装一个透明的码盘和一组发光二极管和接收二极管,当旋转轴旋转时,码盘上的透明窗口会使得发射的光线被接收二极管接收到,从而产生一个模拟信号输出。
2. 特点(1)高分辨率:由于采用了高精度的透明码盘和发射接收元件,因此可以实现高分辨率的测量。
(2)高精度:由于采用了高精度的材料和制造工艺,因此可以实现高精度的测量。
(3)适用范围广:由于可以根据不同需求定制不同类型和规格的透明码盘和发射接收元件,因此适用范围广。
四、霍尔式编码器1. 原理霍尔式编码器是一种基于霍尔效应的转速传感器。
其原理是通过在旋转轴上安装一个磁性码盘和一组霍尔元件,当旋转轴旋转时,磁性码盘上的磁极会使得霍尔元件产生电压变化,从而产生一个模拟信号输出。
2. 特点(1)结构简单:由于采用了霍尔元件,因此结构简单。
(2)易于制造:由于采用了简单的材料和制造工艺,因此易于制造。
(3)适用范围广:由于可以根据不同需求定制不同类型和规格的磁性码盘和霍尔元件,因此适用范围广。
光电编码器、光学电子尺和静磁栅绝对编码
器的优缺点
光电编码器:
1,优点:体积小,精密,本身辨别度可以很高(目前我公司通过细分技术在直径φ66的编码器上可达到54000cpr)?,无接触无磨损;同一品种既可检测角度位移,又可在机械转换装置关心下检测直线位移;多圈光电肯定编码器可以检测相当长量程的直线位移(如25位多圈)。
寿命长,安装随便,接口形式丰富,价格合理。
成熟技术,多年前已在国内外得到广泛应用。
2,缺点:精密但对户外及恶劣环境下使用提出较高的爱护要求;量测直线位移需依靠机械装置转换,需消退机械间隙带来的误差;检测轨道运行物体难以克服滑差。
光学电子尺:
1,优点:精密,本身辨别度较高(可达到0.005mm);体积适中,直接测量直线位移;无接触无磨损,测量间隙宽泛;价格适中,接口形式丰富,已在国内外金属切削机械行业得到较多应用(如线切割、电火花等)。
2,缺点:测量直线和角度要使用不同品种;量程受限制(量程超过4m,生产制造困难价格昂贵),不适于在大量程恶劣环境处实施位移检测。
静磁栅肯定编码器:
1,优点:体积适中,直接测量直线位移,肯定数字编码,理论量程没有限制;无接触无磨损,抗恶劣环境,可水下1000米使用;接口形式丰富,量测方式多样;价格尚能接受。
2,缺点:辨别度1mm不高;测量直线和角度要使用不同品种;不适于在精小处实施位移检测(大于260毫米)。
旋转编码器工作原理旋转编码器是一种用于测量旋转运动的传感器装置,它可以将旋转的角度、速度或者位置转换为数字信号输出。
旋转编码器有很多种类型和工作原理,本文将主要介绍两种常见的旋转编码器工作原理:光电编码器和磁性编码器。
一、光电编码器工作原理:光电编码器是一种使用光电转换器(光电接收器和光电发射器)将旋转运动转换为数字信号的装置。
它由光电发射器和光电接收器两部分组成,通过光电发射器发射出的光束照射到光电接收器上,当光电接收器感受到光线时,会产生电信号输出。
根据旋转运动的方向和角度的不同,光电编码器可以输出不同的数字脉冲信号。
光电编码器的工作原理如下:1.光电发射器发射一束光线,照射到旋转编码盘上的光栅上。
2.旋转编码盘上的光栅是由一系列透明的槽和不透明的条组成的,当光线照射到透明的槽上时会被光电接收器接收到,产生电信号。
3.光电接收器将接收到的电信号转换为数字信号,输出给控制系统。
4.根据光电接收器接收到的信号的数量和间隔,可以确定旋转运动的角度或者速度。
光电编码器具有高分辨率、高精度和高稳定性的特点,广泛应用于机械、仪器仪表等领域。
二、磁性编码器工作原理:磁性编码器是一种使用磁场传感技术将旋转运动转换为数字信号的装置。
磁性编码器由一对磁极和磁敏感元件组成,磁敏感元件可以是霍尔传感器、差分磁敏传感器等。
当旋转编码盘上的磁极与磁敏感元件相互作用时,会产生磁场变化,磁敏感元件可以感受到这种磁场变化并输出电信号,从而实现对旋转运动的测量。
磁性编码器的工作原理如下:1.旋转编码盘上安装了一对磁极,磁极的极性和数量可以根据要测量的旋转范围和精度进行选择。
2.旋转编码盘上的磁极随着旋转运动,与磁敏感元件产生磁场的相互作用。
3.磁敏感元件将磁场变化转化为电信号输出。
4.控制系统接收到电信号后,可以根据信号的数量和间隔确定旋转运动的角度或者速度。
磁性编码器具有高分辨率、高抗干扰性和长寿命的特点,适用于环境恶劣、抗干扰性要求高的场合,如工业自动化领域。
电机旋变测量方法
电机旋变测量方法主要有以下几种:
1.霍尔传感器法:霍尔传感器是一种特殊的半导体器件,内部装有三个与电机转子位置有关的磁敏元件(即重尔元件),可以实时监测转子位置。
当磁敏元件受到磁场影响时,会铲生电势差,经过放大、滤波、调整等处理后,可以获得精准的转子位置信号。
这种方法测虽精度高,信噪比较好,适用于多种类型的电机,尤其适用于小型电机和高速电机。
2.编码器法:编码器是-种光、电信号交替的数字转换器,可以将旋转角度转化为脉冲信号,通过计数脉冲数,可以了解电机转子的位置和转速。
编码器-般以磁性编码器和光电编码器两种为主。
磁性编码器的优点是抗干扰能力较好,脉冲数可以比较高,但是同步误差大,同时运行温度范围小。
光电编码器的优点是精度高,同步误差小,运行温度范围大,但是抗扰能力相对较差。
这种方法适用于大型电机和复杂电机的测量,精度高,运行稳定。
3.静态测量:这种方法在国内应用最广,它只需要-台直流电源和- 一个旋变的解算装置即可对零。
通常的做法是先对电机绕组通一低压直流电,U相接正,V相或VW相接负,此时电机转子会被拉倒一个固定位置。
比如UVW接法时转子理论电角度为0°。
读取此时旋变解算角度值就是旋变与电机的零位偏差。
这些方法各有优缺点,适用范围也不尽相同,具体应用哪种方法要根据电机和实际需求进行选择。
光电编码器介绍1.光电编码器原理光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。
这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。
光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。
由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。
此外,为判断旋转方向,码盘还可提供相位相差90旱牧铰仿龀逍藕拧根据检测原理,编码器可分为光学式、磁式、感应式和电容式。
根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。
1.1增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90海佣煞奖愕嘏卸铣鲂较颍鳽相为每转一个脉冲,用于基准点定位。
它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。
其缺点是无法输出轴转动的绝对位置信息。
1.2绝对式编码器绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。
这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。
显然,码道越多,分辨率就越高,对于一个具有 N位二进制分辨率的编码器,其码盘必须有N条码道。
目前国内已有16位的绝对编码器产品。
绝对式编码器是利用自然二进制或循环二进制(葛莱码)方式进行光电转换的。
绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。
比较磁电式光电式编码器三种转速传感器测量原理及特点一、引言在工业自动化领域中,转速传感器是一种常用的测量设备,用于测量旋转物体的转速。
磁电式编码器、光电式编码器是两种常见且使用广泛的转速传感器。
本文将对磁电式编码器、光电式编码器和传统编码器进行比较,分析它们的测量原理和特点。
二、磁电式编码器1. 测量原理磁电式编码器是利用磁场变化产生电势的原理进行转速测量的。
它由磁传感器和磁极盘两部分组成。
磁传感器感知磁极盘上的磁场变化,并产生相应的电势信号。
通过测量电势信号的变化,可以确定转速的大小。
2. 特点•非接触性:磁电式编码器的测量过程不需要接触转速物体,减少了磨损和摩擦。
•高精度:磁电式编码器具有较高的分辨率和测量精度,可以达到亚微米级别。
•耐用性强:磁电式编码器具有较好的耐用性和抗干扰能力,适用于复杂的工业环境。
三、光电式编码器1. 测量原理光电式编码器是利用光电元件和光栅进行转速测量的。
光电元件感知光栅上的光信号变化,并产生相应的电信号。
通过测量电信号的变化,可以确定转速的大小。
2. 特点•高分辨率:光电式编码器的分辨率较高,可以达到亚微米级别。
在高精度测量要求的场景中具有优势。
•可编程性强:光电式编码器可以通过调整光栅的线数和结构参数来改变分辨率和测量范围,具有较高的可编程性。
•可靠性高:光电式编码器具有较好的抗干扰能力和稳定性,适用于精细测量和高要求的工业环境。
四、传统编码器1. 测量原理传统编码器是利用接触式传感器和编码盘进行转速测量的。
编码盘上的凹槽通过接触式传感器的感应,产生相应的电信号。
通过测量电信号的频率和脉冲数,可以确定转速的大小。
2. 特点•低成本:传统编码器的制造成本较低,适用于一些成本敏感的应用场景。
•需要接触:传统编码器需要与转速物体接触,存在磨损和摩擦的问题。
•测量精度受限:传统编码器的测量精度较低,一般在几毫米级别。
五、比较分析特点磁电式编码器光电式编码器传统编码器测量原理磁场变化产生电势光信号变化产生电信号编码盘凹槽感应电信号接触方式非接触式非接触式接触式测量精度高精度高精度较低精度耐用性耐用性强耐用性强耐用性较差抗干扰能力抗干扰能力强抗干扰能力强抗干扰能力一般分辨率较高较高较低成本高成本中等成本低成本六、总结通过对磁电式编码器、光电式编码器和传统编码器的比较分析,可以得出以下结论:- 磁电式编码器和光电式编码器具有较高的测量精度和耐用性,适用于高精度测量和复杂工业环境。
伺服电机编码器的类型-回复什么是伺服电机编码器?伺服电机编码器是一种用于测量和控制电机转动位置和速度的装置。
它通常通过与电机轴相连,并通过反馈信号向控制器提供准确的位置和速度信息。
伺服电机编码器在许多自动化应用中被广泛使用,包括机床、机器人、自动化生产线等。
伺服电机编码器的类型在实际应用中,有几种常见的伺服电机编码器类型。
这些类型的选择取决于应用的要求和性能需求。
以下是几种常见的伺服电机编码器类型。
1. 光电式编码器(Optical Encoders):光电式编码器是一种使用光学原理进行测量和控制的编码器。
它通常由发光二极管(LED)和光敏元件(光电二极管或光电二极管阵列)组成。
光电式编码器通过测量光照变化来确定电机的位置和速度。
这种类型的编码器具有较高的分辨率和精度。
2. 磁性编码器(Magnetic Encoders):磁性编码器使用磁性传感器来测量和控制电机的位置和速度。
它通常由磁性标记(如磁铁或磁敏元件)和磁传感器组成。
磁性编码器可以抵抗环境中的尘埃、油脂等干扰,具有较好的抗干扰性能和耐用性。
3. 光栅式编码器(Incremental Encoders):光栅式编码器是一种测量和控制电机位置和速度的高精度编码器。
它通常由光源、光栅条和光敏元件组成。
光束通过光栅条产生光栅条码样式,并通过光敏元件接收和解码光栅条码信号。
光栅式编码器具有非常高的分辨率和精度,适用于需要高精度控制的应用。
4. 绝对式编码器(Absolute Encoders):绝对式编码器是一种能够提供电机位置绝对值的编码器。
它通常使用不同的编码位来表示不同的位置,可以在电机重新启动后恢复到之前的位置。
绝对式编码器适用于需要准确控制和定位的应用。
伺服电机编码器的选择选择适合的伺服电机编码器类型需要考虑以下几个关键因素:1. 精度要求:不同的应用对测量精度的要求不同。
对于需要高精度控制的应用,如机床加工等,应选择具有更高分辨率和精度的编码器。
磁式编码器与光电编码器的区别Avtron从事编码器研发与生产50年,是世界上最主要的型重载编码器制造商之一,产品广泛应用于冶金/风电/石油/起重/港口/造纸/矿山等重型机械行业。
Avtron的编码器采用了两种不同的传感技术来产生信号:光电式和磁阻式。
Avtron的两种传感技术的编码器在众多环境恶劣、要求苛刻的变速传动与控制应用中,经过了成千上万的安装及使用验证,您可以完全信赖我们。
并根据您对价格和使用环境的需求来选择最适合的编码器。
光电传感技术:采用光电原理产生信号。
其扫描原理为:LED灯发出光线,经过透镜聚焦成光线,光线被一个旋转的刻有光栅的码盘切割,在码盘的另一端被光敏电池接收并输出信号。
原理图如下图:光电码盘的材质通常为玻璃,高分子材料,金属,实际应用中,光电码盘与光敏电阻的距离很小,通常在10μm的数量级,因而,任何轴向窜动都会损坏编码器,另外,采用光电传感技术的编码器,不耐振动,不耐污染,对频繁变温、振动,以及长期潮湿的、污染的工作环境中适应力较差。
光电扫描技术是重载编码器发展的瓶颈。
Avtron的光电传感技术:采用抗振防碎型光码盘,并结合Avtron的专利宽距技术,使传感器与光码盘的间隙是一般编码器的8倍大,从而避免了由于振动撞击导致的码盘或传感器的损坏。
Avtron的磁式传感技术:采用磁阻检测原理,扫描系统由磁环及传感器组成,磁环有多个磁极紧密排列而成,N-S极有磁力线,磁环旁传感器可以检测到磁力线的变化,当磁环旋转时,磁力线发生变化,传感器根据磁力线变化(磁力线角度方向)输出信号。
Avtron的宽距技术科使转子与传感器间的距离是通常编码器的2-4倍大(1.2mm-2.2mm),避免了因对中不准、电机轴跳和轴承移动等原因对传感器造成的损坏。
原理图如下图:因为磁力线可以穿透污染,因而编码器内部不受灰尘、油污和水汽的影响,传感器与码盘的距离最大可达3mm,码盘及其坚固,所有电子部件灌胶密封,因而不怕振动冲击,适合于苛刻工况下的应用。
编码器类型与原理介绍编码器是一种将输入信号转换为相应编码形式的电子器件。
它将输入信号进行数字化处理,并通过编码方式将其转换为数字编码输出。
编码器广泛应用于通信系统、计算机、嵌入式系统等领域,是实现信息传输和数据处理的重要组成部分。
根据编码原理和应用场景不同,可以将编码器分为多种类型,常见的有磁性编码器、光电编码器、旋转编码器等。
磁性编码器是利用磁性原理进行编码的一种编码器。
它主要由磁性编码盘和读取头组成。
编码盘上有一定规律的磁性标记,读取头通过检测磁场的变化来获取编码信息。
当读取头与编码盘相对运动时,根据磁性标记的不同位置和磁场的变化情况,读取头可以获取相应的数字编码输出。
磁性编码器具有高分辨率、抗干扰能力强等特点,广泛应用于精密测量、机械控制等领域。
光电编码器是利用光学原理进行编码的一种编码器。
它主要由光电器件和编码盘组成。
编码盘上有一定规律的光学标记,光电器件通过检测光的变化来获取编码信息。
当光电器件与编码盘相对运动时,根据光学标记的不同位置和光的变化情况,光电器件可以获取相应的数字编码输出。
光电编码器具有高分辨率、抗干扰能力强等特点,广泛应用于自动化控制、数控机床等领域。
旋转编码器是一种常用的编码器,也称为编码开关。
它主要由转轴、码盘和编码器模块组成。
当旋转编码器的转轴旋转时,码盘上的触点会与编码器模块接触或脱离,从而改变输出的编码。
旋转编码器一般具有两个输出通道,分别用于正转和反转编码。
旋转编码器广泛应用于音频设备、机器人、游戏手柄等领域。
编码器的工作原理一般分为几个主要步骤:信号检测、数字化处理和输出编码。
首先,编码器通过传感器、探针等方式对输入信号进行检测,将其转化为电子信号。
然后,通过模数转换器将模拟信号转换为数字信号,对其进行滤波、放大、采样等处理,将其转化为数字编码。
最后,根据编码原理将数字编码转换为二进制编码、脉冲编码等形式的输出。
编码器的输出可以直接接入计算机、控制器等设备,进行后续处理和控制。
磁式编码器与光电编码器的区别Avtron从事编码器研发与生产50年,是世界上最主要的型重载编码器制造商之一,产品广泛应用于冶金/风电/石油/起重/港口/造纸/矿山等重型机械行业。
Avtron的编码器采用了两种不同的传感技术来产生信号:光电式和磁阻式。
Avtron的两种传感技术的编码器在众多环境恶劣、要求苛刻的变速传动与控制应用中,经过了成千上万的安装及使用验证,您可以完全信赖我们。
并根据您对价格和使用环境的需求来选择最适合的编码器。
光电传感技术:采用光电原理产生信号。
其扫描原理为:LED灯发出光线,经过透镜聚焦成光线,光线被一个旋转的刻有光栅的码盘切割,在码盘的另一端被光敏电池接收并输出信号。
原理图如下图:光电码盘的材质通常为玻璃,高分子材料,金属,实际应用中,光电码盘与光敏电阻的距离很小,通常在10μm的数量级,因而,任何轴向窜动都会损坏编码器,另外,采用光电传感技术的编码器,不耐振动,不耐污染,对频繁变温、振动,以及长期潮湿的、污染的工作环境中适应力较差。
光电扫描技术是重载编码器发展的瓶颈。
Avtron的光电传感技术:采用抗振防碎型光码盘,并结合Avtron的专利宽距技术,使传感器与光码盘的间隙是一般编码器的8倍大,从而避免了由于振动撞击导致的码盘或传感器的损坏。
Avtron的磁式传感技术:采用磁阻检测原理,扫描系统由磁环及传感器组成,磁环有多个磁极紧密排列而成,N-S极有磁力线,磁环旁传感器可以检测到磁力线的变化,当磁环旋转时,磁力线发生变化,传感器根据磁力线变化(磁力线角度方向)输出信号。
Avtron的宽距技术科使转子与传感器间的距离是通常编码器的2-4倍大(1.2mm-2.2mm),避免了因对中不准、电机轴跳和轴承移动等原因对传感器造成的损坏。
原理图如下图:因为磁力线可以穿透污染,因而编码器内部不受灰尘、油污和水汽的影响,传感器与码盘的距离最大可达3mm,码盘及其坚固,所有电子部件灌胶密封,因而不怕振动冲击,适合于苛刻工况下的应用。
编码器的原理和通信协议近年来,随着工业自动化程度的不断提高,编码器已经成为了工业自动化领域中必不可少的设备。
通过不同的编码方式,编码器可以实现对物体运动的精准测量,并将测量结果转化为数字信号,以便于处理和控制。
本文就来介绍一下编码器的原理和通信协议。
一、编码器的原理1. 光电编码器的原理光电编码器是一种测量角度、旋转方向和线性位置的传感器,其原理就是利用编码盘和光电传感器以及相应的电路将物体的位置信息转换成数字信号。
光电编码器主要由编码盘、光源、光电传感器、电源和信号输出模块等组成。
其中,编码盘通常是一个环形的光学码盘,它由一些黑白相间的模块组成,这些模块会反射出光源发出的光线来,然后再由光电传感器检测到这些光线的变化。
2. 磁性编码器的原理磁性编码器是一种利用外部磁场的变化来测量位置信息的传感器,其原理与光电编码器类似,都是将位置信息转换成数字信号,不同的是磁性编码器使用的是磁性编码盘。
磁性编码盘的外部环境会产生磁场的变化,这些变化会引起磁编码盘上的磁极位置发生改变,通过使用磁传感器来检测磁编码盘上的磁极位置,就可以得到物体的位置信息。
二、编码器的通信协议通信协议是编码器和其他电子设备之间进行通信所必须的一些规则和约定。
其中最常用的通信协议是SSI协议和RS485协议。
1. SSI协议SSI协议是一种串行同步协议,它将位置信息转换成数字信号并且通过串行方式进行传输。
在SSI协议中,编码器通过同步时钟的方式来进行通信,每次传输的数据包括一个同步字节、一个命令字节、一个校验字节和一个或多个数据字节。
SSI协议具有传输速度快、稳定性高和传输距离远的优点,但是其缺点是对于电磁干扰比较敏感。
2. RS485协议RS485协议是一种差分同步通信协议,它使用两根传输线进行数据传输,其中一根传输线为数据发送线,另一根传输线为数据接受线。
RS485协议具有传输距离远、电磁抗干扰能力强的优点,但是其传输速度相对较慢。
光电编码器与磁电编码器比较1、磁电式编码器和传统的光电编码器有什么不一样的地方:光电编码器是由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取并获得信号的一类传感器,主要用来测量位移或角度。
传统的光电编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性及精度可以达到普通标准、一般要求,但容易碎。
金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃码盘差一个数量级。
塑料码盘是经济型的,其成本低,精度和耐高温达不到高要求。
而磁电式编码器采用磁电式设计,通过磁感应器件、利用磁场的变化来产生和提供转子的绝对位置,利用磁器件代替了传统的码盘,弥补了光电编码器的这一些缺陷,更具抗震、耐腐蚀、耐污染、性能可靠高、结构更简单。
光电编码器是通过在码盘上刻线来计算精度,所以精度越高,码盘就会越大,编码器体积越大,并且精度也不是连续的。
磁电式编码器则没有这样的限制,可以做到体积很小,精度高,特别是绝对值编码器要求精度高,更适合用磁电编码器。
2、磁电式增量编码器和磁电式绝对值编码器:绝对型编码器能够记忆设备的绝对位置,角度和圈数。
即一旦位置、角度和圈数固定,什么时候编码器的示值都唯一固定,包括停电后上电。
增量型编码器做不到这一点,一般增量型编码器输出两个A、B脉冲信号,和一个Z(L)零位信号,A、B脉冲互差90度相位角,通过脉冲计数可以知道位置,角度和圈数不断增加,通过A,B脉冲信号超前或滞后可以知道正反转,停电后,必须从约定的基准重新开始计数。
增量型编码器测量位置,角度和圈数时,需要做后处理,重新投电要做“复零”操作,所以,虽然增量型编码器比绝对型编码器在价格上便宜一些,但随着我国自动化程度的提高,绝对值编码器必然会逐步取代增量编码器,还有因为磁电编码器技术特点的原因,成本以逐步接近增量编码器。
3、MODBUS、CANopen、PROFIBUS的应用领域以及他们的区别:MODBUS、CANopen、PROFIBUS都是总线型的,总线型编码器是多个编码器各以一对信号线连接在一起,通过设定地址,用通讯方式传输信号,信号的接收设备只需一个接口,就可以读多个编码器信号。
光电编码器分类和选择编码器Encoder为传感器(Sensor)类的一种,主要用来侦测机械运动的速度、位置、角度、距离或计数,除了应用在产业机械外,许多的马达控制如伺服马达、BLDC伺服马达均需配备编码器以供马达控制器作为换相、速度及位置的检出所以应用范围相当广泛。
根据检测原理,编码器可分为光学式、磁式、感应式和电容式。
根据其刻度方法及信号输出形式,分为增量式编码器和绝对式编码器。
光电编码器是利用光栅衍射原理实现位移—数字变换的,从50年代开始应用于机床和计算仪器,因其结构简单、计量精度高、寿命长等优点,在国内外受到重视和推广,在精密定位、速度、长度、加速度、振动等方面得到广泛的应用。
a.增量式编码器特点:增量式编码器转轴旋转时,有相应的脉冲输出,其计数起点任意设定,可实现多圈无限累加和测量。
编码器轴转一圈会输出固定的脉冲,脉冲数由编码器光栅的线数决定。
需要提高分辨率时,可利用90 度相位差的A、B 两路信号进行倍频或更换高分辨率编码器。
b. 绝对式编码器特点绝对式编码器有与位置相对应的代码输出,通常为二进制码或BCD 码。
从代码数大小的变化可以判别正反方向和位移所处的位置,绝对零位代码还可以用于停电位置记忆。
绝对式编码器的测量范围常规为0—360 度。
增量型旋转编码器轴的每圈转动,增量型编码器提供一定数量的脉冲。
周期性的测量或者单位时间内的脉冲计数可以用来测量移动的速度。
如果在一个参考点后面脉冲数被累加,计算值就代表了转动角度或行程的参数。
双通道编码器输出脉冲之间相差为90º。
能使接收脉冲的电子设备接收轴的旋转感应信号,因此可用来实现双向的定位控制;另外,三通道增量型旋转编码器每一圈产生一个称之为零位信号的脉冲。
增量型绝对值旋转编码器绝对值编码器为每一个轴的位置提供一个独一无二的编码数字值。
特别是在定位控制应用中,绝对值编码器减轻了电子接收设备的计算任务,从而省去了复杂的和昂贵的输入装置:而且,当机器合上电源或电源故障后再接通电源,不需要回到位置参考点,就可利用当前的位置值。
磁编原理-比光编更可靠的编码器是如何工作的无论是旋转编码器或直线编码器,增量编码器或绝对值编码器,通常实现原理只有光电或磁性两种。
数年前光电原理是高分辨率编码器的首选,但随着磁编技术的发展,现在磁性编码器也可以达到微米级的精度,对原先光编的应用市场发出了挑战。
另外磁编技术在很多领域的应用,其稳定性要强于光编,这使得磁编成为工业应用中主流的编码器。
磁性编码器主要包括三个部分:磁铁,传感器,电路板。
磁铁是径向充磁的圆盘,通常会被充入多个磁极。
传感器探测到磁铁旋转导致的磁场变化,并将其转换成正弦波。
传感器可以是一个霍尔芯片,根据霍尔原理感应电压变化;也可以是一个磁阻感应元件,感应磁场变化。
电路板是由各类电子元件构成的,作用是对收集来的信号进处理并输出。
旋转磁编的分辨率取决于磁铁充磁的级数和传感器的数量。
增量编码器是正交输出,通过X1,X2或X4编码实现更高的分辨率。
增量编码器和绝对值编码器的区别不在于传感器原理,而是绝对值编码器利用一定的编码规则给每个定位进行了记录,这使得电机可以跑到指定位置,即使停电后再次启动,编码器也知道停止的位置。
直线磁编直线磁编与旋转磁编原理类似,差别是直线磁编使用磁轨或磁带和一个读取头。
读取头同样可以是利用霍尔原理或者磁阻原理,通过读取磁信号确定位置。
绝对值直线磁编的原理是通过读取磁轨上的特定二进制码确定具体位置。
而增量型的在断电后需要回到原位(home)才能继续工作。
直线磁轨的长度可以达到100m。
磁编的主要优势是抗干扰性和稳定性。
不同于光编,磁编可以在有粉尘,液体,油脂污染的情况下使用,而且具有抗震动的特点。
磁编的磁铁和传感器之间需要有一定空隙,这与光编一样,但对于磁编来说这个空袭不需要透明纯净,只要保证这个空隙内不存在导磁物质,传感器就可以正确探测到磁脉冲。
磁编在安装时要注意的是传感器与磁铁的同心度以及传感器与磁铁的距离。
线位移传感器、角位移传感器、转速传感器的分类及各种类型的工作原理-回复在工程和科技领域中,传感器起着至关重要的作用。
传感器是一种能够感测和测量物理量并将其转化为可用信号的设备。
其中,线位移传感器、角位移传感器和转速传感器是常见的传感器类型,在各自的领域中发挥着重要的作用。
本文将逐步介绍这些传感器的分类以及各种类型的工作原理。
一、线位移传感器(Linear Displacement Sensor)线位移传感器是一种用于测量物体位置移动的传感器,它能够测量物体在一个直线轴上的位移。
线位移传感器广泛应用于工业自动化、机械工程、汽车工业等领域。
根据工作原理的不同,线位移传感器可以分为接触式和非接触式传感器。
1. 接触式传感器(Contact Sensors)接触式传感器通过物体与传感器之间的接触来测量位移。
常见的接触式线位移传感器有电阻式、电感式和电容式传感器。
- 电阻式传感器(Resistance Sensors)电阻式传感器基于电阻的变化来测量位移。
当物体移动时,导电材料的电阻会发生变化,进而改变电路中的电流或电压。
通过测量这种变化可以获取位移信息。
电阻式传感器具有较高的精度和稳定性,但由于依赖物体与传感器的接触,容易在长时间使用后产生磨损。
- 电感式传感器(Inductive Sensors)电感式传感器利用线圈的感应效应来测量位移。
当物体靠近传感器时,线圈的感应范围会发生改变,进而改变电路中的电感值。
通过测量电感的变化可以确定位移信息。
电感式传感器具有较高的耐用性和适应性,但对于非金属物体的测量精度较低。
- 电容式传感器(Capacitive Sensors)电容式传感器利用电容的变化来测量位移。
当物体接近传感器时,电容的值会改变。
通过测量电容变化的方式可以得到位移信息。
电容式传感器具有较高的灵敏度和测量精度,但在环境湿度变化较大时容易受到影响。
2. 非接触式传感器(Non-contact Sensors)非接触式传感器通过无接触的方式来测量位移,常见的非接触式线位移传感器有光学传感器和磁电传感器。
磁性编码器与光电编码器近几年,磁性编码器从开始的不被行业接受,逐渐成为工业应用中的主流编码器,从技术角度来看,国内厂家已经实现了全面突破。
磁编码器目前已发展到19位,达到了业内最高水平,具有耐震动、耐油污、耐灰尘等优势,并得到了大批量市场验证,稳定可靠。
在光电编码器方面,采取的研发策略与磁编码器相同,即做得更短。
25位光编将分辨率做到0.038角秒,精度做到10角秒以内,具有高分辨率、速度波动小、低速稳定性、定位精度高等特点。
光编与磁编的主要区别在于精度,光编精度优于磁编,即使是目前最高19位的磁编,在某些应用场合仍达不到行业的精度要求。
例如,有轨迹要求的金属雕刻、快速模切等高精高速高技术要求行业。
当前,编码器中的一些芯片、关键磁及磁头等重要元器件仍然依赖于进口,这是国内编码器厂商下阶段的主要突破目标。
在这样的情况下,当企业达到批量化生产能力的时候,其主要竞争点就聚集在产品的工艺提升上。
例如,磁编与光编在精度设计上,都采用了一个补正技术,通过在每个一定的区间内添加补正量,对累计精度进行补正,从而大大提升产品的可靠性与稳定性。
在光编的设计工艺追求上,我们也下足了功力。
光编的主要应用场合在于技术雕刻,功耗要求比较高,现在已经在开发无电池多圈,用于解决电池能耗问题。
针对电机的安装,100法兰以下,采用分体式的安装形式,设计迷宫式的轴承挡油板结构,油脂蒸发自动回到轴承,避免污染码盘,影响精度;针对100法兰以上的电机,采用十字连轴安装方式,减震缓冲、隔离高温、防止窜动、防止油污,具有高可靠性的工艺保障。
当然,在研发的过程中,也碰到很多问题。
如,十字连轴研发了近一年半到两年,大概解决了一百多个问题,看起来很简单的东西,但是挺复杂的。
虽然国内已有几家公司具备光编批量化生产的技术实力,但在光编工艺追求上的精益求精,仍是接下来要努力的方向。
另外,先进的编码器算法技术,也能有效提升整体伺服驱动器性能。
目前,驱动器在国内的发展水平都相当不错,但是往往马达、编码器与驱动器匹配应用的时候,就会影响整体的驱动性能。
光电式编码器电磁
光电式编码器的结构通常分为两部分:传感器模块和编码盘。
传感器模块是由光电传感器、放大电路、滤波电路、解码电路等组成,用于将光信号转换为电信号。
编码盘则是一个带有编码图案的圆盘或条带,其中编码图案由透光部分和不透光部分组成,用于接收光信号。
光电式编码器的基本工作原理是通过光电传感器感知编码盘上的光信号以及光信号的变化来实现位置测量。
当编码盘转动时,光信号会随之发生变化,光电传感器将这些信号转换为电信号。
根据光信号的变化,解码电路能够判断编码盘的转动方向和转动的角度,并进一步计算出位置和速度信息。
为了提高光电式编码器的分辨率,可以采取以下方法:
2.提高光电传感器的灵敏度:可以通过优化光电传感器的材料、结构和制造工艺,提高其感光度和响应速度。
另外,还可以采用更灵敏的光电传感器,如CCD或CMOS传感器,来提高分辨率。
3.采用信号处理算法:可以通过采用更精确的信号处理算法来提高分辨率。
例如,可以采用插值算法来根据光信号的变化曲线计算出更精确的位置信息。
4.使用多路编码器:可以通过使用多路编码器的方式来提高分辨率。
即在同一轴上安装多个编码盘,每个编码盘都对应不同的分辨率,通过对多个编码盘输出信号进行组合计算,可以获得更高的分辨率。
总的来说,提高光电式编码器的分辨率可以从增加编码盘分辨率、提高光电传感器灵敏度、采用优化的信号处理算法和使用多路编码器等方面进行。
这些方法的选择取决于具体的应用需求和技术条件。
选择光编码器还是磁编码器可靠的编码器,必须保证每次转过相同的角度发出同样数量的脉冲。
光编码器光收发器和旋转码盘比磁编码器的芯片更容易损坏。
磁编码器几乎没有运动部件。
而光编码器靠着脆弱的机构来获取信号。
因为它们不同的感应原理,光编比磁编更容易失效。
因为光编靠旋转码盘和光收发器配合工作。
它们的距离非常近,但又不能接触。
但是在振动下和结构的间隙变大的情况下,码盘会和光收发器碰撞。
当光编码器的运动部件互相撞击后,它们的位置就发生了变化从而导致精度降低。
最终因为多次的撞击导致光编码器的彻底失效。
而磁编码器没有这么复杂的运动机构,从而更加可靠。
但是振动并不是影响寿命光编码器的唯一原因。
因为灰尘和水汽的原因,光编码器毫无疑问更容易损坏。
通过严格的密封,一方面加重了生产成本,另一方面,编码器的密封由它最脆弱的部分决定,如何保证它在严酷的环境下仍然正常工作?通常编码器要在轴承,外壳和接线处密封。
但是密封非常容易受温度影响。
由于环境和编码器自身的发热,当温度高时编码器里面的空气和水汽被排出,当温度低时外界的空气和水汽又被吸入。
这些水汽凝结在码盘上直接导致光编码器的失效。
而磁编码器的感应部件完全封装在芯片里,丝毫不受影响。
除此之外,光编码器必须在无尘的环境里生产,因为任何粉尘掉在码盘上,光编码器就失效了。
而且必须严格的密封,从而加重了编码器的成本。
就是这样,在振动剧烈的情况下难免出现粉尘脱落导致光编码器失效。
而磁编码器确完全不怕粉尘。
从上面可以看出,磁编码器相对光编码器具有成本低质量好的优点。
磁敏编码器和光电编码器的区别
增量型编码器一般都是高低电平脉冲输出,从原理上讲分为磁敏编码器和光电编码器,光电编码器是通过光栅盘在转动过程中对光的遮挡影响发出脉冲信号,由于光栅盘刻的可以非常均匀,所以转动发出的脉冲也比较均匀,而CBMQ型磁敏编码器由于安装同心度,磁场均匀等方面的影响,每圈产生的脉冲个数是固定的,但是脉冲宽度有差异,所以需要用户在选择的时候确定采集方式,多向技术人员咨询详细参数。