三极管设计的多级音频放大器
- 格式:doc
- 大小:47.50 KB
- 文档页数:2
最简单的三极管音频放大电路最简单的三极管音频放大电路调节R1大小,使在最大输出时信号不失真即可,减小R可输出更大的功率。
如果有万用表,可将C极电压调为电源电压的1/2左右。
图一固定偏置,电源电压对偏置电流影响很大基本的共发射极电路图二偏置接入负反馈,放大倍会变小,电源电压对偏置电流影响较小。
电压负反馈接法,适应电压范围更宽。
此种属甲类放大类,效率最低,特点是简单。
低电压电路中极少采用,因为输出功率太小,实际多用在功率推动电路,同时放大电压和电流。
这里介绍一个设计小巧、线路简单但性能不错的三管音频放大器。
其电路见附图。
也许你在一些袖珍晶体管收音机可以看到一些与此类似的电路。
原理分析:电路如图所示,输入极(9014)的基极工作电压等于两输出极三极管的中点电压,一般为电源电压的一半,这个电压的稳定由输出三极管的基极的两个二极管控制。
3.3欧姆电阻串联在输出三极管的发射极上,以稳定偏流。
以减小环境温度、不同器件(如二极管、输出三极管)参数区别对电路的影响。
当偏流增加时,输出三极管发射极与基极间电压会减小,以减小偏流。
此电路输入阻抗为500欧姆,在使用8欧姆扬声器时,电压增益为5。
电路在不失真输出50mW的功率时,扬声器上有约2V左右的电压摆动。
增加电源电压可提高输出功率,但此时应注意输出晶体管散热问题。
在9V电源电压时,电路耗电约30mA。
制作时要注意两个输出功率管放大倍数应接近。
其它器件参数可以参考图示选择。
此电路适合于制作成耳机放大器或其它小功率放大器用。
由于它是一个很典型的功放电路,所以非常适合初学者学习功放电路原理之余,动手实践制作时的参考电路。
工作在放大区的pnp三极管,三个级的电位解释说明1. 引言1.1 概述工作在放大区的pnp三极管是一种常见的电子器件,它在电子电路中具有重要的应用。
该器件通过控制输入信号,可以放大输出信号,并且具有较高的增益和频率响应特性。
本文将详细介绍工作在放大区的pnp三极管的工作原理、放大区工作条件以及其优点与应用。
1.2 文章结构本文共分为五个部分:引言、工作在放大区的pnp三极管、三个级的电位解释说明、实验结果与分析以及结论与展望。
在引言部分,我们将介绍文章涉及到的主题,并对整篇文章进行简要概述。
接下来,在第二部分,我们将详细讨论工作在放大区的pnp三极管的工作原理,包括其内部结构和基本工作方式。
此外,我们还会探讨该器件所需满足的放大区工作条件,并解释为什么这些条件是必要的。
第三部分将着重介绍三个级别(即第一级、第二级和第三级)电位解释说明。
我们会详细阐述各个级别所代表的意义以及它们之间相互影响的关系。
接下来,第四部分将介绍实验的设计和步骤,并对数据进行收集和处理。
最后,我们将分析实验结果,并进行讨论。
最后,在第五部分,我们将总结文章中的主要结论,并提出该领域研究的局限性和未来发展方向。
1.3 目的本文的目的是全面解释工作在放大区的pnp三极管以及三个级别电位之间的关系。
通过深入探讨该主题,希望可以增进读者对该器件的理解,并为相关领域的研究和应用提供有价值的参考。
同时,本文也旨在鼓励进一步研究和探索该领域未知问题。
2. 工作在放大区的pnp三极管2.1 工作原理PnP三极管是一种双极型晶体管,由一对P型半导体夹在中间的N型半导体构成。
工作原理基于PN结和两个接触点之间形成的二极管效应。
当正向偏置施加到基结处时,电子从发射极流入基端,同时集电极流入基端。
这个过程涉及电荷转移和电流放大。
2.2 放大区工作条件放大器是以三个不同级别工作的多级放大器来实现信号增益。
它使用放大区工作状态,即把PnP三极管调整为放大模式。
3.16多级放大电路的设计及测试一、 实验预习与思考设计任务和要求 (1) 基本要求:用给定的三极管2SC1815(NPN ),2SA1015(PNP )设计多级放大器,已知12CC V V =+,12EE V V =-,要求设计差分放大器恒流源的射极电流31~1.5EQ I mA =,第二放大级射极电流42~3EQ I mA =;差分放大器的单端输入单端输出不失真电压增益至少大于10倍,主放大级的不失真电压增益不小于100倍;双端输入电阻大于10K Ω,输出电阻小于10Ω,并保证输入级和输出级的直流电位为零。
给出设计过程,画出设计的电路,并标明参数。
首先设计,第一级的差分放大电路.要使两端串联的电阻值一样.然后集电极的两个电阻的阻值也要差不多.最后为确保发射极上的电阻为无穷大,则需要利用长尾式差分电路,确定其发射极电阻来构成一个电流源.然后设计主放大部分,要使发射极和集电极上的电阻的差值足够大,以使其达到放大100倍的要求,但还要确保阻值的合理性,以使三极管不会处于截止区或者饱和区.最后设计输出级电路.要选用尽可能小的电阻,以确保输出电阻可以足够的小,以达到要求.最后还要注意避免互补输出级出现交越失真的现象.参数:R1=R2=5kΩ,R5=10kΩ,R3=8.87kΩ,R6=R7=10kΩ,C2=1pF,C1=4μF,R12=1Ω,R9=1kΩ,R10=R11=1Ω.二、 实验目的(1) 理解多级直接耦合放大电路的工作原理和设计方法。
(2) 学习并熟悉设计高增益的多级直接耦合放大电路的方法。
(3) 掌握多级放大器的性能指标的测试方法。
(4) 掌握在放大电路中引入负反馈的方法。
三、 实验原理与测量方法直耦式多级放大器的主要设计任务是模仿运算放大器OP07的等效内部结构,简化部分电路,采用差分输入,共射放大,互补输出等结构形式,设计出电压增益足够高的多级放大器,可对小信号进行不失真地放大。
电工电子技术课程设计报告题目:多级放大电路的设计二级学院机械工程学院年级专业 14 动力本学号 1401250029学生姓名周俊指导教师张云莉教师职称讲师报告时间:2015.12.28目录第一章.基本要求和放电电路的性能指标 (1)第二章.概述和任务分析 (5)第三章.电路原理图和电路参数 (6)第四章.主要的计算过程 (9)第五章.电路调试运算结果 (11)第六章.总结 (12)制作调试步骤及结果 (12)收获和体会 (13)第七章.误差和分析 (14)第八章.参考文献 (15)第一章.基本要求和放电电路的性能指标1. 基本要求:用给定的三极管2SC1815(NPN),2SA1015(PNP)设计多级放大器,已知V CC =+12V, -V EE =-12V ,要求设计差分放大器恒流源的射极电流I EQ3=1~1.5mA ,第二级放大射极电流I EQ4=2~3mA ;差分放大器的单端输入单端输出不是真电压增益至少大于10倍,主放大器的不失真电压增益不小于100倍;双端输入电阻大于10kΩ,输出电阻小于10Ω,并保证输入级和输出级的直流点位为零。
设计并仿真实现。
2. 放电电路的性能指标:第一种是对应于一个幅值已定、频率已定的信号输入时的性能,这是放大电路的基本性能。
第二种是对于幅值不变而频率改变的信号输出时的性能。
第三种是对应于频率不变而幅值改变的信号输入时的性能。
1.1第一种类型的指标:1.放大倍数放大倍数是衡量放大电路放大能力的指标。
它定义为输出变化量的幅值与输入变化量的幅值之比,有时也称为增益。
虽然放大电路能实现功率的放大,然而在很多场合,人们常常只关心某一单项指标的放大的倍数,比如电压或者电流的放大倍数。
由于输出和输入信号都有电压和电流量,所以存在以下四中比值:(1-1)1.(1-2)(1-3)(1-4)式中的错误!未找到引用源。
、错误!未找到引用源。
、错误!未找到引用源。
、错误!未找到引用源。
多级放大电路的设计与测试一、实验目的1.理解多级直接耦合放大电路的工作原理与设计方法2.熟悉并熟悉设计高增益的多级直接耦合放大电路的方法3.掌握多级放大器性能指标的测试方法4.掌握在放大电路中引入负反馈的方法二、实验预习与思考1.多级放大电路的耦合方式有哪些分别有什么特点2.采用直接偶尔方式,每级放大器的工作点会逐渐提高,最终导致电路无法正常工作,如何从电路结构上解决这个问题3.设计任务和要求(1)基本要求用给定的三极管2SC1815(NPN), 2SA1015(PNP)设计多级放大器,已知V C C=+12V, -V EE=-12V,要求设计差分放大器恒流源的射极电流I EQ=1~,第二级放大射极电流I EQ=2~3mA差分放大器的单端输入单端输出不是真电压增益至少大于10 倍,主放大器的不失真电压增益不小于100倍;双端输入电阻大于10k Q,输出电阻小于10Q,并保证输入级和输出级的直流点位为零。
设计并仿真实现。
三、实验原理直耦式多级放大电路的主要涉及任务是模仿运算放大器OP07的等效内部结构,简化部分电路,采用差分输入,共射放大,互补输出等结构形式,设计出一个电压增益足够高的多级放大器,可对小信号进行不失真的放大。
1. 输入级电路的输入级是采用NPN型晶体管的恒流源式差动放大电路。
差动放大电路在直流放大中零点漂移很小,它常用作多级直流放大电路的前置级,用以放大微笑的直流信号或交流信号。
典型的差动放大电路采用的工作组态是双端输入,双端输出。
放大电路两边对称,两 晶体管型号、特性一致,各对应电阻阻值相同,电路的共模抑制比很高,禾厅抗干扰。
该电路作为多级放大电路的输入级时,采用 V 1单端输入,U oi 的单端输出的工作组^态。
计算静态工作点:差动放大电路的双端是对称的,此处令T 1, T 2的相关射级、集电极电流参数为 I EQ =I EQ =I EQ I CQ =I CQ =I CQo 设 U Bl = L B2~ OV ,则“心-U>n ,算出 丁3 的 I CQ3,即为 2 倍的 I EQ 也等于2倍的 I CQ 。
三极管放大原理的应用1. 什么是三极管放大原理?三极管放大原理是指利用三极管的放大特性来实现信号放大的过程。
三极管是一种电子器件,由发射极、基极和集电极构成,通过在基极施加电压,控制发射极和集电极之间的电流,从而实现信号放大。
2. 三极管放大原理的应用场景三极管放大原理广泛应用于电子设备中,例如:2.1 音频放大器三极管放大原理可用于设计音频放大器,用于放大音频信号,使其达到足够大的幅度,以驱动扬声器等音频设备,实现音频的放大和放音。
2.2 射频放大器三极管放大原理也可用于设计射频放大器,用于放大射频信号,使其达到足够大的幅度,以驱动天线或接收机等射频设备,实现射频信号的放大和传输。
2.3 电子调节器三极管放大原理还可用于设计电子调节器,用于调节电压或电流的大小,实现对电路的调节和控制功能。
例如,电子调节器可以用于调节电源输出的电压,使其稳定在所需的数值范围内。
2.4 信号放大器三极管放大原理还可以用于设计信号放大器,用于放大各种类型的信号,如电压信号、电流信号、频率信号等,以增强信号的强度和清晰度,确保信号的传输和接收质量。
3. 三极管放大原理的优势使用三极管放大原理的应用具有以下优势:3.1 高增益三极管放大器可以实现较大的增益,可以将输入信号放大至较大的幅度,从而满足不同应用领域对信号放大的需求。
3.2 高稳定性三极管放大器具有较高的稳定性,可以稳定地放大信号并输出稳定的幅度,能够有效防止信号失真和扭曲,保证信号的传输质量。
3.3 低功耗相比其他放大器,使用三极管放大原理的应用通常具有较低的功耗,能够在提供较大增益的同时,降低能量的消耗。
3.4 易于集成和控制三极管放大器可以与其他电子器件集成在一起,形成复杂的电路系统,同时可以通过对基极电压的控制来调节放大器的增益和工作状态。
4. 三极管放大原理的应用案例以下是三极管放大原理在实际应用中的一些案例:•汽车音响系统:使用三极管放大器放大音频信号,使音响系统能够输出高质量的声音,提升车载音响的性能。
三极管多级放大电路
三极管多级放大电路是指由多个三极管级联组成的放大电路。
它可以增加电压放大倍
数和带宽,提高信号的音质和清晰度。
三极管多级放大电路常用于音频放大器、电视机、
电视机顶盒、收音机等电子设备中。
三极管多级放大电路一般包括输入级、中间级和输出级。
输入级负责将输入信号放大
到一定程度,中间级进一步放大信号以提高放大倍数和增加带宽,输出级将信号从中间级
输出。
输入级的放大倍数取决于电路中所使用的三极管的放大系数。
输入级电路中一般需要
开环直流放大,这可以提高输入级的静态利得。
开环直流放大的技术可以通过在基极引入
一个电流源实现。
中间级一般使用共射、共基或共集电极的三极管构成。
共射电路具有一定的放大倍数
和较高的输入阻抗,而共集电路具有低输出阻抗和宽带宽,共基电路则具有较高的输入阻抗,但放大倍数较小。
中间级的主要作用是进一步放大信号,以提高整个电路的放大倍
数。
三极管多级放大电路中的电容器和电阻器可以用来调整电路的带宽和放大倍数。
电容
器可以通过调整电路的频率分布来影响其带宽,而电阻器可以用来调整放大倍数和输出阻抗。
在设计三极管多级放大电路时需要考虑电路的稳定性和可靠性。
电路中的三极管需要
进行正确的偏置和驱动,以确保正常工作和长寿命。
总之,三极管多级放大电路是一种有效的电路结构,可以增加电路的放大倍数和带宽,并提高信号的音质和清晰度。
在实际应用中需要注意电路的稳定性和可靠性,以确保电路
的正常工作和长寿命。
三极管设计的多级音频放大器
2011年08月13日 11:14 电子发烧友作者:大毛用户评论(1)
关键字:三极管(94)音频放大器(36)
如图是一个由晶体三极管VT1~VT3组成的多级音频放大器。
VT1与外围阻容元件组成了典型的阻容耦合放大电路,担任前置音频电压放大;VT2、VT3组成了两级直接耦合式功率放大电路,其中:VT3接成发射极输出形式,它的输出阻抗较低,以便与8Ω低阻耳塞式耳机相匹配。
驻极体话筒B接收到声波信号后,输出相应的微弱电信号。
该信号经电容器C1耦合到VT1的基极进行放大,放大后的信号由其集电极输出,再经C2耦合到VT2进行第二级放大,最后信号由VT3发射极输出,并通过插孔XS送至耳塞机放音。
电路中,C4为旁路电容器,其主要作用是旁路掉输出信号中形成噪音的各种谐波成份,以改善耳塞机的音质。
C3为滤波电容器,主要用来减小电池G的交流内阻(实际上为整机音频电流提供良好通路),可有效防止电池快报废时电路产生的自激振荡,并使耳塞机发出的声音更加
清晰响亮。
元器件选择
VT1、VT2选用9014或3DG8型硅NPN小功率、低噪声三极管,要求电流放大系数β≥100;VT3宜选用3AX31型等锗PNP小功率三极管,要求穿透电流Iceo尽可能小些,β≥30即可。
B选用CM-18W型(φ10mm×6.5mm)高灵敏度驻极体话筒,它的灵敏度划分成五个挡,分别用色点表示:红色为-66dB,小黄为-62dB,大黄为-58dB,兰色为-54dB,白色>-52dB。
本制作中应选用白色点产品,以获得较高的灵敏度。
B也可用蓝色点、高灵敏度的CRZ2-113F型驻极体话筒来直接代替。
XS选用CKX2-3.5型(φ3.5mm口径)耳塞式耳机常用的两芯插孔,买来后要稍作改制方能使用。
改制方法参见图2所示,用镊子夹住插孔的内簧片向下略加弯折,将内、外两簧片由原来的常闭状态改成常开状态就可以了。
改制好的插孔,要求插入耳机插头后,内、外两簧片能够可
靠接通,拔出插头后又能够可靠分开,以便兼作电源开关使用。
耳机采用带有CSX2-3.5型(φ3.5mm)两芯插头的8Ω低阻耳塞机。
R1~R5均用RTX-1/8W型碳膜电阻器。
C1~C3均用CD11-10V型电解电容器,C4用CT1型瓷介电容器。
G用两节5号干电池串联而成,电压3V。